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ABSTRACT

Cytotoxic T lymphocytes (CTLs) and natural killer (NK)
cells contribute to the body’s immune defenses. Current
chimeric antigen receptor (CAR)-modified T cell
immunotherapy shows strong promise for treating var-
ious cancers and infectious diseases. Although CAR-
modified NK cell immunotherapy is rapidly gaining
attention, its clinical applications are mainly focused on
preclinical investigations using the NK92 cell line.
Despite recent advances in CAR-modified T cell
immunotherapy, cost and severe toxicity have hindered
its widespread use. To alleviate these disadvantages of
CAR-modified T cell immunotherapy, additional cyto-
toxic cell-mediated immunotherapies are urgently nee-
ded. The unique biology of NK cells allows them to serve
as a safe, effective, alternative immunotherapeutic
strategy to CAR-modified T cells in the clinic. While the
fundamental mechanisms underlying the cytotoxicity
and side effects of CAR-modified T and NK cell
immunotherapies remain poorly understood, the for-
mation of the immunological synapse (IS) between CAR-
modified T or NK cells and their susceptible target cells
is known to be essential. The role of the IS in CAR T and
NK cell immunotherapies will allow scientists to harness
the power of CAR-modified T and NK cells to treat can-
cer and infectious diseases. In this review, we highlight
the potential applications of CAR-modified NK cells to
treat cancer and human immunodeficiency virus (HIV),
and discuss the challenges and possible future

directions of CAR-modified NK cell immunotherapy, as
well as the importance of understanding the molecular
mechanisms of CAR-modified T cell- or NK cell-medi-
ated cytotoxicity and side effects, with a focus on the
CAR-modified NK cell IS.
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INTRODUCTION

Natural killer (NK) cells were discovered in the 1970s (Her-
berman et al., 1975a, b; Kiessling et al., 1975a, b) but are not
considered a main research area in the field of immunology
(Yokoyama, 2008). For decades, NK cells have lived in the
shadow of T cells and other immune cells. In the early days
of NK cell discovery, many immunologists did not appreciate
the importance of NK cells to the body’s defense system.
However, the essential roles of NK cells in the immune
system are revealed in patients with NK deficiency (Orange,
2013), who have increased rates of malignancy (Orange,
2013; Morvan and Lanier, 2016) and are susceptible to
herpesvirus infections, including varicella pneumonia, dis-
seminated cytomegalovirus, and herpes simplex virus (Biron
et al., 1989). Similar results were described in mice with
impaired NK activity (Talmadge et al., 1980; Morvan and
Lanier, 2016), which highlights the importance of NK cells in
the immune system.
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Chimeric antigen receptor (CAR)-modified T cell therapy
has become a promising immunotherapeutic strategy for the
treatment of blood cancers (Porter et al., 2011; Kim et al.,
2016; Maude and Barrett, 2016) and has gained the signifi-
cant attention of researchers in both academia and industry
(Glienke et al., 2015). In 1989, Gross and colleagues
described the concept of expressing antibody in a cytotoxic T
cell hybridoma (Gross et al., 1989). Progressive advances in
construction of chimeric T cell receptors, including introduc-
tion of a single costimulatory molecule, in the past 25-year
development by several groups on the basis of this concept
have led to rapid progress on CAR Therapy. For example,
anti-CD19 CAR T cell therapy was granted “breakthrough
therapy” by the United States Food and Drug Administration
(FDA) in 2014 (Gill and June, 2015; Gill et al., 2016).

NK cells were originally described for their capacity to
spontaneously kill tumor cells (Rosenberg et al., 1974;
Herberman et al., 1975a, b; Kiessling et al., 1975a, b), which
differ from T cells that require prior sensitization. As their
name implies, NK cells kill susceptible target cells, such as
virus-infected cells or tumor cells, without prior sensitization.
Unlike T cells, the activation of NK cells is controlled by the
integration of both stimulatory and inhibitory receptors
(Bakker et al., 2000; Long et al., 2013). Similar to CAR-T
technology, CAR-NK cell strategy involves isolating a
patient’s own NK cells or expanding commercially available
NK cell lines (e.g., NK92 cells), engineering these cells in a
good manufacturing practice (GMP) laboratory to express
CAR, which recognize a tumor-specific protein, and re-in-
fusing the engineered NK cells back into the patient.

The cell biology and immunology of NK cells have been
extensively discussed in other reviews (Lanier, 2005; Vivier
et al., 2011; Lam and Lanier, 2016). This review focuses on
CAR-modified NK cell immunotherapy and the CAR-modi-
fied NK immunological synapse (IS). This review is divided
into the following five main sections: (1) the rationale for the
development of CAR-modified NK cell-based immunother-
apy; (2) CAR-modified NK cell-based immunotherapy to
treat cancer; (3) CAR-modified NK cell-based immunother-
apy to treat infectious diseases; (4) the CAR-modified NK
cell IS; and (5) perspectives. The main messages that this
review conveys are the following:

1) CAR-modified NK cells are a promising intervention for
the treatment of cancer and infectious diseases.

2) The CAR-modified NK cell IS is important to the
understanding of CAR-modified NK cell-mediated cyto-
toxicity and side effects.

THE RATIONALE FOR THE DEVELOPMENT OF
CAR-MODIFIED NK CELL-BASED
IMMUNOTHERAPY

In addition to T cell-mediated immunotherapy, the unique
biology of NK cells makes them a valid tool for immunotherapy

(Morvan and Lanier, 2016). Clinically, NK cells from peripheral
blood can be defined as CD3-negative and CD56-positive
peripheral blood mononuclear cells (PBMCs). There are sev-
eral advantages of using NK cells as an immunotherapeutic
strategy to treat cancer and infectious diseases, as described
below.

NK cell activation does not require prior sensitization
or human leukocyte antigen matching

It is well known that NK cell activation is controlled by the
integration of stimulatory and inhibitory signals (Long et al.,
2013). CTL activation requires a sensitization phase, in
which unprimed T cells interact with antigen-presenting cells
(APCs) to become activated lymphocytes. These activated
CTLs then enter the effector phase in which they eliminate
virus-infected target cells or tumor cells. However, NK cells
can kill virus-infected target cells and tumor cells without
prior sensitization. Specifically, if the signaling of an acti-
vating receptor, such as CD16 or natural killer group 2,
member D (NKG2D), dominates, NK cells will kill target cells
without prior sensitization, which provide the rapid, first-line
defense mechanism. This feature of NK cell biology makes
these cells an effective and valid tool for rapidly eliminating
virus-infected cells or tumor cells, serving as the body’s first
line of defense. Another feature of CTL-mediated killing is
“major histocompatibility complex (MHC) restriction”, in
which the T cell receptor (TCR) must recognize its self-MHC
molecule that is expressed on antigen-specific target cells,
such as virus-infected cells (Ada, 1994). However, NK cell-
mediated cytotoxicity is “MHC unrestricted”, which means
that NK cells kill target cells that don’t express MHC class I
molecules, a guiding principle in the NK field, also known as
the “missing self” hypothesis (Karre et al., 1986; Ljunggren
and Karre, 1990). NK cell activation is controlled by the
strength of the stimulatory receptor signal. The principle of
CAR immune cell design matches the mechanism of NK cell
activation. CAR-modified NK cells can provide strong acti-
vating signals by linking the antigen-specific single-chain
variable fragment (scFv) domain with CD3zeta, an essential
intracellular signaling molecule for NK cell activation (Lanier,
2005; Watzl and Long, 2010). Given the unique NK cell
mechanism for killing target cells, CAR-modified NK cells
provide attractive effector cells for immunotherapy.

NK cell killing does not require antigen-specific
receptors, such as TCRs for CTLs

As described above, NK cell cytotoxicity is triggered by
various germline-encoded stimulatory receptors (Vivier et al.,
2008) and does not require the highly polymorphic TCR. A
potential concern of genetically modified T cells with tumor-
or virus-specific TCRs is “TCR mispairing” (Kershaw et al.,
2005), which occurs when introduced alpha and beta TCR
chains mispair with endogenous TCR chains. This process
not only creates mismatched heterodimers of unknown
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specificity, but also reduces the cell-surface density of tumor-
or virus-reactive TCRs (Aggen et al., 2012). To avoid “TCR
mispairing”, Aggen and colleagues developed single-chain T
cell receptor variable fragment (scTv), which links the vari-
able domains of the alpha and beta TCR chains by a flexible
linker, to generate high-affinity, stable TCR for MHC com-
plexes associated with cancer and HIV (Aggen et al., 2012).
Therefore, it is possible to modify NK cells with an antigen-
specific scTv gene without concerns of “TCR mispairing”, a
phenomenon commonly found in TCR-modified CTLs (Ker-
shaw et al., 2005). Therefore, genetically modified NK cells
expressing scTv are easier and more feasible to generate
than T cells expressing exogenous TCRs.

NK cell immunotherapy has less severe side effects

In contrast to T cells, CAR-modified NK cells show less
severe side effects, such as graft-versus-host disease
(GvHD), because donor NK cells usually do not attack non-
hematopoietic tissues such as liver, kidney, muscle, and
lung. A number of clinical trials showed that NK cell infusion
has less severe GvHD than does T cell infusion. This clinical
observation could also be related to the unique cell biology
and immunology features of NK cells. For example, com-
pared to T cells, conventional NK cells have a shorter life
span, which can mitigate the risk of GvHD development in
leukemia patients treated with NK cells (Miller et al., 2005;
Curti et al., 2011). In addition to a shorter life span, NK cell
expansion is tightly controlled by constitutively expressed
inhibitory receptors, such as killer immunoglobulin-like
receptor (KIR), CD94/ natural killer group 2A (NKG2A), and
other inhibitory receptors (Long, 2008). These features of NK
cells may explain why NK cells have less severe GvHD
during NK cell infusion, compared with T cell infusion.
However, a direct comparison between CAR-modified NK
cells and CAR-modified T cells has not been performed
in vivo.

CAR-modified NK cells can be potentially used
as an “off-the-shelf” universal CAR product

A pressing issue in the field of immunotherapy is whether an
“off-the-shelf” universal CAR product can be developed.
CAR-modified T cell products from individuals are costly and
time consuming to prepare. Generation of “off-the-shelf”
CAR-modified T cell products will significantly reduce the
cost of immunotherapy. Using the clustered regularly inter-
spaced short palindromic repeats (CRISPR) and CRISPR-
associated protein 9 technique (Cong et al., 2013; Cong and
Zhang, 2015), as well as other gene-editing technologies, to
knockout endogenous TCRs and human leukocyte antigen
(HLA) class I molecules for universal CAR-modified T cell
generation is still in the preclinical phase of investigation
(Ren et al., 2016; Liu et al., 2017b). Most of these strategies
are in the concept phase. However, CAR-modified NK cell

lines such as NK92 may lead to the development of feasible,
“off-the-shelf” CAR products in the near future.

Sufficient numbers of NK cells can be harvested
from peripheral blood

A critical aspect of successful immunotherapy is to rapidly
generate sufficient numbers of CAR-modified cells in vitro,
which requires at least one million cells for expansion
ex vivo. In general, there are sufficient numbers of NK cells
that can be directly isolated from peripheral human blood.
Around 10%–15% of PBMCs in the buffy coat layer are CD3-
negative and CD56-positive NK cells. We usually can isolate
between 10–20 million NK cells per buffy coat layer in each
healthy individual. Immobilized apheresis products contain
5%–15% NK cells. To isolate NK cells, CD3+ cell depletion of
PBMCs is commonly performed, followed by CD56+ cell
enrichment using immunomagnetic bead separation with
medical devices and clinical-grade reagents; these methods
are feasibly conducted in the clinic due to the sufficient
numbers of NK cells that can be isolated directly from
peripheral blood.

Functional NK cell lines are available

Compared to CAR-modified T cell-mediated immunotherapy,
an advantage of NK cell-based immunotherapy is that
functional, immortal NK cell lines are available. There are a
number of functional NK cell lines that are cytotoxic and
produce cytokines, such as NK92 (Gong et al., 1994), NKL
(Robertson et al., 1996), KHYG-1 (Yagita et al., 2000), and
YTS (Cohen et al., 1999; Klingemann et al., 2016). Among
these NK cell lines, NK92 is the most promising cell line for
clinical applications. NK92-mediated immunotherapy is now
undergoing phase I/II clinical trials (Arai et al., 2008; Tonn
et al., 2013). Commonly, NK92 cells must be irradiated prior
to infusion to prevent permanent engraftment. The amount of
irradiation required is around 10 Gy. The dose of irradiated
NK92 infusion can be up to 1010 NK92 cells/m2. Importantly,
irradiated NK92 cells have been proven safe for infusion in
patients, as demonstrated by several NK92 clinical
trials (NCT00900809, NCT00990717, NCT00995137, and
NCT01974479). In contrast to CAR-modified T-mediated
immunotherapy, there are few functional CTL cell lines
available that can be used in clinical trials. Antigen-specific
CTL clones can be expanded ex vivo for 2–3 months. After
CTL clone expansion in vitro, many features of the CTL
clones are altered, limiting their clinical application. In addi-
tion, there are few reports of the clinical applications of CTL
clones to treat cancer and infectious diseases. Although
several advantages of NK cells described above regarding
NK-based immunotherapy, abnormal NK cell number and
cytolytic functions have been proposed in various cancers
(Costello et al., 2002; Farnault et al., 2012). Using functional
CAR-modified NK cell lines is an important, alternative
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strategy to treat cancer and infectious diseases. In conclu-
sion, to alleviate some disadvantages of CAR-modified Tcell
immunotherapy, additional NK-based CAR immunotherapy
can be an alternative and effective approach for some
patients. However, in vivo direct comparison between CAR-T
and CAR-NK on the cytotoxicity, manufacture speed, prolif-
eration capability, persistence, side effects etc., is urgently
needed.

CAR-MODIFIED NK CELL-BASED
IMMUNOTHERAPY TO TREAT CANCER

Cancer is the leading cause of death worldwide: An esti-
mated 8.2 million people die each year from cancer. A major
public health problem in the United States, cancer is the
second-leading cause of death (Siegel et al., 2016). In 2016,
1,685,210 new cancer cases and 595,690 cancer deaths
were projected to occur in the United States (DeSantis et al.,
2016; Siegel et al., 2016; Torre et al., 2016).

The clinical investigation of CAR-modified NK cell-based
immunotherapy has been intensively conducted for several
types of cancer (Rezvani and Rouce, 2015). Similar to CAR-
T cell based immunotherapy, genetically modified NK cells
using various CAR molecules to redirect different antigen
specificity has been discussed by other reviews (Glienke
et al., 2015; Hermanson and Kaufman, 2015; Rezvani and
Rouce, 2015). This section will focus on the use of the CAR-
modified NK92 cell line. Currently, CAR-modified NK92 cell
line is used as effector cells for various cancer treatments, as
detailed below:

CAR-modified NK cells to treat acute lymphoblastic
leukemia

CD5 is highly expressed in T cell acute lymphoblastic leu-
kemia (T-ALL) and peripheral T cell lymphoma. A recent
study showed that CD5-CAR-modified NK92 cells can kill a
variety of T cell leukemia and lymphoma cell lines as well as
primary tumor cells in vitro and in xenograft mouse models of
T-ALL (Chen et al., 2017).

In addition to T-ALL, CD19-CAR-modified NK cell-based
immunotherapycanbeused to treat primarychronic lymphocytic
leukemia (CLL) (Boissel et al., 2013), acute myeloid leukemia
(AML, ClinicalTrials.gov.NCT00995137), myelodysplastic syn-
dromes (Gleason et al., 2014), and B cell leukemia and lym-
phoma (Oelsner et al., 2017). The cytotoxicity of NK92 cells
expressing CD20-CAR against primary CLL cells is superior to
the cytotoxicity of NK92 cells expressing IgG Fcγ receptor III
(FcγRIII, also known as CD16) combined with anti-CD20 mon-
oclonal antibodies, such as rituximab or ofatumumab (Boissel
et al., 2013).

Interestingly, trogocytosis can be used as a non-viral
method to modify NK cells. Conventionally, immune cells can
be directly modified using CAR viral particles. However, the
authors used anti-CD19-CAR particles to transfect the K562
cell line (the first human immortalized myelogenous

leukemia line with MHC class I deficiency). After mixing
CD19-CAR-modified K562 cells with human primary NK
cells isolated from PBMCs, CD19-CAR protein was trans-
ferred from CD19-CAR-modified K562 cells into NK cells via
trogocytosis. The transferred CD19-CAR-modified NK cells
functionally kill B cell acute lymphoblastic leukemia (B-ALL)
cell lines and primary B-ALL cells derived from patients (Cho
et al., 2014). This novel strategy could be a potential valu-
able therapeutic approach for modifying NK cells.

CAR-modified NK cells to treat glioblastoma
and neuroblastoma

It is well known that CAR-modified T cells face a unique set
of challenges during the targeting of solid tumors (Gilham
et al., 2012). The development of CAR-modified NK cells
must overcome similar obstacles. Glioblastoma is one of the
most lethal primary brain malignancies in adults and chil-
dren, because of its highly invasive and metastatic charac-
teristics (Magana-Maldonado et al., 2016). Neuroblastoma is
a neuroendocrine tumor of early childhood and is the most
common extracranial solid tumor that occurs in children
(Matthay et al., 2016). It has been reported that NK92 cells
have been developed to treat both glioblastoma and neu-
roblastoma in vitro. These cells have been modified to target
neuroblastoma using a GD2 (disialoganglioside)-specific
CAR (Esser et al., 2012) and to target glioblastoma using
either an ErbB2 (origin in the ERB-B gene responsible for
avian erythroblastosis virus)-CAR (Zhang et al., 2016) or an
EGFR-CAR (Han et al., 2015). Therefore, it will be of interest
to determine whether CAR-modified NK92 cells can treat
both glioblastoma and neuroblastoma in clinical trials.

CAR-modified NK cells to treat breast cancer

Breast cancer is the most common cancer of females in the
U.S. (DeSantis et al., 2014). An adoptive cancer
immunotherapy using CAR-modified NK92 cells has been
rapidly developed. A stable NK92 cell line expressing an
anti-human epidermal growth factor receptor 2 (HER2, also
known as ErbB2)-CAR exhibited specific antitumor activity
in vivo using an experimental non-obese diabetic (NOD)
severe combined immunodeficiency (SCID) gamma (NSG)
lung metastasis model (Schonfeld et al., 2015). Similarly, the
combination of an EGFR-CAR-modified NK92 cell line
therapy with the oncolytic herpes simplex virus 1 (oHSV-1) is
a promising strategy for the treatment of EGFR-positive
breast cancer that has metastasized to the brain (Chen et al.,
2016).

CAR-modified NK cells to treat multiple myeloma

Multiple myeloma (MM) is an incurable hematological
malignancy that results from genetic mutations that occur
during the process whereby B lymphocytes differentiate into
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plasma cells (Kyle and Rajkumar, 2008). Currently, a number
of CAR-modified T cells have been developed for the treat-
ment of MM (Liu et al., 2017a; Luetkens et al., 2017).
However, few studies have reported using CAR-modified,
primary NK cells for the treatment of MM. Current strategies
using CAR-modified NK cell products to treat MM are
focused on the CAR-modified NK92 cell line.

The cell surface glycoprotein CD2 subset 1 (CS1, also
known as CRACC, SLAMF7, CD319, or 19A24) is a surface
protein that is highly expressed on MM cells (Hsi et al., 2008;
Tai et al., 2008). A previous study showed that CS1-CAR-
modified NK92 cells inhibited MM tumor growth and pro-
longed survival of tumor-bearing NSG mice (Chu et al.,
2014). CD138, also known as syndecan-1, is a primary
diagnostic marker for MM (Akl et al., 2015). Therefore,
CD138-CAR-modified NK92 cells have been used to treat
MM in non-obese diabetic mice with severe combined
immunodeficiency (Jiang et al., 2014).

CAR-modified NK cells to treat prostate cancer
metastases

Instead of using a conventional CAR containing the CD3zeta
domain, a new CAR containing DNAX activation protein 12
(DAP12) has been proposed to modify NK cells (Topfer
et al., 2015). Compared to CD3zeta, DAP12 is a signaling
adaptor molecule involved in the signal transduction of
stimulatory NK cell receptors, such as NKG2C (Lanier et al.,
1998a), NKP44 (Campbell et al., 2004), KIR3DS1 (Carr
et al., 2007), and KIR2DS1/2/5 (Lanier et al., 1998a, b; Smith
et al., 1998; Della Chiesa et al., 2008; Hayley et al., 2011).
Therefore, a DAP12-based, anti-prostate stem cell antigen
CAR could be used to modify NK cells for the treatment of
prostate cancer (Topfer et al., 2015). The data demonstrate
that the use of NK cells modified with DAP12-based CARs is
a promising approach for adoptive immunotherapy.

In conclusion, in addition to enhancing antibody-depen-
dent cell-mediated cytotoxicity (ADCC) and blocking inhibi-
tory receptor functions using KIR and other inhibitory
receptors antibodies, modifying NK92 cell line to target var-
ious tumors has been a major, current effort in the field of NK
cell-based immunotherapy.

CAR-MODIFIED NK CELL-BASED
IMMUNOTHERAPY TO TREAT INFECTIOUS
DISEASES

Although great advances in human immunodeficiency virus
(HIV, one of the major human pathogens) treatment have
been made in most developed countries, the HIV/acquired
immune deficiency syndrome (AIDS) pandemic continues to
be a major public health problem in the majority of devel-
oping countries. In this section, we focus on the potential
applications of CAR-modified NK cells for the treatment of
HIV infections.

Eradication of HIV from infected individuals remains a
major medical challenge (Siliciano, 2014; Churchill et al.,
2016; Mzingwane and Tiemessen, 2017). Although combi-
nation antiretroviral therapy (cART) has dramatically
reduced HIV-related morbidity and mortality (Palella et al.,
2006), it fails to eliminate HIV in vivo due to the persistence
of replication-competent proviruses in long-lived, latently
infected cells, also known as HIV reservoirs. Recently, the
use of CAR-modified CTLs to target cancer has become a
promising approach for cancer immunotherapy and repre-
sents a broad-based approach by which T cells can be
engineered to overcome antigen restriction or mutation
(Wang and Wang, 2017). To test whether CAR-modified
CTLs can be redirected toward HIV-infected target cells,
several groups have developed different CAR-modified T
cells for this purpose (Liu et al., 2015; Zhen et al., 2015; Ali
et al., 2016; Liu et al., 2016), including one of earliest CAR-
modified T cell clinical trials designed to treat HIV (Yang
et al., 1997). Although the field is extensively investigating
CAR-modified T cells to treat chronic HIV infections, the use
of CAR-modified NK cell-based immunotherapy to treat
chronic HIV infections has several advantages, as described
below.

NK cells can directly recognize HIV-infected target cells

The adaptive immune system, including T cells and B cells,
plays an essential role in HIV control during the acute and
chronic phases of infection (McMichael et al., 2010; Jones
and Walker, 2016). However, an increasing body of evidence
shows that NK cell dysfunction is closely associated with HIV
disease progression (Alter and Altfeld, 2006; De Maria and
Moretta, 2008; Iannello et al., 2008a, b; Alter and Altfeld,
2009; Fadda and Alter, 2011; Jost and Altfeld, 2012; Kramski
et al., 2013; Hens et al., 2016; Scully and Alter, 2016).

HIV-infected target cells can upregulate the ligands rec-
ognized by NK cells (Richard et al., 2010). For example, HIV-
infected primary NK cells upregulate unique long (UL) 16 (a
human cytomegalovirus glycoprotein) binding pro-
tein (ULBP)-1 and -2, but not ULBP-3, MHC class I
polypeptide-related sequence (MIC)-A, or MIC-B (Ward
et al., 2009). ULBP-1 and -2 can strongly induce NKG2D -
mediated NK cell immune responses in humans (Ogasawara
and Lanier, 2005; Bryceson and Ljunggren, 2008; Le Bert
and Gasser, 2014).

NK cells can rapidly secret Interferon (IFN)-gamma
to initiate a cellular anti-HIV response

The production of IFN-gamma by immune cells is an
essential defense mechanism against many viral, bacterial,
and parasitic infections (Borges da Silva et al., 2015). NK
cells are a major innate source of IFN-gamma (Travar et al.,
2016; Waggoner et al., 2016). Although CD4+ T cells are a
major adaptive source of IFN-gamma, their ability to respond
to infection is slower than that of NK cells. NK cells produce
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IFN-gamma rapidly during infections, which is essential to
drive the differentiation of CD4+ T cells and induce adaptive
immune responses. During HIV infections, NKG2A+ NK cells
can quickly produce IFN-gamma to control HIV replication
(Lisovsky et al., 2015), suggesting the important role of NK
cells in the control of early HIV infection.

NK cells can kill HIV-infected target cells via ADCC

ADCC is one of the most important functions of NK cells.
ADCC plays an important role in controlling HIV infections
(Chung et al., 2008). For example, ADCC activity was
modestly protective in the RV144 HIV vaccine (an estimated
efficacy of 31.2% at preventing HIV infection among South
African adults) trial (Haynes et al., 2012). Enhancing ADCC
activity could be a potential strategy for HIV vaccine
development.

NK cells can kill T follicular helper (Tfh) cells, a critical
HIV reservoir

CD4+ PD-1high Tfh cells are a newly identified virus reservoir
in HIV-1 patients. The size of HIV-1 reservoirs positively
correlates with the numbers of PD-1-expressing cells (Cho-
mont et al., 2009; Hatano et al., 2013), as PD-1 expression
marks cells that are more likely to harbor HIV-1 (Chomont
et al., 2009; Deeks et al., 2012). Tfh cells in lymph nodes
(LNs) are PD-1 positive and serve as the major CD4+ T cell
compartment for HIV-1 infection, replication, and production
(Perreau et al., 2013). Thus, Tfh cells in LNs and peripheral
blood (PB) are also likely to be a key cellular reservoir for
latent HIV-1 (Vinuesa, 2012; Pallikkuth et al., 2015).
Although PD-1 expression is a hallmark of exhausted T cells
during chronic infections (Wherry, 2011), PD-1high Tfh cells
do not experience exhaustion during chronic infections (Choi
et al., 2013), indicating that they may have superior abilities
to self-renew, resist apoptosis, and survive for extremely
long periods of time during HIV-1 infection. Importantly, a
recent study showed that NK cells can suppress CD4+ T
cells and Tfh cells in a perforin-dependent manner during the
first few days of infection (Rydyznski et al., 2015), resulting in
a weaker germinal center (GC) response and diminished
immune memory. One of current efforts in the search for an
HIV cure includes disrupting GC formation, thereby reducing
HIV reservoirs.

NK cell KIR is associated with HIV selection pressure

Effective NK cell responses impact HIV-1 progression (Fauci
et al., 2005; Alter and Altfeld, 2006; Alter and Altfeld, 2009;
Alter and Altfeld, 2011; Alter et al., 2011; Altfeld et al., 2011;
Funke et al., 2011; Jost and Altfeld, 2012, 2013; Altfeld and
Gale, 2015). Killer cell immunoglobulin like receptor, three Ig
domains and short cytoplasmic tail 1 (KIR3DS1), in particu-
lar, appears to inhibit HIV-1 replication in vitro (Martin et al.,

2002; Alter et al., 2007; Jost and Altfeld, 2013) and be
associated with slower AIDS progression in HIV-1-infected
patients (Martin et al., 2002; Pascal et al., 2007; Long et al.,
2008). Interestingly, KIR3DS1+ NK cells express high levels
of IFN-γ (indicating enhanced cytokine secretion) and
CD107a (indicating enhanced degranulation and cytotoxic-
ity) in adults who were recently infected with HIV-1 (Long
et al., 2008). In summary, the combination of KIR on NK cells
and host human leukocyte antigen (HLA) can affect HIV
progression.

NK cells cannot be effectively infected by HIV

HIV primarily infects CD4+ T cells. Whether NK cells can be
infected by HIV is controversial (Funke et al., 2011), although
the consensus in the field is that HIV cannot effectively infect
the majority of NK cells, because NK cells present in
peripheral blood lack CD4 expression, and no proviral DNA
can be detected in NK cells from HIV patients (Mavilio et al.,
2003; Altfeld et al., 2011). A subpopulation of NK cells (<7%)
was found to be sensitive to infection by HIV-1 in vitro
(Chehimi et al., 1991; Scott-Algara et al., 1993; Valentin
et al., 2002; Bernstein et al., 2009), but these data must be
verified in vivo. In general, the majority of NK cells cannot be
infected by HIV naturally, which makes NK cells attractive
effector cells for the treatment of HIV. Importantly, NK cell
lines that are currently used in clinical trials are CD4 nega-
tive, which means that these NK cell lines cannot be infected
by HIV.

CAR-modified NK cell immunotherapy for HIV

Despite the increasing body of evidence showing NK cell
involvement in the control of HIV infection, HIV can affect NK
cell phenotype and function during HIV infection, including
the cytokine/chemokine production, activation, and cytotox-
icity of NK cell subsets. Therefore, genetically modified NK
cells, designed to enhance innate immunity, are essential for
the development of a novel strategy to control infectious
diseases, especially HIV. An early human NK3.3 reporter cell
line can be genetically modified to express CD4zeta using a
retroviral transduction approach. These CD4zeta-expressing
NK cells can specifically kill NK-resistant tumor cells
expressing the relevant ligand, HIV envelope glycoprotein
120 (gp120), or CD4+ T cells infected with HIV (Tran et al.,
1995). Human NK3.3 cells can be readily activated via
CD4zeta-based CARs to target both tumor and virus-in-
fected cells, demonstrating early evidence that CAR-modi-
fied NK cells have the potential to be used to treat HIV
infection.

Interestingly, a recent study reported that CAR-modified
hematopoietic stem/progenitor cells (HSPCs) could differ-
entiate into functional NK cells in humanized mice (Zhen
et al., 2015). These NK cells are resistant to HIV infection
and suppress HIV replication in vivo. The significance of this
study is that CAR-modified HSPCs can differentiate into
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functional NK cells. This strategy provides a new approach
to generate NK cells for immunotherapy. Manipulation of a
patient’s immune cells usually presents many challenges.
For example, the first problem is that there are insufficient
numbers of NK cells that can be obtained from patient’s
peripheral blood. The second problem is that NK cells that
are freshly isolated from patients usually do not exhibit nor-
mal functions, compared with NK cells from healthy individ-
uals. The hematopoietic development of CD4zeta-CAR-
expressing NK cells from genetically modified HSPCs can
provide a stable, functional, innate immune response to HIV,
as a rapid, early immune response is important to control
HIV replication. Additionally, CAR-modified HSPCs may
possess the ability to produce NK cells over time, since one
of the challenges of NK cell-mediated immunotherapy is the
short life span of NK cells that are isolated from a patient’s
peripheral blood.

In summary, in the field of HIV research, extensive studies
have been focused on the roles of T and B cells in HIV
infection. An increasing body of evidence indicates the
importance of NK cells in HIV infection and HIV disease
progression.

THE CAR-MODIFIED NK CELL IS

Adoptive cell-based therapy using CAR-modified NK cells
has the potential to extend the survival of cancer patients by
enhancing the antitumor effectiveness of CAR-modified
cells. In this context, an important question is emerging: How
does one efficiently and rapidly choose the best CAR-mod-
ified cells for cancer patients? Specifically, researchers from
different laboratories are generating different CARs with
minor modifications. However, before these CAR-modified
cells can enter clinical trials, it is essential that they can be
evaluated precisely for their quality and efficacy in a cost-
effective manner. Additionally, the speed at which these CAR
T cells can be clinically tested is limited by the current, time-
consuming, costly, and labor-intensive conventional
approaches used to evaluate efficacy. In the field of basic
immunology, T cell efficacy is not only controlled by the
specificity and avidity of the tumor antigen and T cell inter-
action, but it also depends on a collective process, involving
multiple adhesion and regulatory molecules, spatially orga-
nized at the T cell IS.

Here, we review the current progress in CAR-modified T
cell and NK cell ISs, with a focus on CAR-NK ISs. The main
message in this section is that the NK IS is critical to the
understanding of the fundamental mechanisms underlying
the cytotoxicity and side effects of CAR-modified T cell- or
NK cell-based immunotherapy. Specifically, generation and
modification of novel CAR-modified immune cells to target
solid cancers and other diseases has been a major effort in
the field of immunotherapy. The time has come for scientists
to understand the fundamental mechanisms of CAR
immunobiology. Lack of such knowledge is an important
issue because, without it, choosing the best CAR-modified

immune cells for patients with solid tumors or other diseases
is highly unlikely.

The background of IS

The NK cell IS (Davis et al., 1999) was first described
between peripheral blood NK cells in the YTS cell line and
various transfectants of 721.221 (a B cell line derived by
mutagenesis that does not express MHC class I molecules
(Shimizu et al., 1988)). The cell biology of NK cells and their
IS has been reviewed by others (Bromley et al., 2001; Davis,
2002; Lagrue et al., 2013). The original concept of NK IS is
derived from T cell IS. Control of T cell activation and mod-
ulation of T cell function not only depend on the TCR-epi-
tope-MHC complex interaction, but also on a collective
process that involves multiple adhesion and regulatory
molecules spatially organized at the T cell-APC interface,
forming the T cell IS (Fooksman et al., 2010). Fixed-cell
imaging studies on T-cell APC conjugates (Monks et al.,
1998) and multiple dynamic studies with planar bilayers
(Grakoui et al., 1999; Campi et al., 2005; Varma et al., 2006)
have illuminated the molecular organization of physiological
Tcell activation. The IS corresponds to a concentric structure
of discrete domains with TCRs and CD3 molecules occu-
pying the central region (central supramolecular activation
cluster; cSMAC), which is surrounded by an outer ring of
adhesion molecules in the peripheral SMAC (pSMAC).
Besides this classic model largely studied with naïve or
resting CD4+ T cells, it has become clear that there are
several forms of IS. Effector CD8+ CTL and NK cells can
form both cytotoxic IS (leading to killing), stimulatory IS
(leading to cytokine secretion), and inhibitory IS (Stinch-
combe and Griffiths, 2003; Liu et al., 2009; Liu et al., 2012;
Jang et al., 2015). The structure of NK IS appears less
organized than T cell IS. For example, the distribution of
major IS components, including activation cluster (e.g.,
CD16) and integrin molecules (e.g., LFA-1), at NK IS formed
on the glass-supported planar lipid bilayer containing human
IgG1 Fc portion (a ligand for CD16) and ICAM-1 (a ligand for
LFA-1) is not well organized (Liu et al., 2009). The effector
CTL IS contains a distinct central secretory domain (St-
inchcombe et al., 2006), with granule secretion controlled by
centrosome delivery to the plasma membrane. Integrity of
the pSMAC ring is also important for effective killing (Ani-
keeva et al., 2005). In summary, basic cytotoxic IS (including
CTL and NK cell) structure and molecule pattern can vary,
but the function of directed secretion at cytotoxic IS is similar,
which leads to killing target cells through the polarized
release of lytic granules at IS.

Current approaches for studying IS

Conventional fluorescence microscopy of immune cells
represents the most common imaging strategy to investigate
the IS (Jang et al., 2015; Zheng et al., 2015a). A high-res-
olution imaging approach, including electron microscopy
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(Fig. 1) and fluorescence microscopy in combination with the
glass-supported planar lipid bilayer system (Fig. 2), can
provide a new look at the structure of the CAR-modified cell
IS, allowing a determination of the precise relationship
between IS quality and the effectiveness of CAR-modified
cells. Unlike Western blot (WB) and immunoprecipitation
(IP), which only assess the average signaling state, micro-
scopy-based assays, including the advent of commercially
available high-resolution optical microscopes, such as total
internal reflection fluorescence (TIRF) microscopy (Liu et al.,
2009; Liu et al., 2012) and stimulated emission depletion
(STED) microscopy (Zheng et al., 2015a; Zheng et al.,
2015b), reveal structure, function, and signaling (i.e., quality)
of IS. Also, the IS is one of the most pivotal communication
strategies used by immune cells (Jang et al., 2015). In
addition to the cell-cell conjugation system, the structure,
function, and signaling cascades at the IS have been further
confirmed by imaging T cell interactions with a glass-sup-
ported, planar lipid bilayer, which contains the MHC-peptide
complex and other costimulatory molecules (Tozeren et al.,
1992; Grakoui et al., 1999; Lee et al., 2002, 2003; Mossman
et al., 2005). The general consensus in the field of
immunology is that a glass-supported, planar lipid bilayer
system can mimic target cells for the study of the IS at high
resolution (Dustin et al., 2007; Choudhuri et al., 2014; Zheng
et al., 2015a; Bertolet and Liu, 2016). Previous studies have
demonstrated that IS quality determines the efficacy of Tcell-
mediated cytotoxicity (Grakoui et al., 1999; Jenkins et al.,
2009; Dustin and Long, 2010). Similarly, an obvious question
is whether CAR-modified T and NK cells can form functional
ISs. Indeed, CAR-modified NK cells can form functional ISs
on a glass-supported, planar lipid bilayer (Fig. 2), in which
the images of fixed CAR-modified NK cells on lipid bilayers
reveal the central accumulation of CD19, which is reminis-
cent of the central cluster of TCRs and B cell receptors at the
synapse (Fooksman et al., 2010; Harwood and Batista,
2010). Thus, the glass-supported planar lipid bilayer system
can serve as a reductionist approach to study CAR IS.
Additionally, CAR T and NK cells do form ISs on the glass-
supported lipid bilayer system.

The rationale for the investigation of CAR IS

A critical factor affecting the efficacy of NK cells for CAR-
modified NK cell-based immunotherapy is the tumor
microenvironment, which is a key element in the exploitation
of NK cells for the treatment of solid tumors (Gras Navarro
et al., 2015). The infiltration of NK cells into solid tumors has
been reported previously (Burke et al., 2010; Pietra et al.,
2016). The status of tumor-infiltrating NK cells correlates with
the prognosis for melanoma (Burke et al., 2010). The inter-
actions between NK cells and the tumor microenvironment
include: (1) soluble factor production (transforming growth
factor-beta, indoleamine 2,3-dioxygenase, interleukin (IL)-4,
prostaglandin E2) by tumor cells or other cells in the tumor
microenvironment (Castriconi et al., 2003; Marcenaro et al.,

2005); (2) inhibitory cells at the tumor site, which include
myeloid-derived suppressor cells, regulatory T cells, tumor-
associated macrophages, tumor-associated fibroblasts, and
tumor cells (Pietra et al., 2016); and (3) dysfunctional NK
cells at the tumor site. These dysfunctional NK cells are
characterized by the upregulated expression of several
inhibitory receptors, such as PD-1 (Keir et al., 2008; Benson
et al., 2010), and the downregulation of critical, stimulatory
NK receptors, such as NKG2D (Krockenberger et al., 2008).
Among these factors, one of the most important cellular
interactions in the tumor microenvironment is the interaction
between NK cells and tumor cells, also known as the NK IS
(Davis et al., 1999; Davis, 2002; Orange, 2008). A CAR-
modified T cell or NK cell must form an effective IS with
susceptible target cells to kill them.

Our current knowledge lacks a complete understanding of
CAR biology and an effective, unanimously recognized
approach to predict the effectiveness of CAR-modified cells.
Using the IS quality to predict the efficacy of immunotherapy
and side effects of CART/NK cells will introduce a superior tool
or parameter into the field of immunotherapy. Specifically, to
assess the effectiveness of CAR-modified cells, the quality of
the IS formed by these cells and susceptible target cells,
including virus-infected cells and tumor cells, as well as the
glass-supported planar lipid bilayer system for mimicking the
surface of an tumor cell or infected target cell, canbequantified.

Traditional biochemical and cell biological approaches for
the analysis of signaling pathways (e.g., WB and IP) rely on
homogenized cellular extracts from millions of cells. While
fast and inexpensive, these methods do not reveal critical
spatiotemporal parameters or the dynamics of intracellular
signal transduction within the IS.

Although tremendous progress has been made in the
basic research of the IS, to date, no study has addressed
how the IS controls CAR-modified cell function. Such
knowledge is important for optimally choosing the best CAR-
modified T cells for cancer patients, as well as a tool to
evaluate the efficacy of CAR T/NK cells. Currently available
strategies to evaluate the effectiveness of CAR T cells
include conventional in vitro methods, such as cytokine
secretion, cytotoxicity, proliferation, ratio of CD4/CD8 cells,
and long-term killing assays, as well as in vivo mouse
models. To assess the homing, persistence, and antitumor
activity of CAR T cells in vivo, scientists use a SCID mouse
model and the in vivo imaging system (Bhaumik and
Gambhir, 2002; Kim et al., 2004; Vera et al., 2006; Wang
et al., 2009; Morse and Tannous, 2012). However, currently
available in vitro and in vivo analyses are time consuming,
costly, and labor intensive; thus, a new approach is urgently
needed to solve this problem (Geldres et al., 2016).
Accordingly, more sophisticated, high-resolution techniques
are warranted to quantitate the function of CAR-modified
cells, as described above.

In summary, CAR-modified T cell- and NK cell-mediated
ISs are essential to the understanding of the efficacy of
CAR-modified T cells and NK cells and their toxicities.
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PERSPECTIVES

Recent progress in the understanding of NK cell biology and
immunology, including memory NK cells (Adams et al., 2016;
Fehniger and Cooper, 2016) and the signaling pathways of
immune receptors on NK cells (Long et al., 2013), has
established the foundation for harnessing the power of NK
cells for innovative immunotherapies. However, there are

many potential challenges regarding the use of NK cell-
based immunotherapy in the future, as detailed below.

NK cell rapid expansion, cryopreservation,
and shipping

Rapid NK cell expansion technique is urgently needed.
Recent studies using 4-1BB (also known as CD137) ligand
(4-1BBL/CD137L) and IL-21 expressing K562 cells as feeder
cells can be used to rapidly expand NK cells in vitro (Den-
man et al., 2012). However, the characterization and appli-
cation of these cells for the treatment of patients is essential
to ensure that the cells are functional and healthy. In addi-
tion, specific NK cell expansion is also needed to advance
NK cell immunotherapy in vivo. One potential issue regard-
ing NK cell expansion in vitro using irradiated feeder cells in
the presence of cytokine IL-2 is that naïve immune cells
become exhausted or senescent after rapid proliferation and
differentiation (Keir et al., 2008). Indeed, CAR-modified
immune cells express exhaustion markers such as PD-1
(John et al., 2013; Cherkassky et al., 2016; Chong et al.,
2016; Gargett et al., 2016). To solve the problem of immune
cell exhaustion, one approach is to block PD-1 signaling in
CAR-modified T cells (Cherkassky et al., 2016). Another
potential strategy is to alter the metabolic pathway in CAR-
modified T cells (Ping et al., 2017) or reinforce lymphocyte
metabolism (Lim and June, 2017), given the existence of
essential metabolic signaling in T cells (Buck et al., 2015).
Therefore, it will be of interest to determine whether the
alternation of metabolic pathways can enhance NK cell
expansion without exhaustion.

At present, the expansion of CAR-modified Tand NK cells
requires in vitro stimulation of genetically modified T and NK
cells using antibodies and cytokines. These antibody and
cytokine-driven activation and expansion may negatively
alter CAR-T/ NK cell functions. For example, CAR-modified
immune cell exhaustion can be induced by the end of
extensive expansion program, which is evident by the up-
regulation of PD-1, TIM-3, and LAG-3 in CAR T cells (Long
et al., 2015). Therefore, new modification and expansion
strategies without induction of exhaustion may be developed
in vivo, given immune cell exhaustion is a major factor for
compromised immune responses against tumor and virus
during chronic antigen stimulation (Virgin et al., 2009;
Wherry, 2011). Additionally, the current expansion of CAR-
modified immune cells for clinical applications takes at least
2–3 weeks, which becomes a significant hurdle for some
patients. The “sleeping beauty transposon” or piggBac sys-
tem, which is capable of delivering large (9.1–14.3 kb)
transposable elements without a significant reduction in T
cell efficacy (Maiti et al., 2013; Guerrero et al., 2014; Singh
et al., 2014), in combination with genetically engineered
artificial cells expressing membrane-bound IL-15 and 4-1BB
ligands, has already been used for CAR-modified T cell

A

B

2 μm

2 μm

Figure 1. The CAR-modified NK cell IS. (A) One CAR-

modified NK92 cell (blue) interacts with a tumor cell (yellow)

through an IS. (B) Two CAR-modified NK92 cells (blue) interact

with a tumor cell (yellow) through two different ISs. These are

two representative scanning electron micrographs using two

different colors.
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immunotherapy. This approach may promise the rapid
expansion of NK cells in the future.

After successful expansion, cryopreservation and trans-
portation of NK cells are also essential to advance NK cell
utility in the clinic. After cryopreservation (the freeze/thaw
cycle) and transportation, recovered NK cells often experi-
ence a decrease in function. The viability of recovered NK
cells can also be a potential issue for NK cell-based

immunotherapy. Therefore, the development of new cryop-
reservation and transportation methods is urgently needed.

Sources of NK cells

There are two sources of NK cells (autologous and allo-
geneic NK cells), which can be obtained from PBMCs,
apheresis products, bone marrow, cord blood cells, embry-
onic stem cells, and induced pluripotent stem cells. Com-
pared to primary NK cells isolated from blood and other
sources, human NK92 cell line is easier and affordable. The
clinical application of irradiated CAR-NK92 is safe and
effective, as the use of NK cell lines can significantly reduce
the cost of immunotherapy. Additionally, NK cells directly
isolated from immunocompromised cancer patients usually
have poor cytotoxicity and functionality, precluding their use.
The future development of CAR-modified NK92 products
promises to be both feasible and inexpensive.

Strategies for long-lived, expandable NK cells

The life span of NK cells is generally shorter than that of
CTLs. Increasing the life span of ex vivo-expanded NK cells
has become a pivotal issue in immunotherapy. The advan-
tage of the short life span of CAR-modified NK cells is that
they have fewer off-target effects than CAR-modified T cells.
Scientists are currently seeking a technique that will expand
NK cells in a shorter time period for urgent clinical needs.
K562-mbIL21-41BBL cells have recently been used to
expand NK cells rapidly (Denman et al., 2012). In the future,
it will be essential to produce both long-lived and quickly
expandable NK cells, such as memory NK cells (Sun et al.,
2011; Adams et al., 2016; Fehniger and Cooper, 2016), for
generating CAR-modified NK products.

Potential toxicity of CAR-modified NK cells
and manufacturing costs

Generally, it is thought that NK cell-based immunotherapy
results in less severe side effects than genetically modified T
cell-based immunotherapy. However, a direct comparison of
side effects between CAR-modified Tcells and NK cells is not
available. The routine management of CAR-modified NK cell
toxicity is desirable. For example, the use of inducible cas-
pase-9 in the construct (Di Stasi et al., 2011; Sadelain, 2011),
causing the dimerization of caspase-9 by FK560, will induce
CAR-modified NK cell apoptosis. This strategy limits the
potential side effects of CAR-modified NK cells and minimizes
other cellular damage, such as that from a cytokine storm.
Similarly, the engineered synthetic Notchs (synNotchs) sys-
tem in CAR-modified T cells (Roybal et al., 2016) may be
applicable to CAR-modified NK cells. Furthermore, the current
cost of CAR-mediated immunotherapy is high. An FDA-ap-
proved, CAR-mediated immunotherapy must undergo multi-
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Figure 2. CAR-modified NK cell ISs on a glass-supported,

planar lipid bilayer. (A) Schematic depiction of a TIRF setup in

which a lipid bilayer contains a fluorescence dye-labeled tumor

antigen (green). TIRF (B), brightfield (C), and merge (D) images

of CAR-modified NK cell IS formation on a glass-supported,

planar lipid bilayer carrying an Alexa488-labled human CD19

protein (green). The three CAR-modified NK cells that contacted

the lipid bilayer, as determined by the central accumulation of

tumor antigen under TIRF microscopy, are numbered. Repre-

sentative TIRF (E) and merge (F) images of CAR-modified NK

cells are shown. Four individual CAR-modified NK cells, fixed at

30 min after addition to the bilayer carrying CD19-Alexa Fluor

488, are numbered. The images are representative of at least

100 cells from three independent experiments.
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phase clinical trials. The approximate costs for phase I, II, and
III clinical trials are $2–5, $5–15, and $10–50 million,
respectively. Meanwhile, the manufacturing of CAR-modified
immune cells is costly, labor intensive, and time consuming. In
the future, a closed, automated workflow system is essential
to reduce the cost of generating CAR-modified Tcells and NK
cells.

Enhancement of transfection efficiency for peripheral
blood NK cells

One of the biggest obstacles to the use of gene-modified NK
cells for immunotherapy has been the absence of an efficient
gene transfer technique. Several technologies, including
retroviral and lentiviral systems, have been used to enhance
the transduction efficiency of NK cell lines and activated,
primary NK cells (Lapteva et al., 2016). The subsequent
challenge is to apply these approaches to resting NK cells
isolated directly from peripheral blood that maintain their
cellular functions.

Development of “off-the-shelf” NK cell products

Development of “off-the-shelf” NK cell products is still in the
concept stage. There are no universal NK cell products that
can be used to treat a variety of tumors. The CAR-modified
NK92 cell line may serve as a future “off-the shelf” NK
product.

In conclusion, CAR-modified NK cells with manageable
toxicities have emerged as a powerful, effective tool for
fighting cancer and infectious diseases. To harness the
power of these cells, basic research of the cell biology and
immunology of CAR-modified NK cells, with a focus on the
CAR-modified NK cell-mediated in vitro and in vivo IS, is
essential.
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