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A disproportionate number of predicted proteins from the
genome sequence of the protozoan parasite Trypano-
soma brucei, an important human and animal pathogen,
are hypothetical proteins of unknown function. This paper
describes a protein correlation profiling mass spectrom-
etry approach, using two size exclusion and one ion ex-
change chromatography systems, to derive sets of pre-
dicted protein complexes in this organism by hierarchical
clustering and machine learning methods. These hypoth-
esis-generating proteomic data are provided in an open
access online data visualization environment (http://
134.36.66.166:8083/complex_explorer). The data can be
searched conveniently via a user friendly, custom graph-
ical interface. We provide examples of both potential
new subunits of known protein complexes and of novel
trypanosome complexes of suggested function, contribut-
ing to improving the functional annotation of the trypano-
some proteome. Data are available via ProteomeXchange
with identifier PXD005968. Molecular & Cellular Proteom-
ics 16: 10.1074/mcp.O117.068122, 2254–2267, 2017.

Trypanosoma brucei is a unicellular trypanosomatid proto-
zoan parasite and the etiological agent of sleeping sickness in
sub-Saharan Africa, estimated to cause �20,000 cases per
year (1). Current treatments are expensive, difficult to admin-
ister and toxic. In 2005, the genomic sequence of T.brucei
was reported, with �9,100 genes identified, thereby providing
a valuable resource for the trypansomatid research community
(2). However, many of the identified genes encode predicted

proteins that lack classifiable homology to known proteins in
other organisms, hampering their functional classification. It has
been previously estimated that �4900 T. brucei genes lack
reliable orthologs in other organisms and are annotated as
“hypothetical” (3, 4). This lack of functional genome annotation
hinders our understanding of trypanosome biology and associ-
ated therapeutic possibilities.

Many intracellular biological processes are dependent on
the stable physical association between two or more proteins
(5). Indeed, many proteins require to be part of a complex to
carry out their function, including the subunits of many well
characterized complexes, such as the proteasome, ribosome
and spliceosome. The global characterization of model orga-
nism interactomes has led to greater understanding of pro-
teome organization and improved the functional annotation of
uncharacterized proteins via “guilt by association” (6–10).

Protein correlation profiling mass spectrometry (PCP-MS)1

has been used to identify and predict the subunit composition
of protein complexes through identifying proteins cofraction-
ating by liquid chromatography and/or sedimentation meth-
ods (11–13). Recently, PCP-MS has been used to analyze
soluble protein complexes through the fractionation of whole
cell lysates by size-exclusion chromatography (SEC) (14–
17) and ion-exchange chromatography (IEX) (18), identifying
hundreds of protein complexes in single experiments. The
combination of orthogonal chromatographic techniques has
been shown to better resolve individual protein complexes,
which may coelute by chance under the conditions of a single
fractionation method (18).

During the course of the investigation described in this
paper, Gazestani and colleagues reported using glycerol gra-
dient centrifugation and ion-exchange chromatography to
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identify protein complexes in procyclic form T.brucei mito-
chondrial and cytoplasmic lysates, in single biological repli-
cates (19). Taking a similar approach, we have used ultra-high
performance liquid chromatography (uHPLC), to fractionate
whole cell lysates from procyclic form T. brucei, using SEC
and strong anion exchange chromatography (SAX), in up to
four biological replicates. We identified and quantified elution
profiles for 6004 protein groups. Computational analysis al-
lowed us to predict 234 protein complexes. This data set
includes many well-characterized complexes in T. brucei,
supports the existence of other complexes that were pre-
dicted based on homology to known complexes from other
organisms and additionally provides evidence for the exist-
ence of novel, previously uncharacterized complexes. By in-
corporating these data into a freely accessible, online data-
base, we provide a useful resource for both trypanosome
biologists and for all groups studying protein-protein interac-
tions and complexes in other organisms.

EXPERIMENTAL PROCEDURES

SDM-79 Media Preparation—Powdered SDM-79 media was hy-
drated with 5 L of Milli-Q water, and supplemented with hemein to 7.5
mg/L and 2 g/L of sodium bicarbonate. The pH was adjusted to 7.3
with NaOH, and sterile filtered using Stericups 500. Under sterile
conditions, heat inactivated and nondialyzed fetal bovine serum (PAA)
was added to 15% (v/v) and Glutamax I to 2 mM, final concentrations,
respectively. The antibiotics, G418 and hygromycin, were used at final
concentrations of 15 �g/ml and 50 �g/ml respectively.

Cell Culture—Procyclic trypanosomes (clone 29.13.6) were cul-
tured in SDM-79 media at 28 °C, without CO2, in fully capped culture
flasks.

Size-exclusion Chromatography (SEC)—Procyclic trypanosomes
(3 � 109 cells/replicate) were washed three times in 50 ml of phos-
phate-buffered saline (PBS) and lysed using a Bioruptor Pico (Diag-
enode, Liege, Belgium) water bath sonicator for 10 cycles of 30 s
on/off, in 0.75 ml of PBS containing 0.1 �M 1–5-chloro-3-tosylamido-
7-amino-2-heptone (TLCK), 1 mM phenyl-methyl sulfonyl fluoride
(PMSF), 1 �g/ml leupeptin, 1 �g/ml pepstatin and 5 mM ethylenedi-
ametetraacetic acid (EDTA). Lysates were centrifuged at 17,000 � g
for 10 min and the supernatant filtered through a 0.45 �m filter unit, all
at 4 °C. Bradford assays were performed on the filtrates for protein
quantitation.

Filtered lysates (�1.2 mg in 200 �l, �8 � 108 cell equivalents) were
injected onto either a BioBasic SEC 300, or a BioBasic SEC 1000
column (5 �m, 300 � 7.8 mm with either 30 nm, or 100 nm pore size,
respectively), using a Dionex Ultimate 3000 uHPLC system and col-
lected in 48 fractions of 120 �l. Columns were equilibrated with PBS
and eluted at a flow rate of 0.3 ml/min at 4 °C.

Each fraction was made up to 0.1 M Tris-HCl (pH 8.0), 1 M urea and
5 mM dithiothreitol and incubated for 2 h at 37 °C, followed by
addition of iodoacetamide at a final concentration of 25 mM at room
temperature for 1 h. Trypsin and LysC were added, each at a ratio of
1:100 (enzyme to total average protein per fraction) and incubated
overnight at 37 °C Each fraction was made up of 1% (v/v) trifluoro-
acetic acid and desalted using Sep-Pak tC18 plates, with peptides
eluted in 50% acetonitrile, 0.1% trifluoroacetic acid. Peptides were
dried using a GeneVac evaporator and resuspended in 5% formic
acid and quantified using a 3-(4-carboxybenzoyl) quinoline-2-carbox-
aldehyde assay. Five biological replicates were performed in total for
each SEC chromatography column used.

For a highly denaturing lysis, cells were lysed in 4% sodium dode-
cyl sulfate (SDS), 10 mM sodium phosphate (pH 6.0) and 100 mM

NaCl, sonicated and filtered as above, followed by separation in a
running buffer containing 0.2% SDS on a BioBasic SEC300 column.

SDS-PAGE—Aliquots of fractions from SEC runs were pooled into
groups of three, made up to 1� lithium dodecyl sulfate sample
loading buffer and 25 mM tris(2-carboxyethyl)phosphine (TCEP),
heated to 95 °C for 10 min and resolved on 4–12% SDS-PAGE. Gels
were run in MES buffer for 45 min at 200 V, then stained for total
protein, using SYPRO Ruby, as per manufacturer’s protocol.

Strong Anion Exchange (SAX)—Procyclic trypanosome cells were
prepared in a similar manner as described for SEC analysis, with lysis
in 1 ml 20 mM ethanolamine (pH 9.0) containing 0.1 �M TLCK, 1 mM

PMSF, 1 �g/ml leupeptin, 1 �g/ml pepstatin and 5 mM EDTA. Lysates
were centrifuged and filtered as described previously. Filtered lysate
was injected onto a Protein-Pak Hi Res Q, 5 �m, 4.6 � 100 mm,
column (Waters, Elstree, U.K.), equilibrated in 20 mM ethanolamine
(pH 9.0). Proteins were resolved over a gradient of 0–100% 0.5 M

NaCl in 20 mM ethanolamine (pH 9.0), over the course of 26 min, at a
flow rate of 0.3 ml/min at 5 °C. Ninety-six 105 �l fractions were
collected from 1.5 to 35 min.

Collected fractions were made up to 4% SDS and 25 mM TCEP,
then heated to 65 °C for 30 min. Once samples had cooled to room
temperature, N-ethylmaleimide was added to a final concentration of
50 mM and incubated for 1 h. The denatured, reduced and alkylated
proteins in each fraction were prepared for digestion using a King-
fisher Flex Purification System (ThermoFisher Scientific, San Jose,
CA) in combination with magnetic SP3 beads. Twenty microliters of a
1:1 mixture of hydrophobic and hydrophilic, carboxylate modified,
Sera-Mag SpeedBead magnetic particles (20 mg/ml in H2O, GE) was
added to each fraction, followed by the addition of 500 �l of aceto-
nitrile and 15 �l of 10% formic acid. In a 96-well plate format, the
Kingfisher Flex System was then used to wash the magnetic beads
(protein bound) for each collected fraction, twice in 1 ml 70% ethanol,
once in 1 ml 100% acetonitrile and then released into a precooled
plate, containing 50 �l 0.1 M Tris-HCl (pH 8.0), 0.1% SDS, 1 mM CaCl2
and trypsin and LysC at a 1:100 ratio of protease to estimated protein
per fraction. The plate was incubated overnight at 37 °C at 500 rpm in
a ThermoMixer (Eppendorf, Hamburg, Germany). Following overnight
digestion, the 96-well plate was thoroughly vortexed to ensure resus-
pension of SeraMag beads and 950 �l of acetonitrile added. Peptides
bound to the magnetic beads were washed in 1 ml of acetonitrile,
eluted in 40 �l of 2% dimethyl sulfoxide (DMSO) and beads removed
from the sample again on the Kingfisher System. Formic acid was
added to each sample to a final concentration of 5% and peptide
concentration determined using a 3-(4-carboxybenzoyl) quinoline-2-
carboxaldehyde assay.

LC-MS/MS and Analysis of Spectra—For each biological replicate
of either 48 SEC, or 96 SAX fractions, 1 �g of peptide was injected
from the most concentrated fraction and the equivalent volume in-
jected for the remaining fractions. Peptides in 5% formic acid were
injected onto a C18 nano-trap column using an Ultimate 3000 nano-
HPLC system (ThermoFisher Scientific). Peptides were washed with
2% acetonitrile, 0.1% formic acid and resolved on a 150 mm � 75 �m
C18 reverse phase analytical column over a gradient from 2–28%
acetonitrile over 120 min at a flow rate of 200 nL/min. Peptides were
ionized by nano-electrospray ionization at 2.5 kV. Tandem mass
spectrometry analysis was carried out on a QExactive� mass spec-
trometer (ThermoFisher Scientific), using HCD fragmentation of pre-
cursor peptides. A data-dependent method was used, acquiring
MS/MS spectra for the top 15 most abundant precursor ions.

SEC RAW data files were analyzed using MaxQuant version
1.5.1.3, with the in-built Andromeda search engine (20, 21), supplied
with the T. brucei brucei 927 annotated protein database from TriT-
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rypsDB release 8.1, containing 11,567 entries. The mass tolerance
was set to 4.5 ppm for precursor ions and MS/MS mass tolerance
was set at 20 ppm. The enzyme was set to trypsin and endopeptidase
LysC, allowing up to 2 missed cleavages. Carbamidomethyl on cys-
teine was set as a fixed modification. Acetylation of protein N termini,
deamidation of asparagine and glutamine, pyro-glutamate (with N-
terminal glutamine), oxidation of methionine and phosphorylation of
serine, threonine and tyrosine, were set as variable modifications.
Match between runs was enabled, allowing transfer of peptide iden-
tifications of sequenced peptides from one LC-MS run to nonse-
quenced ions, with the same mass and retention time, in another run.
A 20-min time window was set for alignment of separate LC-MS runs
and a 30-s time window for matching of identifications. The false-
discovery rate for protein and peptide level identifications was set at
1%, using a target-decoy based strategy. Each individual SEC frac-
tion was set as an individual experiment in MaxQuant parameters, to
output IBAQ data for protein groups in every fraction. Only unique
peptides were used for quantitation.

SAX RAW data files were analyzed using MaxQuant version
1.5.3.30, supplied with the T. brucei brucei 927 annotated protein
database from TriTrypDB release 26.0, also containing 11,567 entries.
All other settings were identical, apart from the fixed modification on
cysteine, which was set to N-ethylmaleimide. The results can be
viewed from the MS-Viewer website (22) by entering the following
search keys: SAX: czyi4m7zoe SEC300: esvc3krys1 SEC1000:
5gt8lsrrv7.

Data Analysis of Protein Elution Profiles—Data analysis was per-
formed using custom Python scripts, in conjunction with numpy,
scikit-learn, pandas and matplotlib libraries. Elution profiles for indi-
vidual proteins were created using label free quantitation (LFQ) inten-
sities, normalized to the maximum intensity detected across all frac-
tions, using the mean of either four, or three, biological replicates from
SEC300 and SEC1000 experiments, respectively. From SEC experi-
ments, proteins were required to be detected with at least one unique
peptide found in two biological replicates and with Pearson correla-
tion coefficients among elution profiles �0.6. A detailed report on the
protein identified with only one unique peptide is provided in supple-
mental Table S19.

Experimental Design and Statistical Rationale—Five biological rep-
licates were performed for both the SEC300 and SEC1000 experi-
ments, based on the variance detected in previous experiments using
SEC based analysis (17, 23). From the five biological replicates per-
formed, one replicate from SEC300 and two replicates from SEC1000
fractionation were discarded from further data analysis, because of
reduced reproducibility of elution profiles. One biological replicate
was performed for the SAX experiment. The MaxQuant label free
quantitation algorithm was used to create elution profiles for individ-
ual protein groups identified in each experiment type in each biolog-
ical replicate (24).

Hierarchical Clustering—The mean LFQ profiles for each protein
were hierarchically clustered, separately for each experiment type
(SEC300, SEC1000 and SAX), using the Euclidean distance measure-
ment and Ward’s agglomeration method. The Gene Ontology (GO)
term enrichment was computed for each cluster obtained by cutting
the dendrogram tree at predetermined distances. Cutting distances
from 0 to n were evaluated, in which n was the cutting distance
producing only two clusters. GO term enrichment p values were
computed with a Fisher test. The Bonferroni correction was applied
and only the GO-terms with a p value �0.05 were accepted. The
cutting distance producing the highest number of enriched GO terms
was taken to produce the final clusters for each experiment type.

Machine Learning—A pipeline similar to that applied previously for
protein correlation profiling (PCP) analysis (18) was used to predict
protein complexes, using data from all three experiment types.

The protein elution profiles were used to train a random forest pre-
dictor implemented with the scikit-learn python package. Protein
pairs were scored according to four features, namely: the coapex
score, Normalized Cross Correlation (NCC), Pearson Correlation
Coefficient (PCC) and STRING scores. The first three features are
based purely on the protein elution profiles.

The coapex score (18) is based on the number of biological repli-
cates in which a protein pair shows maximum abundance in the same
fraction. The coapex score was derived from the SEC300 and
SEC1000 experiments, with four and three biological replicates, re-
spectively, by using the scipy package. For the SEC1000 data, with
three biological replicates, the possible coapex scores were: 1 (3 of 3
replicates), 0.6 (2 of 3 replicates), 0.3 (1 of 3 replicates) and 0 (none of
the replicates). Similarly, for the SEC300 data, with four biological
replicates, the possible coapex scores were 1, 0.75, 0.5, 0.25, and 0.

The NCC was derived in two steps. First, the maximum cross
correlation between the two protein profile pairs P1–2CC was com-
puted. Then the maximum self-cross-correlation of the first protein
profile (P1CC) and the maximum self-cross-correlation of the second
protein profile (P2CC) was determined. The NCC was finally derived
as P1–2CC/max(P1CC, P2CC). The PCC was computed as the Pear-
son correlation score between the two elution profiles.

The PCC and NCC were calculated for the SEC300, SEC1000 and
SAX experiments described here, and for experiments produced in
(19). This includes ion exchange of mitochondrial extracts (IEX-mito)
and cytoplasmic extracts (IEX-cyto) and glycerol gradient fraction-
ation of whole cell lysates (GG-WCL) and mitochondrial extracts
(GG-mito). We used the SEQUEST intensity values of the glycerol
gradient experiments (GG-WCL, GG-mito), and the MaxQuant inten-
sity values for the ion exchange chromatography experiments (IEX-
mito, IEX-cyto) that were retrieved from the supplementary tables of
(19). The STRING features (Neighborhood, Fusion, Cooccurence, Co-
expression, Experimental, Database, Text Mining) are derived from
version 10 of the STRING database (25). The STRING IDs were
mapped to the TriTrypDB IDs, and the values were normalized from 0
to 1. The aforementioned scoring features were calculated for all the
possible permutations of protein pairs that showed a NCC value
greater than 0.15 in at least one of either the SEC300, SEC1000, or
SAX experiments, creating a matrix of 609,100 protein pairs with 23
features.

For the machine learning analysis, a data set of “gold standard”
true positive peak pairs (GD) was manually assembled. Thirty-one
known protein complexes were derived from data deposited in CO-
RUM (26), together with manual addition of protein complexes de-
rived from information in the literature, producing 290 unique true
positive pairs of interacting proteins (supplemental Table S1 and S21).
A negative data set was extracted by random sampling of the 290
proteins annotated in different complexes (supplemental Table S21).
As it would be possible to introduce false negative interactions in this
step, the random sampling was repeated 100 times. Finally, using
these true positive and true negative test pairs, 100 Random Forest
classifiers were assembled based on the same true positive pairs, but
with each using a different negative set. Two predictor sets were
developed, one set of 100 predictors based on the features derived
only from experiments performed in this paper (SEC300, SEC1000
and SAX) and a second set of predictors that implemented all the
available features (including STRING, IEX-mito, IEX-cyto, GG-mito
and GG-WCL).

All the classifiers were inspected to determine the area under the
curve values of the receiver operator curves in 10-fold cross valida-
tion. The median values of the probability score outputs of the two
100 classifier sets were used as the final interaction prediction score
for the protein pairs.
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An interaction prediction score cut-off of 0.75 was used as this
threshold selected protein pairs that contained 1% of true negative
pairs (i.e. a 1% false positive rate). The protein pairs from the two
predictor sets were separately fed to the ClusterONE algorithm (27).
A search matrix was created for the ClusterONE program with the
parameters (0.1 to 1, step 0.1), “haircut” (0.1 to 1, step 0.1) and “s”
fixed to 2. The outputs were parsed to derive the parameters that
were optimal to obtain the maximum number of GD true positive pairs
grouped together. The complexes predicted by ClusterONE using the
outputs of the two different predictor sets were merged together,
joining predicted complexes that shared two or more proteins. For
example, if proteins A-B-C are predicted in a complex in the first set
and proteins B-C-D are predicted in the second set, these will be
merged to complex A-B-C-D in the final output. All the proteins
present in our final machine learning prediction are detected with �2
unique peptides in at least one of the experimental data set analyzed.

Comparison of Hierarchical Clustering and Machine Learning Pre-
dictions—To compare the performance of protein complex prediction
between the hierarchical clustering and machine learning methods
used in this study, the gold standard complexes (supplemental Table
S1) retrieved by the machine learning pipeline, or by the clustering
analysis of the SEC300, SEC1000, or SAX data sets were identified.
For each experimentally identified gold standard complex, the num-
ber of proteins in common with the predicted group (supplemental
Table S1) was calculated (COMMON) and divided by the total number
of proteins in the predicted gold standard complex to compute the
precision/specificity of predictions from each method. The sensitivity/
recall was calculated by dividing the COMMON group by the number
of proteins in the experimentally predicted complex. A mean was
calculated for both precision/specificity and sensitivity/recall from all
the gold standard complexes identified in each of the hierarchical
clustering or machine learning analyses.

Comparison of Protein Complex Predictions to Prior Publications—
The clustering results of TbCF-HC net reported in Table S5 in (19)
were used for comparison to protein complex predictions made from
the machine learning output in this study. Protein complexes in com-
mon were identified as sharing two or more proteins between both
data sets. Unique protein complexes were identified as sharing one or
no proteins between both data sets. The mean Pearson correlation
coefficient of elution profiles of all permutated protein pairs within a
complex was calculated for both shared and unique complexes. This
score was computed from all the data sets presented here (SEC300,
SEC1000, and SAX), and from the data sets in (19) (IEX-cyto, IEX-
mito, GG-WCL, and GG-mito).

The probability of identifying a pair of protein profiles with a Pear-
son correlation coefficient greater than 0.7 was assessed for the ion
exchange chromatography experiments using a bootstrap analysis.
One hundred protein pairs were selected at random from the SAX
data set produced in this work, and the IEX-cyto data set from (19),
the number of protein pairs with a Pearson correlation coefficients
�0.7 was counted, and this process was repeated 100 times.

RESULTS

SEC and SAX Chromatography of Trypanosoma brucei Ly-
sates—Procyclic form Trypanosoma brucei brucei were pre-
pared for native protein complex analysis by resuspension in
either ice-cold PBS (for SEC), or 20 mM ethanolamine (for
SAX), containing protease inhibitors, followed by sonication
lysis. The resulting lysates were centrifuged, filtered, and frac-
tionated, either using BioBasic SEC300, or SEC1000 col-
umns, separating protein complexes based on their size and
shape, or a Protein-Pak HiRes SAX column, separating pro-

tein complexes based on their charge. The proteins in the
fractions from each type of chromatography were reduced,
S-alkylated and digested to peptides with trypsin and endo-
peptidase LysC. After desalting, the resulting peptides were
analyzed by LC-MS/MS (Fig. 1).

Protein molecular weight standards were used to charac-
terize the separation ranges of the BioBasic SEC300 and
SEC1000 columns, indicating that the SEC300 column has an
effective separation range from 8 kDa to 1.2 MDa, whereas
the SEC1000 column separates material above 1.2 MDa (sup-
plemental Fig. S1A and S1B). The retention times of each
standard on the SEC300 column were used to generate a
linear regression model, allowing the calculation of apparent
molecular weights for the proteins and protein complexes
found in our data set (supplemental Fig. S1C). A separate set
of protein standards were used to characterize the resolution
and separation of the SAX column (supplemental Fig. S2).

To assess the monomeric molecular weights of proteins
eluting across the SEC300 fractionation range, fractions were
pooled in groups of three, run on SDS-PAGE under reducing
conditions and stained for total protein. Most proteins eluted
at a higher apparent molecular weight by native SEC than
expected from their monomeric, denatured and reduced mo-
lecular weights indicated by SDS-PAGE. This is consistent
with many of the individual proteins participating as compo-
nents of larger complexes. In contrast, when cells were lysed
in a highly denaturing buffer, containing 4% SDS and the SEC
was carried out in the presence of 0.2% SDS, there was a
direct correlation between SEC and SDS-PAGE apparent mo-
lecular weights (supplemental Fig. S1D).

Reproducibility of Mass Spectrometry Based Elution Pro-
files—The reproducibility of individual biological replicates
was assessed for both the SEC300 and SEC1000 experi-
ments (supplemental Fig. S3A). Most biological replicates
showed high reproducibility, with median Pearson correlation
coefficients for each fraction typically �0.75. However, one
and two replicates from the five SEC300 and SEC1000 data
sets, respectively, deviated significantly and inspection of
individual protein elution profiles indicated compromised
chromatography (supplemental Fig. S3B). The data from
these replicates were therefore excluded from further analyses,
emphasizing the importance of checking inter-replicate repro-
ducibility before combining data for downstream analysis.

From four biological replicates of SEC300 fractionation ex-
periments, 64,077 peptides were identified, corresponding to
5583 protein groups, detected by at least one unique peptide.
From three biological replicates of SEC1000 chromatography,
55,273 peptides were identified, corresponding to 4979 pro-
tein groups, detected by at least one unique peptide, and
from a single SAX fractionation experiment, 38,135 peptides
were detected, corresponding to 3007 protein groups, de-
tected by at least one unique peptide.

Hierarchical Clustering of Protein Elution Profiles—Several
individual protein elution profiles produced two peaks by

Protein Complex Prediction in Trypanosoma brucei

Molecular & Cellular Proteomics 16.12 2257

http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1
http://www.mcponline.org/cgi/content/full/O117.068122/DC1


SEC300 chromatography. The generally lower intensity lower
molecular weight peaks likely correspond to protein degrada-
tion products or protein monomers/dimers that are in equilib-
rium with the higher molecular weight complex in which they
appear. Because the hierarchical clustering algorithm selects
for the most intense peak in a protein profile, these lower
molecular weight peaks generally do not feature in the clus-
tering analysis. Hierarchical clustering of all protein elution
profiles was performed for each data set separately (Fig.
2A–2C); by cutting the resulting dendrograms, it was possible
to define groups of proteins that have similar elution profiles
and hence potentially interact. A range of cutting distances
was simulated, and the within-cluster Gene Ontology (GO)
term enrichment and the mean Pearson correlation coeffi-
cients of elution profiles were observed (Fig. 2D–2F). As the
number of clusters was reduced, a sharp increase in the
number of enriched GO terms was observed in all data sets,
as functionally associated proteins were grouped together
within a cluster. As clusters became larger and unrelated
proteins were grouped together, the number of enriched GO
terms decreased. The cutting distance producing the highest
GO term enrichment within clusters across the data set for
each form of fractionation was selected. Thus, for the SEC300,
SEC1000, and SAX experiments, cutting distances of 1.53,
1.28, and 1.92 were chosen, producing, respectively, 440,
365, and 529 clusters of proteins. As a control, the order of

proteins within the dendrograms of each data set was shuf-
fled randomly and then the same analyses performed; under
these conditions, a similar increase in GO term enrichment
across cutting distance was not apparent (Fig. 2D–2F).

Characterization of Known and Highly Conserved Complex-
es—To validate the assumption that protein cochromatogra-
phy correlates with protein association in the data sets, the
elution profiles of proteins expected to be present as stable
complexes (either according to the T. brucei literature or by
analogy with highly conserved complexes in other organisms)
were inspected (Fig. 3). With respect to the former, the pro-
teasome regulatory cap components all eluted with a peak at
�770 kDa and the proteasome core components all eluted
with a peak at �660 kDa (Fig. 3A and 3B), consistent both
with the detection of stable complexes via cochromatography
and with previous reports showing that the proteasome core
and caps dissociate from each other in T. brucei lysates (28).
With respect to other highly conserved protein complexes not
previously characterized in T. brucei, cochromatography of
the predicted subunits of the chaperonin T-complex, ATP
synthase, the prefoldin chaperone complex and the ARP2/3
complex was also observed (Fig. 3C–3F, respectively).

In some instances, (e.g. the proteasome regulatory com-
plex and the T-complex) the protein complexes were less
stable when subjected to SAX chromatography than to SEC
(Fig. 3B and 3C). This was not unexpected as SAX chroma-

FIG. 1. Workflow for protein correlation profiling. Lysates
were produced containing a mixture of protein complexes,
which were separated by either size exclusion chromatography
(300 and 1000 Å pore size) or strong anion exchange chroma-
tography. The proteins in each fraction were digested and
identified by LC-MS/MS, from which protein elution profiles
can be deduced. Putative protein-protein interactions were
predicted via both hierarchical clustering of similar elution pro-
files and through machine learning analysis.
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tography was performed at pH 9.0 and involves elution with a
salt gradient, whereas SEC was performed at a more physi-
ological pH and ionic strength. These observations were,
therefore, interpreted as being consistent with the dissocia-
tion of a subset of native protein complexes when exposed to
high salt and high pH during SAX chromatography.

Taken together, these PCP-MS data using trypanosome
extracts confirmed that cochromatography and mass spec-
trometric protein identification and quantification can be used
to provide evidence for the physical association of proteins in
complexes.

Machine Learning Analysis to Predict Protein Complex-
es—To predict the likelihood of binary interactions among all
pairs of coeluting proteins detected in our data sets, a scoring
methodology was designed to quantify the similarity of elution
patterns. Two random forest predictors were implemented.
The first predictor was trained with features extracted from
data produced in this project. The second predictor was
trained by combining the first set of features with features
extracted from a recently published interactome study in T.
brucei (19). We also added to the second predictor, features

retrieved from version 10 of the STRING interaction database
(25), with the intention of promoting interacting protein pairs
with orthogonal evidence for interaction from the literature
(Fig. 4). Both predictors were trained using 31 protein com-
plexes, comprising 290 true positive interaction pairs (supple-
mental Table S1 and S21), and 100 sets of randomly selected
true negative interaction pairs (supplemental Table S21). At an
interaction prediction score �0.75 there was a false positive
rate �1% (supplemental Figs. S4A and S4B), hence this was
used as the threshold for positive interaction across the whole
data set. Receiver Operator Characteristic curves also dem-
onstrate the high performance of the machine learning
method (supplemental Fig. S4C).

Analysis of how often the random forest predictors used
each feature to classify positive and negative interactions
showed that the SEC300 coapex score, cross-correlation and
Pearson correlation and SEC1000 coapex features had the
highest predictive power (supplemental Fig. S4D). The out-
puts of the two random forest predictors were fed to Clus-
terOne (an algorithm used to identify protein complexes in
protein-protein interaction networks (18, 27)) to derive two

FIG. 2. Hierarchical clustering of protein elution profiles. Heat-maps of hierarchically clustered elution profiles from lysates separated
using either SEC with either (A) 300 or (B) 1000 Å pore size, and (C) SAX chromatography. Panels below the heat-maps demonstrate the effect
of varying the dendrogram cutting distance on the mean Pearson correlation coefficient of proteins (green line), and the total number of gene
ontology terms enriched (blue line) within clusters in the data from (D) SEC300, (E) SEC1000, and (F) SAX. The red line depicts the number of
GO terms enriched within clusters with a random ordering of proteins in each data set.
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FIG. 3. Elution profiles of components of known protein complexes. Proteins predicted to be in (A) proteasome core subunit, (B)
proteasome regulatory subunit, (C) T-complex, (D) ATP synthase, (E) prefoldin, or (F) ARP 2/3 are plotted displaying their detected LFQ
intensities across the fractionation ranges of SEC300 and/or SEC1000 and/or SAX chromatography columns.
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sets of predicted protein complexes. These two complex
predictions were merged to assemble 234 predicted protein
complexes, encompassing 805 proteins, with complexes
ranging from 2–18 protein subunits (supplemental Fig. S5).
We were able to rediscover again 28 out of the 32 gold
standard protein complexes (supplemental Table S20) and we
have ascribed either a putative function, or name, to the
complexes when they contain proteins of either known or
suggested biological function in the TriTrypDB genome data-
base (Fig. 5, supplemental Tables S2 and S3) (29). Although,
as expected, many of the predicted complexes are abundant
core protein complexes conserved across eukaryotic evolu-
tion, we also detected novel complexes and protein-protein
interactions not previously described in T. brucei. Some of
these predicted interactions shed light on the functions of
some of the many “hypothetical” proteins in the trypanosome
genome. Some examples of previously uncharacterized as-
sociations (supplemental Figs. S6 and S7) are described in the
Discussion.

Comparison of Hierarchical Clustering and Machine Learn-
ing—To compare the output from the hierarchical clustering
and machine learning methods of predicting protein com-
plexes presented in this study, the precision and sensitivity of
each method in predicting the 31 gold standard complexes
was calculated (supplemental Fig. S8 and supplemental Table
S1). Protein complex predictions derived from the machine
learning method clearly outperform hierarchical clustering of
the SEC300, SEC1000, and SAX data sets in terms of both
precision (mean value of 0.7) and sensitivity (mean value of
0.88). Hierarchical clustering of the SEC300 data set performs
similarly to machine learning in terms of mean sensitivity
(0.79), but has a much lower mean precision (0.46), indicating
an ability to exclude false positive interactions, but missing
out on many true positive interactions. Hierarchical clustering
of SEC1000 or SAX data sets appear to produce similarly low

mean values of precision (0.42 and 0.36 respectively), and
perform worse than SEC300 in regard to sensitivity (0.58
each).

Comparison of Protein Complex Predictions to Published
Data Sets—The comparison to TbCF-HC net, published in
(19), reveals that 40 protein complexes (with a minimum of
two proteins in common) are detected in common with the
data set published here (supplemental Fig. S9). A further 90
protein complexes predicted in TbCF-HC net are not corrob-
orated in our data set, and 190 are predicted in our data
set and not corroborated in TbCF-HC net. For complexes
uniquely predicted in TbCF-HC net, the mean Pearson corre-
lation coefficient of elution profiles of constituent proteins
within complexes, is below 0.5 when computed from the
SEC300, SEC1000, and SAX data sets, and is below 0.7 when
computed from IEX-cyto, IEX-mito, GG-WCL, and GG-mito
(19) (supplemental Fig. S9). Focusing on complexes predicted
in common between both data sets, or complexes unique to
the data presented here, the SEC300 and SEC1000 experi-
ments outperform all others, with the highest mean Pearson
correlation of elution profiles within protein complexes (sup-
plemental Fig. S9).

Furthermore, the SAX experiment also outperforms the IEX
experiments performed in (19), in regard to mean Pearson
correlation coefficients in complexes predicted in common to
both data sets and unique from data presented here. Random
sampling of elution profiles of the IEX-cyto experiment high-
lights that �20% of protein elution profiles will have a Pearson
correlation coefficient �0.7, in comparison to �3% of elution
profiles in the comparable SAX experiment (supplemental Fig.
S9). This indicates that many elution profiles in the IEX-cyto
experiment will have a similar shape, and hence appear to
coelute, just by chance, negatively impacting the quality of the
detected protein complexes. We think that this effect is re-
lated to the smaller number of elution fractions analyzed by
Gazestani et al. (19 fractions) in comparison to our SAX ex-
periments (96 fractions).

Data Visualization—All of the processed MS and chroma-
tography data and predictions have been made freely avail-
able via a custom, searchable database. The data can be
browsed on a web server at (http://134.36.66.166:8083/
complex_explorer). Thanks to a user-friendly graphical inter-
face, researchers can conveniently explore and display all the
predicted complexes and elution profiles reported in this
study. There are three distinct applications with which to
browse the data:

The “Complex Explorer” (Fig. 6) is a dynamic browser of the
high-confidence predictions of protein complexes, derived
from machine learning of exhaustive pairwise comparisons of
all protein elution profiles, matching the data presented in
(Fig. 5) and (supplemental Table S2). Each cluster is displayed
as a network of interconnected nodes (protein groups), with
the lines among the nodes indicating evidence of pairwise
associations. The stringency (cutting threshold), for the asso-

FIG. 4. Machine learning protein complex prediction pipeline.
Data produced either solely in this manuscript, or including data from
STRING and other Trypanosoma brucei interactome publications (19),
were used to train two sets of random forest predictors to score
binary protein-protein interactions. The interaction prediction scores
were used to predict protein complexes separately for each predictor,
then merged to join redundant complexes.
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ciations can be varied with a slider below the browser and the
cluster browser can be queried to highlight individual protein
groups and cluster numbers. Mousing over the nodes brings
up their GO-terms within a word cloud of the GO-terms for the
other nodes in the complex, which can give a general impres-
sion of possible cluster function. The dynamic browser can
be adjusted through “settings” to highlight any or all of the
following:

● Nodes with human homologs
● Nodes identified as essential in cell culture (4)
● Nodes that were used as “gold-standards” for the

machine-learning
● Clusters which agree with homologous associations in

the STRING database (using a relatively high combined
STRING score threshold value of �950)

● Clusters that are inter-related by the same STRING
associations

● Clusters predicted by those STRING associations alone
● Nodes which appear in more than one cluster
Clicking on any node in a cluster brings up a table of the

protein group components of that cluster, alongside the

SEC300, SEC1000, and SAX chromatograms for those pro-
tein groups. The chromatograms are dynamic and can be
expanded in the x- (time) axis and display either raw or nor-
malized LFQ intensity data on the y axis. Further, the color-
coded elution profiles of individual protein groups can be
switched on or off by double-clicking on the gene IDs below
the chromatograms. Below the dynamic cluster browser is a
table of all the nodes in the browser, which can be searched
in various ways and downloaded by the user for other
applications.

The second application, “Profile Explorer” (supplemental
Fig. S10) allows exploration of any potential protein-protein
association of the user’s choosing. The application allows the
input of a list of up to twenty TriTrypsDB gene IDs and outputs
the associated fractionation data in any of the SEC300,
SEC1000 and SAX data sets, as well as in the density gradient
and ion exchange fractionations recently published in (19).

The “Cluster Explorer” (supplemental Fig. S11) application
allows exploration of putative protein-protein associations
based on hierarchical clustering of the protein elution profiles
from SEC300, SEC1000, and SAX chromatography (Fig. 2).

FIG. 5. Machine learning predictions of protein complexes. ClusterOne output of merged predictions from machine learning with both
sets of predictors. Known protein complexes, or complexes with proteins of similar function have been manually annotated.
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These are lower confidence predictions of protein-protein
associations than those based on machine learning, but they
allow the user to ask whether there is any evidence for the
possible association of two or more proteins by cochromatog-
raphy. Thus, the application allows the input of a list of up
to twenty TriTrypDB gene IDs and outputs graphs showing
which hierarchical clusters they belong to. From there, select-
ing the cluster number will display the relevant chromatogram.

In addition, all the mass spectrometry proteomics data have
been deposited with the ProteomeXchange Consortium via
the PRIDE (30) partner repository with the data set identifier
PXD005968.

DISCUSSION

Information has been produced on the elution profiles
across SEC and SAX chromatograms for 5845 protein groups
identified in trypanosome extracts using quantitative MS-
based proteomics. Computational analysis of these elution
profiles allows us to predict 234 protein complexes, each
containing between two and eighteen protein groups. Of
these complexes, 77 contain at least one protein annotated as
“hypothetical” and 19 are composed solely of hypothetical
proteins, with no other orthogonal information on protein
function. These data are provided, together with those of
Gazestani and colleagues (19), in an open access, online
database that can be browsed and queried. This provides a
useful resource for trypanosome biologists and protein bio-

chemists studying complexes and protein-protein interac-
tions in other organisms.

In this study, protein complex predictions are produced
using two distinct methodologies; hierarchical clustering of
independent fractionation experiments, or machine learning,
using scoring features derived from all of our fractionation
experiments, together with orthogonal data from STRING and
previously published T. brucei fractionation data sets (19). The
comparison of these distinct methods of protein complex
prediction indicates that machine learning is the most strin-
gent and accurate, with the highest precision and specificity
(supplemental Fig. S8). Therefore, the following discussion
focuses on the protein complex predictions from the machine
learning analysis. However, we believe that the individual
protein elution profiles and hierarchically clustered data sets
are of use to the wider T. brucei research community, provid-
ing wider groupings of proteins which are coeluting across
one of the three fractionation methods used, that may still
provide evidence for protein-protein interaction. To this end,
these data sets and the predicted clusters are available for
researchers to look at on our searchable online database,
together with the machine learning predictions.

Novel insights into subunits of trypanosome protein com-
plexes identified here include the proteasome core (complex
31) and regulatory unit (complex 30), the prefoldin complex
(complex 29), the chaperonin T-complex (complex 129),
AMPK (complex 3), vacuolar ATP synthase (complex 20), the

FIG. 6. Data visualization tools - Complex Explorer. Interactive web visualization tool which allows users to dynamically browse high
confidence protein complexes and protein-protein interactions, predicted through machine learning.
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exosome (complex 28), subcomponents of the spliceosome
(complexes 86 and 180), the nucleosome (complex 87),
ARP2/3 (complex 112), F1F0 ATP synthase (complex 130),
and several others (supplemental Tables S2 and S3). Although
these are all conserved eukaryotic protein complexes whose
presence may, therefore, be expected in trypanosomes, the
underlying complex protein group compositions also sug-
gests novel components. For example, although most of the
proteins detected in the proteasome complex (complex 31;
supplemental Table S4) are annotated as proteasome alpha
and beta subunits, one, at the time of this analysis, was
annotated as “unspecified product” (Tb927.9.11310). A be-
spoke BLASTp search subsequently revealed that this gene
product has 100% homology with the 20S proteasome beta
subunit of T. brucei gambiense (XP_011776865.1). Thus, the
cochromatography of Tb927.9.11310 with the proteasome
core complex provided the impetus to re-evaluate its identity.

Another example is provided by complex 130 (Supplemen-
tal Table 5). This contains all the characterized subunits (�, �,
�, �, and �) of the F1 domain of the F0F1-ATP synthase
complex, as well as ribonucleoprotein p1 (the b subunit of
the F0 domain) (31), but also contains two other proteins
(Tb927.11.13070 and Tb927.3.3410), which we therefore pos-
tulate are components of the T. brucei F0F1-ATP synthase
complex. Additionally, complex 85 (supplemental Table S6)
comprises three hypothetical proteins, two of which have
been annotated by (31) as trypanosome specific ATP syn-
thase components, but the third, Tb927.5.1780, has no func-
tional annotation and may be a further novel component of the
F0F1-ATP synthase.

Previous affinity purification-MS analyses of the mitochon-
drial ribosome of T. brucei identified 133 proteins, 77 of which
were classed as large-subunit and 56 as small-subunit asso-
ciated proteins (32). Twenty-six of these components were
identified in complexes 4, 92, and 134 (supplemental Tables
S7–S9), plus one hypothetical protein (Tb927.7.3030) in com-
plex 134, suggesting this may be a novel mitochondrial ribo-
some subunit.

Complex 3 contains experimentally verified members
(Tb927.8.2450 and Tb927.10.3700, � and � subunits respec-
tively) of the AMP-dependent protein kinase (AMPK) complex
(supplemental Table S10) (33). It also contains Tb927.3.4560,
annotated as the AMPK� subunit, Tb927.10.5310, a SNF1
related protein kinase with homology to AMPK�, and
Tb927.9.9270, a hypothetical protein with little functional in-
formation. AMPK is generally a heterotrimeric complex, there-
fore it is possible that the two putative AMPK� subunits
(Tb927.3.4560 and Tb927.10.5310) are isoforms, forming part
of two independent AMPK protein complexes which coelute.
Whether the hypothetical protein Tb927.9.9270 is either a
novel component of the trypanosome AMPK complex, is a
subunit isoform, or is simply a contaminating coeluted pro-
tein, warrants further investigation.

The aforementioned examples suggest some novel com-
ponents of conserved complexes. Other examples either sug-
gest or confirm trypanosome-specific protein-protein interac-
tions. This is illustrated by our observation of the consistent
coelution of the Pumillo homology domain protein PUF10
with a hypothetical protein (Tb927.7.2170) across SEC300,
SEC1000, and SAX fractionation in complex 72 (supplemental
Table S11; supplemental Fig. S6A). PUF proteins are known
to bind to mRNA and the hypothetical protein has also been
predicted to bind mRNA through capture on oligo(dT) beads
(34). Taken together, these data indicate that Tb927.7.2170
interacts with PUF10 and may play a role in mRNA regulation.

In complex 174 two proteins were detected; a hypothetical
protein (Tb927.8.1960) and subunit 10 of the CCR4-NOT
complex (supplemental Table S12; supplemental Fig. S6B)
(35). The hypothetical protein has recently been copurified
with CAF1, a core component of the CAF1-NOT deadenylase
complex (36) and suggested to be the homolog of a human
protein (C2ORF29), which was recently classified as subunit
11 of the CCR4-NOT complex that interacts with subunit 10
(37). Thus, the cochromatography of Tb927.8.1960 with
CCR4-NOT subunit 10 provides further evidence for its func-
tional classification as subunit 11 of the trypanosome CCR4-
NOT complex.

In complex 108, the trypanosome periodic tryptophan pro-
tein Pwp2 coelutes with Tb927.11.10480, Tb927.11.460, and
Tb927.7.4220 that, on inspection, contain C-terminal Utp21,
Utp13, and Utp12 domains, respectively, (supplemental Table
S13; supplemental Fig. S6C). Research with yeast has shown
that Pwp2 is known to associate with four other proteins
(containing the same C-terminal Utp domains) in the U3 ribo-
nucleoprotein assembly machinery, forming a complex nec-
essary for pre-18S rRNA processing (38). It is therefore pos-
sible that complex 108 may perform a similar pre-18S rRNA
processing function in T. brucei.

Three proteins were detected in complex 76: Tb927.10.170
(pseudouridine synthase, Cbf5p), Tb927.4.470 (snoRNP pro-
tein, GAR1 putative), and Tb927.4.750 (50S ribosomal protein
L7Ae, putative) (supplemental Table S14; supplemental Fig.
S6D). Cbf5 is the enzymatic component of the H/ACA ribo-
nucleoprotein complex, which pseudouridylates target RNAs.
In other eukaryotes, there are many H/ACA ribonucleoprotein
complexes, formed through the interaction of different RNAs
with the same four core proteins (Cbf5, Gar1, Nhp2 and
Nop10) (39). The coelution of the three trypanosome proteins
suggests that H/ACA ribonucleoprotein complexes exist
in trypanosomatids and supports the putative identity of
Tb927.4.470 as a Gar1 homolog. A BLASTp search of the
putative ribosomal subunit, Tb927.4.750, also indicates ho-
mology to Nhp2, further supporting the identity of this com-
plex. A search of TriTrypDB indicates that there is one anno-
tated Nop10 homolog (Tb927.10.4740) in T. brucei. Although
this protein was not detected in our high-confidence protein
complex prediction, using our “Profile Explorer” data visual-
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ization tool, we can see this protein is detected in our SAX
fractionation experiment, where it coelutes with the three
other components of complex 76.

Previously published studies have demonstrated the con-
stitutive interaction of a heat-shock protein 90 (HSP90), with
protein phosphatase 5 (PP5) in T. brucei (40). Complex 12
contains five proteins, including an HSP90 (Tb927.3.3580),
and the PP5 previously demonstrated to interact with HSP90
(Tb927.10.13670) (supplemental Table S15; supplemental
Fig. S6A). We also observed the association of these proteins
with a putative HSP70 protein (Tb927.9.9860). HSP90 chap-
erones function through their association with HSP70 pro-
teins, which recruit and transfer substrate proteins to HSP90
(41). These associations, therefore, match our understanding
of HSP90 function and identifies a putative function for a
previously uncharacterized HSP70.

In complex 99 there is an association of proteins from two
distinct protein complexes (supplemental Table S16; supple-
mental Fig. S6B). Two proteins have been experimentally
verified as members of the spliced leader RNA cap methyl-
transferase (42), including the catalytic MTR1 subunit, and a
hypothetical protein (Tb927.11.16490), whereas the other
three proteins are translation elongation factors. These asso-
ciations suggest an interesting link between the methyltrans-
ferase capping enzymes of spliced leader RNA and the mRNA
translation machinery.

Complex 165 (supplemental Table S17; supplemental Fig.
S6C) is dominated by nucleolar associated proteins but also
contains two arginine-N-methyltransferases (TbPRMT1 and
TbPRMT3). The latter two enzymes belong to the same com-
plex and are mutually dependent on each other for stability
(43, 44). The association of these enzymes with nucleolar
proteins suggests they may have some function in pol1-me-
diated transcription.

In complex 164 (supplemental Table S18; supplemental Fig.
S6D) the presence of two subunits of the GPI transamidase,
together with signal peptidase, suggests an association be-
tween GPI transamidase and the translocon complex in the
endoplasmic reticulum (ER) (45). The suggested colocation of
these components is novel, but consistent with the known
cotranslational addition of GPI anchors to nascent proteins in
T. brucei (46). Interestingly, two other known ER proteins are
also present in this complex: Dol-P-Man synthase and 3-keto-
dihydrosphingosine reductase.

In summary, the trypanosome PCP-MS data presented
here provide a valuable new resource for the research com-
munity to find and characterize either novel components of
known complexes and/or to assess whether individual pro-
teins of interest appear in larger complexes. The open access
availability of the data via an interactive, online database
should facilitate such searches. We also refer the interested
reader to the recently published TrypsNetDB (47).
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