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Conventional rehabilitation systems typically execute a fixed set of programs that

most motor-impaired stroke patients undergo. In these systems, the brain, which is

embodied in the body, is often left out. Including the brains of stroke patients in

the control loop of a rehabilitation system can be worthwhile as the system can

be tailored to each participant and, thus, be more effective. Here, we propose a

novel brain-computer interface (BCI)-based robot-assisted stroke rehabilitation system

(RASRS), which takes inputs from the patient’s intrinsic feedback mechanism to adapt

the assistance level of the RASRS. The proposed system will utilize the patients’

consciousness about their performance decoded through their error-related negativity

signals. As a proof-of-concept, we experimented on 12 healthy people in which

we recorded their electroencephalogram (EEG) signals while performing a standard

rehabilitation exercise. We set the performance requirements beforehand and observed

participants’ neural responses when they failed/met the set requirements and found

a statistically significant (p < 0.05) difference in their neural responses in the two

conditions. The feasibility of the proposed BCI-based RASRSwas demonstrated through

a use-case description with a timing diagram and meeting the crucial requirements for

developing the proposed rehabilitation system. The use of a patient’s intrinsic feedback

mechanism will have significant implications for the development of human-in-the-loop

stroke rehabilitation systems.

Keywords: assist-as-needed (AAN), brain-computer interface (BCI), error-related potentials (ErrP), robot-therapy,

single-trial classification, stroke rehabilitation, Training-ErrPs

INTRODUCTION

Recently, stroke has become the second leading cause of death and the third leading cause of
disability worldwide (Feigin et al., 2017). In 2013 alone, there were 10.3 million new stroke
incidents, and year after year, the stroke incident rate is rapidly increasing (Feigin et al., 2017).
Depending upon which part of the brain has suffered damages due to stroke, the stroke survivors
may suffer from various types of functional impairment, such as cognitive impairment, motor
impairment, speech, and language impairment, and even death. When the damage due to stroke
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is in the brain’s motor cortex, the patients with stroke lose their
ability to voluntarily move their limbs (Kumar et al., 2019a). The
limb movement, especially the upper-limb movement, plays a
significant role in carrying out activities of daily living (ADL) and
without it, leading a life independently becomes difficult. Thus,
regaining control of the upper limb is significant for patients with
quadriplegia (Anderson, 2004).

In hospitals, motor-impaired people undergo post-stroke
rehabilitation procedures, in which they perform physical
rehabilitation exercises using their impaired limbs. For instance,
patients having problems controlling their shoulder muscles
can perform shoulder flexion-extension and horizontal flexion-
extension movement as part of their post-stroke rehabilitation
program. These programs stimulate the brain’s process of
neurological changes and have been shown to help motor-
impaired stroke patients regain the lost motor functionality
(Warraich and Kleim, 2010; Keci et al., 2019). In other words,
a higher number of stimuli to the damaged part of the brain,
by performing the rehabilitation exercises repeatedly, can lead
to a greater amount of recovery (Lohse et al., 2014; De Sousa
et al., 2018; Keci et al., 2019). This notion is supported by many
studies that link the amount and rate of recovery from motor
impairment with prolonged, repetitive, and active participation
in rehabilitation programs (Banala et al., 2009; Warraich and
Kleim, 2010; Lohse et al., 2014; De Sousa et al., 2018).

Now the question remains, how can we ensure active and
prolonged participation of a stroke patient in a rehabilitation
program? A stroke patient, especially in the acute stage,
can have weak muscle strength and severe muscle pain and
can find it challenging to participate in a prolonged and
active rehabilitation session. Nevertheless, Shirzad and Van
Der Loos (2016) showed that participants continued longer
in robot-assisted training sessions than the control group on
giving desirable difficulty levels to participants in a reaching
motion task. They reported that desirable difficulty made the
sessions less frustrating and more engaging, which improved
participants’ training experience. However, in practice, the
rehabilitation procedures with manual interventions, which
require rehabilitation therapists and doctors to prescribe
rehabilitation exercises to patients based on their current motor
impairment level, are prevalently used. As stroke incidents are
increasing year after year (Feigin et al., 2017), it is becoming
increasingly difficult for rehabilitation doctors and therapists to
observe individual patients on a repeatable basis and continually
adapt their rehabilitation strategy. This is becoming more
common in low- and medium-income countries, where stroke
patients are left to follow fixed rehabilitation programs without
much adaptation.

Nevertheless, the need of the hour is to use rehabilitation
methods that can automatically infer the motor impairment
level of stroke patients, adapt the rehabilitation exercise difficulty
level, and can provide external assistance to the patient in
performing the rehabilitation exercise as needed [i.e., assist-as-
needed (AAN) (Banala et al., 2009; Basteris et al., 2014)] to ensure
active participation of the patient. Recently, several studies have
proposed robot-assisted rehabilitation strategies for developing
AAN rehabilitation programs, in which external assistance can

be provided to the participant as needed (Colombo et al., 2007;
Banala et al., 2009; Song et al., 2013). For instance, Song et al.
(2013) proposed an EMG-controlled wrist robot in which the
assistance level given by the robot to perform the rehabilitation
movement was made proportional to the EMG activity of flexor
muscle and extensor muscle of the affected upper limb. Colombo
et al. (2007) demonstrated a force/torque transducer-based
robot-assisted rehabilitation system in which external assistance
was made proportional to the force exerted by the patient on
the transducer mounted on a robotic handle. Liu et al. (2017)
demonstrated a brain-actuated lower-limb exoskeleton, which
utilized sensorimotor rhythms (SMR) and movement-related
cortical potentials as control signals and partially implemented
the AAN approach for lower-limb gait training. Recently,
the end-effector-based InMotionRobotsTM (Bionik Laboratories
Corp., Toronto, ON, Canada) is also becoming popular for their
interactive upper-limb rehabilitation programs, among other
modalities (Basteris et al., 2014). However, in clinical settings,
the RASRSs have failed to impress clinicians (Hatem et al., 2016;
Rodgers et al., 2019). Recently, a large-scale study conducted by
Rodgers et al. (2019) concluded that robot-assisted rehabilitation
training delivered using MIT-Manus robotic gym system does
not show any additional gain in upper-limb function when
compared with the enhanced upper limb therapy (EULT) and
the usual care for stroke patients, when delivered at the same
frequency and duration (Rodgers et al., 2017). Now, if we trust
our fundamental knowledge behind stroke recovery that prolong,
repetitive, and active participation in the rehabilitation program
results in a greater rate and amount of recovery from motor
impairment (Banala et al., 2009; Warraich and Kleim, 2010;
Lohse et al., 2014; De Sousa et al., 2018), then it might be said
that existing RASRSs are failing to ensure active participation
of stroke patients in the rehabilitation program and adapt to
patients’ desired level of difficulty, which results in unexpected
amount and rate of recovery (Hatem et al., 2016; Rodgers et al.,
2019).

Consider a practical situation in which a stroke patient is
told to put maximum physical effort to perform a rehabilitation
exercise while using a RASRS; plainly, the patient can evaluate
if the external assistance provided to him/her is optimum or is
more/less than needed. If such information can be extracted from
the patient’s brain, it can help in adapting the external assistance.
A strategy with similar essence was presented by Rotermund
et al. (2006), in which they proposed the use of a hypothetical
brain signal, which reflects the user’s affective evaluation of
intended movement and the movement executed by a neuro-
prosthetic. They proposed to use the hypothetical brain signal to
minimize the difference between the intended movement and the
executed movement. An error-related potential (ErrP) signal can
be used in place of this hypothetical brain signal (Chavarriaga
and Millán, 2010; Salazar-Gomez et al., 2017; Kumar et al.,
2019b).

The ErrP signal is an event-related potential (ERP) signal
which elicits in the human brain, be it healthy people or motor-
impaired stroke patients (Chavarriaga and Millán, 2010; Kumar
et al., 2019b). It is generally described as the difference of
the error-related negativity (ERN) signal, which elicits in the
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brain following the perception of an error, and the correct-
related activity (CRA), which elicits following the perception
of correctness (Chavarriaga and Millán, 2010; Kumar et al.,
2019b). The ErrP signal has been observed to be elicited in
various task situations (e.g., while observing a moving cursor,
interacting with a robot, among others), and a wide range of ErrP-
based BCI applications have been developed for motor-impaired
people (Chavarriaga andMillán, 2010; Salazar-Gomez et al., 2017;
Yazmir and Reiner, 2017; Kumar et al., 2019b). Recently, an ErrP
signal was observed to elicit while stroke patients performed
physical rehabilitation exercises (named Training-ErrP hereafter)
(Kumar et al., 2019a). According to Kumar et al. (2019a), the ERN
associated with the Training-ErrP signal is elicited in the brain of
a stroke patient if the patient fails to complete a rehabilitation
exercise in a given time. The ERN signals represent the human
brain’s intrinsic feedback mechanism. These signals can elicit
unconsciously in the brain on a real-time basis and do not require
any training, unlike other EEG signals, such as SMR (Chavarriaga
and Millán, 2010; Liu et al., 2017; Salazar-Gomez et al., 2017).
These characteristics of the ERN associated with the Training-
ErrP signal can potentially facilitate the development of a RASRS,
which can adapt the robotic assistance given to the stroke patient,
for every exercise trial. However, in literature, no discussion has
been made on Training-ErrP-based RASRSs, so far.

Therefore, in this paper, we proposed a novel ERN-
based RASRS. The proposed ERN-RASRS uses an off-the-shelf
rehabilitation robot to provide external assistance to patients
with a stroke to perform rehabilitation exercises. The ERN signal
forms the basis of increasing/decreasing the external assistance
level on a trial-by-trial basis. Considering the importance of ERN
signal in ERN-RASRS, as a proof-of-concept, we experimented
on 12 healthy people, wherein we recorded their EEG signals
while they were performing a standard rehabilitation exercise
and analyzed their neural response when they failed to complete
the rehabilitation exercise in a given time against when they
succeeded. We also evaluated the single-trial classification
performance of the ERN signals against its counterpart, i.e., CRA,
and against the background EEG activity asynchronously.

It is to be noted that this study, in particular, demonstrates
the design and the proof-of-concept of the proposed ERN-based
RASRS. However, the ERN-based RASRS would be fabricated
and evaluated against the current state-of-the-art approaches
in our upcoming studies in the near future. Nevertheless,
the contributions made in this research article have initiated
the development of the ERN-based RASRS. Section ERN-
based Robot-Assisted Stroke Rehabilitation System of the paper
discusses the design and a use-case description of the proposed
ERN-RASRS. Section Materials and Methods and onwards
present the proof-of-concept of the system.

ERN-BASED ROBOT-ASSISTED STROKE
REHABILITATION SYSTEM

Fundamental Operation
Figure 1 depicts the setup of the ERN-based RASRS and its
various constituting parts. The instruction monitor would guide

the stroke patient through the rehabilitation training procedure
by giving instructions and cues on rehabilitation exercises. While
the patient is performing the rehabilitation exercise, the Azure
Kinect sensor (Microsoft Corporation, Redmond, WA, US)
(Azure Kinect) would track the patient’s limb movement. Azure
Kinect sensor, together with the instruction monitor, would show
the real-time feedback of the movement of the patient’s impaired
limb so that the patient can know how much exercise he/she has
completed, and the position of his/her limb relative to the target
of the current exercise. Here, the target describes the level of
exercise difficulty; for instance, for a stroke patient with upper-
limb impairment performing a shoulder flexion movement, the
target would define up to what height the patient has to reach.

The rehabilitation robot can be an end-effector or an
exoskeleton, whose main task would be to assist stroke patients
in performing rehabilitation exercises. Now an exercise’s target
is defined; the patient, with no external assistance or fixed
minimum external assistance from the rehabilitation robot
(discussed in detail in the following subsection), would attempt
to reach the target. Simultaneously, the EEG signals would be
recorded from the patient’s brain. If the patient fails to reach
the defined target of the exercise, an ERN signal associated
with the Training-ErrP signal will elicit in the patient’s brain,
which, from the patient perspective, would indicate that he/she
has failed to complete the rehabilitation movement. Thus, on
the ERN signal detection, the external assistance would be
increased/triggered so that the patient can complete the rest of
the rehabilitation exercise. In the trials of subsequent sessions, the
exercise’s difficulty level can be decreased through the exercise’s
target, or the fixed minimum assistance level can be increased, to
adapt the rehabilitation system as per the patient’s current motor
impairment level.

The control unit will process the EEG signals and the Kinect
sensor’s data in real-time, increase/decrease the assistance level
of the rehabilitation robot, and adapt the exercise target level for
every exercise trial, based on the detection of ERN signal and
the past performances of the patient in performing rehabilitation
exercises (tracked through the Kinect sensor).

Use-Case Description Using Timing
Diagrams
Figure 2 depicts how a typical set of four trials of a patient at
various levels of motor impairment during his/her rehabilitation
journey would unfold in an ERN-RASRS. At the start, the
rehabilitation robot would maintain a fixed minimum assistance
level (x in Figure 2) to support a stroke patient who is at the
initial stage of motor recovery. Typically, such a patient has little
to no voluntary movement in his/her impaired limb and requires
continuous external support to perform rehabilitation exercises.
The minimum assistance level can be gradually decreased as the
patient gains voluntary limb movement.

In Trial 1, despite the external assistance, the stroke patient
perceived that he/she has failed in performing the rehabilitation
exercise due tomotor impairment and cannot reach the set target;
thus, an ERN signal associated with Training-ErrP is elicited (e1

Frontiers in Neurorobotics | www.frontiersin.org 3 April 2022 | Volume 16 | Article 837119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Kumar et al. ERN-Based RASRS: Design and Proof-of-Concept

FIGURE 1 | Setup of the event-related negativity (ERN)-based robot-assisted stroke rehabilitation system (RASRS). The rehabilitation robot would assist the patient in

performing the rehabilitation exercise as required. The instruction monitor would guide the patient in performing the rehabilitation exercise by showing relevant cues on

the screen and would also show the real-time feedback of the movement of the impaired limb with the help of the Azure Kinect sensor, so that the patient can know

how much exercise has been performed and how much it is left. The electroencephalogram (EEG) sensors record the EEG activity from the patient’s brain. The control

unit would process the EEG data, the Kinect sensor data, give inputs to the instruction monitor, and signals the rehabilitation robot to increase/decrease the robotic

assistance.

FIGURE 2 | Four typical trials of the ERN-RASRS illustrated using a timing diagram. The durations in the figure are not scaled. Event e marks the time when the ERN

associated with the Training-ErrP signal elicits. Event d marks the time when the ERN signal is detected. x shows the minimum level of assistance provided by the

rehabilitation robot throughout the exercise trial. The x+1 shows the level of assistance provided by the rehabilitation robot on the detection of the ERN signal. Event i

marks the time when robotic assistance is increased to level x+1. Event f marks the time when the current trial finishes and the robotic assistance is decreased to

level x. Event s marks an exercise trial in which almost the whole exercise is performed only with the minimum level of robotic assistance (i.e., x); thus, the difficulty

level of the exercise is increased, and the minimum level of robotic assistance (i.e., x) is decreased.

in Figure 2). As the EEG signals are being processed in real-
time, the elicited ERN signal gets detected at d1 in Figure 2. In
response to this, the external robotic assistance level is increased

to x+1 level (i1 in Figure 2), which helps the patient complete
the rest of the exercise. The assistance level is decreased back
to level x on the completion of Trial 1 (f1 in Figure 2), i.e.,

Frontiers in Neurorobotics | www.frontiersin.org 4 April 2022 | Volume 16 | Article 837119

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Kumar et al. ERN-Based RASRS: Design and Proof-of-Concept

FIGURE 3 | (A) A fixation cross marked the start of a trial. (B) A pre-recorded video showed the rehabilitation exercise to be performed. (C) A 3-2-1 timer. (D)

Instruction to the participants to start performing the rehabilitation exercise depicted in the video. (E) Participants were asked to complete the rehabilitation exercise

before this “Time’s up!” screen appeared. This marked the completion of one exercise trial, and subsequently, the next trial started with the fixation cross. The epoch

of interest for EEG analyses is marked in red on the timeline, immediately after the “Time’s up!” screen appeared.

the patient has reached the target with the help of an increased
assistance level.

A similar set of events unfolds in Trial 2; however, as the
patient is getting better at performing the rehabilitation exercise,
the duration for which the patient requires a higher level of
external assistance (i.e., x+1) is decreased. In Trial 3, the patient
further gets better in performing the rehabilitation exercise and
performs almost the whole exercise with the minimum level of
robotic assistance (i.e., x). The extent of the exercise completed
is additionally verified with the Azure Kinect sensor’s data. As a
result, the ERN signal also elicits near the very end of the trial
(e3 in Figure 2). It shows that the stroke patient’s motor ability
has nearly recovered to the level that the patient can complete
the given rehabilitation exercise with the current fixed minimum
level of external assistance (x in Figure 2). It is to be clarified that
a patient would require multiple rehabilitation sessions before
experiencing a noticeable gain inmotor skills, although the recent
discussion might give a perception that the patient is regaining
motor skills in subsequent trials.

To ensure maximum effort from the patient and keep the
rehabilitation program continually challenging, the rehabilitation
program must be adapted to the current motor ability of the
stroke patient. Two strategies can be employed in this scenario:
the fixed minimum level of external assistance can be decreased
(x in Figure 2), and/or the exercise’s difficulty level can be
increased (i.e., by modifying the target level). In Trial 4, both
strategies are utilized. The fixed minimum level of external
assistance is decreased, and the difficulty level of the exercise is
also slightly increased (s3 in Figure 2). In response to this, the
patient again failed in completing the exercise trial, and an ERN
signal is elicited (e4 in Figure 2) and consequently, a higher level
of external assistance is given (i4 in Figure 2), so that the patient
can complete the rest of the exercise trial.

Hence, the functioning of the ERN-RASRS has been
demonstrated in which the robotic assistance level and the
exercise difficulty level are adapted on a trial-by-trial basis as
per the current motor-impairment level of the patient. This
can keep the rehabilitation program continually challenging
and ensure maximum efforts from patients, along with their

active participation. The upcoming sections present the system’s
proof-of-concept by studying the ERN signals elicited while
performing a physical rehabilitation movement and its single-
trial classification.

MATERIALS AND METHODS

Participants
In the experiment, twelve healthy people participated [7
females and 5 males, mean (M) age: 22.8 ± 3.2 years]. None
of the participants had a BCI experience. The experiment
was conducted at Shantou University, China. All participants
voluntarily participated in the experiment and signed a written
informed consent before the experiment started. The study
was approved by the ethics committees of the 2nd Hospital of
Jiaxing and the First Affiliated Hospital of Shantou University
Medical College, China. The experiment was conducted by
the declaration of Helsinki. One of the participants’ data were
not included in the analyses as the events information for his
experiment went unrecorded due to a technical glitch in the EEG
recording software.

Experiment Protocol
Participants sat on a chair facing a LED monitor with 1,920 ×

1,080 resolution at a 60Hz refresh rate. The experiment required
participants to perform a standard Bobath’s rehabilitation
exercise involving shoulder flexion-extension while adjoining
both hands. The experiment was conducted in a synchronous
format, and the experiment instructions and cues were delivered
using the LED monitor, in order, as shown in Figure 3. A Pre-
recorded video of a rehabilitation therapist, obtained from the
2nd Hospital of Jiaxing, China, was used to describe the know-
how of the rehabilitation exercise.

As shown in Figure 3A, a fixation cross marked the start of an
experiment trial. The rehabilitation exercise video followed the
fixation cross. Participants were instructed to observe the exercise
movement in the video (see Figure 3B). A 3-2-1 timer followed
the video (see Figure 3C). Participants were asked to perform
the rehabilitation exercise (as depicted in the rehabilitation
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video) once the timer finishes and the screen, as shown in
Figure 3D, appeared. Participants were told that they must
complete performing the exercise, with the same range of motion
and speed as depicted in the exercise video (Figure 3B), before
the “Time’s up!” screen (see Figure 3E) appeared. They were also
asked to evaluate in their head if they completed the exercise once
the “Time’s up!” screen appeared. On the onset of the “Time’s
up!” screen, a beep sound was also played for about 30ms to
notify participants that the time duration given to complete the
rehabilitation exercise has expired. This marked the completion
of one exercise trial, and each participant participated in forty-
eight such trials, where they performed the same shoulder
flexion-extension exercise.

The duration given to the participants to complete the
rehabilitation exercise varied from 2 to 15 s pseudo-randomly.
Specifically, 2–4 s were given in 18 of the 48 trials, 9–10 s were
given in four of the 48 trials, and 15 seconds were given in 26
of the 48 trials, to all participants to complete the rehabilitation
exercise. These time-durations, together with the instructions
given to participants on how to perform the exercise (described
in the preceding paragraph), ensured that participants failed to
complete the rehabilitation movement in the 2–4 s trials (named
ERN trials hereafter) and successfully completed it in 15 s trials
(named CRA trials hereafter). An exercise trial was marked as
successful when a participant started performing the exercise on
the onset of the screen as in Figure 3D, executed the exercise as
shown in the exercise video, and his/her arms come to rest before
the onset of “Time’s up!” screen (see Figure 3E). All ambiguous
trials were removed before the analyses; about 6% of the trials
were removed. The 9–10 s trials were used to add uncertainty in
the experiment so that participants could not foretell the given
time durations, and these trials were excluded from the analyses.
A preliminary experiment was also carried out on three healthy
people (different from the 12 participants mentioned earlier)
to confirm that the time length given in a trial to perform the
exercise cannot be anticipated. After the preliminary experiment,
an interview-based analysis was also conducted on the three
participants to understand and ensure that they did perceive an
erroneous action in the ERN trials for not completing the exercise
in the given time. Such perception is essential to evoke ErrP
related neural response (Taylor et al., 2007; Salazar-Gomez et al.,
2017; Yazmir and Reiner, 2017).

The experiment procedure was explained to the participants,
and sufficient time was given for practice before the experiment
started. The experiment’s visual stimuli were designed and
delivered using the Presentation software (version 21.1,
Neurobehavioral Systems Inc., California).

EEG Data Acquisition
Thirty-two channels of EEG (i.e., FP1, FP2, AF3, AF4, F7, F3,
Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1,
CP2, CP6, P7, P3, Pz, P4, P8, PO7, PO3, PO4, PO8, and Oz)
were recorded using g.Nautilus (g.tec GmbH, Austria) wireless
EEG acquisition system, as per the international 10–20 system.
Eight-pin g.SAHARA dry-active EEG electrodes mounted on a
g.GAMMAcap were used for the EEG recording. All channels
were referenced to the right mastoid and grounded to the AFz

location. The EEG data were acquired at a 500Hz sampling rate
with a 50Hz notch filter.

Data Pre-Processing and Analyses
The recorded raw EEG data were pre-processed offline before
making any analysis. The MATLAB-based custom scripts and
EEGLAB toolbox (Delorme and Makeig, 2004) were used for the
pre-processing. The data were band-pass filtered in the 0.1–50Hz
range using a zero-phase shift FIR filter. Afterward, the data were
manually inspected to remove any transients and artifactual data
segments. Subsequently, a combination of Automatic channel
rejection (an EEGLAB plug-in) and manual inspection was
used to remove any artifactual channels from the dataset. Next,
the data were downsampled to 250Hz, and subsequently, the
Independent component analysis (Delorme and Makeig, 2004)
was used to remove artifactual components left in the data, such
as ocular, cardiac, andmuscle artifacts. A combination of ICLabel
(an EEGLAB plug-in) and visual inspection was used to remove
the artifactual components. The continuous data were segmented
into epochs ranging from −100 to 800ms relative to the onset
of Figure 3E, and the individual epochs’ means were subtracted
from the epochs themselves. Further, the removed data channels
were interpolated. Finally, the events associated with ERN trials
and CRA trials were separated. On average, about 41 trials per
participant were included in the analyses, out of which about
16 were ERN trials, and 25 were CRA trials. These trials were
used for the single-trial classification of ERN and CRA signals
(discussed in detail in Section Single-Trial Classification).

For every participant, the average of the ERN and CRA trials
was calculated. Subsequently, grand-average ERN and CRA were
calculated by taking the average of the individual averaged ERN
and CRA waveforms. The difference of the averaged ERN and
CRA waveforms was calculated for every participant to calculate
their averaged Training-ErrP waveforms. The grand-average
Training-ErrP waveform was also calculated by averaging the
Training-ErrP waveform of every participant. The time-domain
EEG responses suffer from reference-electrode bias; therefore,
topographical scalp maps of the grand-average ERN and CRA
neural activities were also calculated to obtain reference-bias-free
multi-channel information of the neural activity (Murray et al.,
2008).

The Monte Carlo cluster-based permutation test (4,000
randomizations) was used for statistical analysis. Every
participant’s averaged ERN and CRA neural response was utilized
for the statistical analysis, and it was tested if the amplitude of
the ERN and CRA waveforms are significantly different from
each other, or in other words, if the Training-ErrP signal is
significantly different from zero. Based on previous knowledge,
the ErrP signals have the highest activity around Fz and Cz
electrodes; therefore, the statistical analysis was conducted on
EEG signals at the Fz electrode location. The Monte Carlo
cluster-based permutation test is widely used to address the
multiple comparisons problem for electrophysiological data
analysis (Maris and Oostenveld, 2007). Fieldtrip toolbox was
used to conduct the cluster-based permutation test (Oostenveld
et al., 2011).
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Single-Trial Classification
Detection of ERN signals associated with the Training-ErrP
in real-time and a single trial is of utmost importance,
as the detection of the ERN signals forms the basis of
adapting the external robotic assistance level in the proposed
ERN-RASRS. Therefore, ERN signals were classified against
the CRA and the background EEG activity as a binary
classification problem.

ERN vs. CRA Classification
The pre-processed EEG data were pre-segmented into epochs
ranging from 0 to 500ms relative to the onset of Figure 3E. As
described earlier, the pre-processed single-trial ERN and CRA
signals, without any averaging, were used for classification. We
had 180 ERN epochs and 275 CRA epochs in total for all
participants, which were all pulled together for classification.
The epochs were spatially filtered using the xDAWN spatial
filtering algorithm (Rivet et al., 2009; Congedo et al., 2013).
Five spatial filters corresponding to the highest eigenvalues were
selected for each of the two classes. All 455 epochs were spatially
filtered using the two-set of five spatial filters, which resulted
in ten projections for each epoch. The grand-average ERN and
CRA were also spatially filtered with five spatial filters calculated
using ERN and CRA epochs, respectively. The resulting ten
projections were concatenated with ten projections of each of
the 455 epochs (Congedo et al., 2013; Barachant and Congedo,
2014). Subsequently, a covariance matrix of R20×20 was estimated
for each of the 455 epochs, which was further projected to a
tangent vector space using the Riemann metric (Barachant et al.,
2013). The above procedure allows exploiting not only the spatial
structure but also the temporal structure of the ERP signal, which
leads to greater discrimination in ERP classes and, consequently,
a higher classification accuracy (Barachant and Congedo, 2014).
These xDAWN spatial filtering and Riemannian geometry-based
steps were performed using the pyRiemann Python package
(2021). The resulting feature vectors were normalized using
L1 normalization, and subsequently, the dimensionality of the
feature vectors was reduced using principal component analysis
(PCA) by keeping components that explained 99% of the
data variability.

Support vector machine (SVM), with radial basis function
(RBF) kernel, was used to classify the ERN and CRA epochs.
Before classification, the class weights of both classes were
balanced based on the class frequencies in the input data. A
5-fold cross-validation was used to estimate the classification
performance. In each fold, the parameters such as xDAWN
spatial filter weight matrices and PCA weight matrices were
calculated on the training data only, and the validation set was
transformed using these weights. Accuracy, the area under the
receiver operating characteristics curve (AUROC), and F1-score
were used as performance evaluation metrics. A one-tailed
Wilcoxon signed-rank test (exact method) was used to assess if
the classification accuracy is significantly higher than the chance
level accuracy calculated using the Zero Rule classifier. Zero Rule
classifier always outputs the class that is in the majority in the
training set, regardless of the input.

ERN vs. Background EEG Classification
In the asynchronous conduct of the current experiment, the
“Time’s up” event, such as in Figure 3E, would be unavailable
to process the EEG signals synchronously. As a result, the
EEG signals cannot be converted to small epochs as done
in ERN vs. CRA classification for classification. Therefore, the
proposed ERN-RASRS requires detecting ERN signals against the
background EEG activity in real-time and in a single trial. Here,
the feature extraction steps followed were the same as the ones
followed in ERN vs. CRA classification. The [−2,000, 700] ms
interval relative to the error onset (see Figure 4) was used for
evaluation. The error onset here refers to the onset of the ERN
signal; thus, we had 180 evaluation blocks corresponding to the
180 ERN events.

The SVM classifier, the same as the one used in ERN vs. CRA
classification, was used for the pseudo-online classification of the
ERN signals. The classification was conducted asynchronously by
sliding a 500ms window over the entire evaluation block, with a
20ms leap in consecutive windows. The classification evaluation
of each window resulted if the analyzed window belongs to
the ERN class or the background EEG activity class. Thus, the
classifier produced an output every 20ms in the entire evaluation
block. We defined an Error event detection when an ERN class
was predicted for n consecutive windows, where n is defined
as the sensitivity level of the detection algorithm. The detection
performance was tested for n = {1, 2, 3}.

An error trial was considered correctly classified when no
Error event was detected before error onset and at least one
Error event was detected within 200ms of error onset (see
Figure 4 for details). A leave-one-out cross-validation was used
to evaluate the classifier’s performance. Therefore, cyclically, the
evaluation block corresponding to all but one ERN event formed
the training set, and the one block left formed the validation
set. Notably, there are three classification output possibilities:
correct detection, incorrect detection, and no detection (see
Figure 4 for details). Correct detection is certainly better than
incorrect/no detection, and no detection can be considered
better than incorrect detection, as an incorrect detection would
result in unwarranted external assistance. However, not a single
evaluation metric captures all three output possibilities and gives
a single quantitative measure to assess ERN vs. background
EEG classification performance. Therefore, to consider all three
output possibilities and their significances, we devised a new
performance evaluation metric, which is the incidence-detection
rate (IDR), to quantify the classifier’s performance. The IDR is
defined as:

IDR= CD×
(

1− ID+log (1+ND)
)

where CD is the ratio of correct detection trials, ID is the ratio
of incorrect detection trials, and ND is the ratio of no detection
trials to the total number of trials. When all trials are correctly
classified, the IDR would be 100%, whereas, when none of the
trials is correctly classified, the IDR would be 0%, and for all
other values, IDR would vary between 0 and 100%. The whole
leave-one-out cross-validation was repeated over 100 times using
the bootstrap method, and the upper and lower limit of 99%
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FIGURE 4 | Graphical representation of an error trial structure and the evaluation period. All occurrences that are neither labeled nor detailed inherit their description

from the corresponding preceding node. Notably, in no detection, no error event was detected in the evaluation period despite the presence of an error event.

confidence interval (CI) was estimated. For bootstrapping, after
selecting an epoch for validation, the training data epochs were
randomly sampled with replacement from the rest of 179 epochs,
which were repeated over 100 times.

RESULTS

Event-Related EEG Activity
A clear difference in the ERN and CRA neural responses was
observed. The grand-average ERN and CRA responses, along
with the grand-average Training-ErrP signal at the Fz electrode
location, are shown in Figure 5. The Training-ErrP signal has two
prominent peaks: a negative peak (peak-1) at 208ms (M =−5.9,
SD = 6.1), followed by a positive peak (peak-2) at 340ms (M =

5.7, SD = 4.2). Both the peaks were observed to be statistically
significant (p < 0.05) after correcting for multiple comparisons
(see Figure 5). The topographical scalp maps also showed a clear
and distinguishable neural response between the ERN and CRA
(see Figure 6). The ERN signals were observed to be centrally
distributed at both peaks. The CRN signals were observed to
have been centrally distributed at peak-1, whereas the peak-2 was
observed to have a center-frontal distribution.

Single-Trial Classification
A mean classification accuracy of 0.820 (SD = 0.026), AUROC
of 0.818 (SD = 0.029), and F1-score of 0.821 (SD = 0.025)
were observed in ERN vs. CRA binary classification, using 5-
fold cross-validation. The classification accuracy was significantly
higher than the chance level accuracy (Z = −2.041, p =

0.031), which was 0.604 and was obtained using the Zero Rule
classifier. The row-normalized confusion matrix of the ERA vs.

CRA binary classification is shown in Figure 7. The participant-
wise ERA vs. CRA binary classification results are provided in
Supplementary Table 1.

The ERN vs. background EEG classification results are shown
in Figure 8. The figure depicts the average number of error trials
that were correctly detected, incorrectly detected, or no detection
was observed, in percentage terms, for each of the three sensitivity
levels. The error bars show the 99% CI for the averages. The
IDR values were calculated using the average values. The chance-
level IDRs were also calculated using a permutation test and are
shown in Figure 8. The sensitivity level that maximized the IDR
was n = 1. Using this level, we obtained an IDR of 47.23%,
an average correct classification rate of 32.46%, 99% CI [31.83
33.09], a no classification rate of 63.73%, 99% CI [63.05 64.42],
and an incorrect classification rate of 3.81%, 99% CI [3.45 4.16].
The correct classification rate is more than 8.5 times the incorrect
classification rate. The participant-wise ERN vs. background EEG
classification results are provided in Supplementary Table 2.

DISCUSSION

The study aimed to propose an ERN-based RASRS. To this aim,
the setup of the proposed rehabilitation system was presented,
and the working mechanism of the setup was illustrated through
a timing diagram. For developing this system, it is imperative to
have a distinguishable neural response when a participant fails in
performing a rehabilitation exercise against when the participant
succeeds and detect these neural responses in a single trial,
especially against background EEG activity. Our results showed
a statistically significant difference in the brain’s neural response
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FIGURE 5 | The grand-average waveform of error-related negativity, correct-related activity, and Training-ErrP signal at the Fz electrode location. The green-bars mark

the time-points when the Training-ErrP signal is statistically significantly different against zero after cluster-based multiple comparisons correction. For illustration

purposes, the waveforms have been smoothed out with a 10Hz low-pass finite impulse response (FIR) filter.

when the participants failed in completing the rehabilitation
exercise in a given time against when they succeeded. The
results showed a significantly higher classification accuracy than
the chance level accuracy when classifying ERN signals against
CRA signals. When classifying ERN signals against background
EEG activity, the correct detection rate of error trials was more
than 8.5 times that of the incorrect detection rate. Therefore,
the crucial requirements for the proposed ERN-RASRS have
been demonstrated.

Range of motion (ROM), voluntary physical efforts,
and cognitive investment all play an important role in the
rehabilitation but are rarely considered together. Rehabilitation
therapies, such as constraint-induced movement therapy
(CIMT), focus on voluntary physical efforts in a limited ROM
(Abo et al., 2014), whereas passive rehabilitation therapies focus
on the ROM of the impaired limb (Caimmi et al., 2017). The
EMG (Song et al., 2013) and force-transducer proportional
(Colombo et al., 2007) rehabilitation therapies focus on both
ROM and voluntary physical efforts. However, the dynamic

relation in EMG and force production (Tang and Rymer, 1981),
and the abnormal muscle activations (Canning et al., 2000) after
stroke decrease the effectiveness of EMG and force-transducer
proportional rehabilitation therapies. Moreover, these therapies
tend to become unusable for patients with little to no voluntary
movement due to the lack of EMG signals and force in the
impaired muscles.

On the other hand, ERN-RASRS promotes the balance
between the ROM and the patients’ voluntary movements with
the impaired limb, and it can be utilized not only by patients with
voluntary control of their impaired limb but also by patients with
little to no voluntary movement. In ERN-RASRS, the balance
between the ROM and the voluntary movements can be adapted
to a patient by adjusting the level of external assistance (i.e., the
x and x+1 level, see Figure 2) and the target of the rehabilitation
exercises based on the ERN signals. The fixed level of external
assistance (i.e., x in Figure 2) can be pre-selected and kept high
if a patient has little to no voluntary movement and can be
kept low if a patient has voluntary control of their impaired
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FIGURE 6 | Topographical scalp maps of the grand-average error-related negativity and correct-related activity signals at two time-points, where the Training-ErrP

signal was observed to be prominent.

limb, which can be further adjusted trial-by-trial based on ERN
signals. This can ensure an optimum level of external assistance
and desired level of exercise difficulty for every stroke patient
and ultimately achieve active and prolonged participation in the
rehabilitation program (Shirzad and Van Der Loos, 2016), where
the current rehabilitation therapies are expected to be missing
the mark. Also, full-ROM in the exercise without losing the
voluntary control of their impaired limb and an enhanced level
of control on the rehabilitation program by putting their brain’s
intrinsic feedback in the rehabilitation control loop can engage
patients better in the rehabilitation program and motivate them
to practice longer, which can result in better recovery (Warraich
and Kleim, 2010; Lohse et al., 2014).

The Training-ErrP signal observed in this study has a
considerable difference from the ErrP signal observed in

Kumar et al. (2019a), which could be a result of different EEG
references employed in the two studies, as explained in Murray
et al. (2008). Nevertheless, this study’s Training-ErrP signals’
morphology is similar to previously reported ErrP signals
(Chavarriaga and Millán, 2010; Salazar-Gomez et al., 2017). The
ERN and CRA topographical activities have been observed to
be distributed around the scalp’s central region, which seems
to corroborate with the fact that the dorsal anterior cingulate
cortex/posterior medial frontal cortex are the primary regions
of the brain responsible for our error-processing system (Taylor
et al., 2007).

The classification approach used resulted in statistically
significant ERN vs. CRA classification accuracy, in line with
previously reported studies (Salazar-Gomez et al., 2017; Kumar
et al., 2018; Torres et al., 2018). On the other hand, against
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the background EEG activity, about 1/3 of the ERN trials were
correctly classified, and incorrect detection and no detection
were observed in nearly 4 and 64% of the trials, respectively.
Increasing the n to 2 or 3 has reduced the incorrect detection rate;
however, the correct detection rate also dropped considerably,
which reduced IDR. We explored various measures to increases
the share of correctly classified trials, including the use of

FIGURE 7 | Row-normalized confusion matrix for single-trial binary

classification of error-related negativity (ERN) epochs against the

correct-related activity (CRA) epochs, using 5-fold cross-validation.

probability measures to increase the classifier’s sensitivity toward
the ERN class, which increased the number of correctly classified
trials. However, the number of incorrectly classified trials also
increased. A possible workaround for this issue is that, instead
of relying on the raw timing of event d (i.e., when ERN signal
is detected, see Figure 2) to modify/trigger the robotic assistance
(i.e., an event i in Figure 2), we can use the exponential moving
average of the raw timings. As the correct detection rate is
more than 8.5 times that of the incorrect detection rate, the
exponential moving average of the raw timing can converge the
modify/trigger timing of the robotic assistance to an optimum
time, as per varying disability levels of patients. In case of
no detection, the robotic assistance level can remain the same
as the preceding trial. Thus, the present results support the
development of an ERN-RASRS.

LIMITATIONS AND FUTURE WORK

This study observed a small detection performance of correctly
detecting error trials against the background EEG signals, which
can be considered a limitation of the current work. The issue

can be mitigated by using exponential moving averages; however,

greater accuracy is still required before using such a system
outside the lab environment. Detecting brain signals against
the background EEG activity is a classic problem due to the
low signal-to-noise ratio of EEG signals. Nevertheless, it is
expected that the classification performance can be improved
by having a larger size of the Training-ErrP dataset and by
using deep learning-based methods. In the future, we will further
explore the experimental protocol, wherein patients would have

FIGURE 8 | Percentage of error trials that were correctly detected, incorrectly detected, or no detection was observed, as a function of the sensitivity. The error bars

represent the 99% confidence interval for the averages. The incidence-detection rate (IDR) metric, represented using pink line, is highest at sensitivity level 1. The

chance-level IDR, calculated using a permutation test, is also shown in orange.
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greater autonomy to start and stop a rehabilitation exercise. Such
protocol would require synchronization between Azure Kinect
sensor and EEG data stream and the processing of the recorded
data in real-time, which will be explored in the future. This
study will form the basis of such an investigation. Notably, any
variation in the task in the final RASRS setting can introduce
variations in the ERN signal (Iturrate et al., 2013), which can
be managed by recalibrating and adapting the ERN classifier to
the changes. As previous studies have observed ErrP signals and
detected them in a single trial in both healthy as well as the
disabled population in a wide range of tasks (see (Kumar et al.,
2019b) for review), the Training-ErrP elicitation and detection
results presented here and consequently, the ERN-RASRS design
can be extended to stroke patients.

CONCLUSION

This study proposed an error-related negativity-based robot-
assisted stroke rehabilitation system, which uses ERN signals
as a basis to increase/decrease the robotic assistance given to a
patient to complete a rehabilitation exercise. Including a patient’s
brain in the control loop of a rehabilitation system is quite
marked as it allows the use of the patient’s intrinsic feedback
mechanism for quick adaptation of the rehabilitation system
without the presence of a rehabilitation doctor or therapist, which
enables patients to carry out their rehabilitation treatment in an
unsupervised environment. The present study has reported, for
the first time, the design of the ERN-based RASRS and illustrated
its working mechanism through a timing diagram. The study
has further shown a distinguishable neural response when a
participant fails to perform a rehabilitation exercise against when
succeeds in a given time. The study has also demonstrated that
these neural signals can be detected in a single trial, particularly
against background EEG activity, which is crucial for developing
the proposed rehabilitation system. In the future, after working
on this studies’ limitations, we will fabricate the ERN-RASRS and
assess its efficacy against established rehabilitation therapies.
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