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Abstract: Motivated by mobile devices that record data at a high frequency, we propose a new
methodological framework for analyzing a semi-parametric regression model that allow us to study
a nonlinear relationship between a scalar response and multiple functional predictors in the presence
of scalar covariates. Utilizing functional principal component analysis (FPCA) and the least-squares
kernel machine method (LSKM), we are able to substantially extend the framework of semi-parametric
regression models of scalar responses on scalar predictors by allowing multiple functional predictors
to enter the nonlinear model. Regularization is established for feature selection in the setting of
reproducing kernel Hilbert spaces. Our method performs simultaneously model fitting and variable
selection on functional features. For the implementation, we propose an effective algorithm to solve
related optimization problems in that iterations take place between both linear mixed-effects models
and a variable selection method (e.g., sparse group lasso). We show algorithmic convergence results
and theoretical guarantees for the proposed methodology. We illustrate its performance through
simulation experiments and an analysis of accelerometer data.

Keywords: functional principal component analysis; functional predictor; linear mixed-effects model;
mobile device; sparse group regularization; wearable device data

1. Introduction

Data captured by mobile devices have lately received much attention in the data
science community. Such data are typically recorded at a high frequency, giving rise to an
ample volume of information at a very fine scale, and thus present many methodological
challenges in statistical modeling and data analyses. In this paper, we plan to utilize the
strength of the classical kernel machine method that enjoys fast computing speed via
the linear mixed-effects model to deal with such high-frequency data using a functional
data analysis approach. The motivation for our proposed framework come from data
collected from a tri-axis accelerometer. Accelerometers, worn on the hip or wrist as a way
of monitoring physical activity, are becoming more and more common [1–4]. There are
several different accelerometers available such as ActiGraph GT3X+ (ActiGraph, Pensacola,
FL, USA) and Actical (Phillips Respironics, Bend, OR). Raw accelerometer data are often
collected in high-resolution signals with a sampling frequency ranging from 30–100 Hz.
The commercial software on these devices provides activity counts (ACs) [2,4], which are
calculated from the raw accelerometer data using proprietary algorithms. As an example
from our motivating dataset, Figure 1 displays a three-dimensional time series of ACs per
minute, each on one axis, from one subject wearing the GT3X+ over a period of 7 days (d).

Oftentimes, different types of summaries of the tri-axis ACs are suggested in the
literature as opposed to the utility of all three raw functionals [5–8]. These summary-data-
based approaches may be regarded as a quick and dirty dimension reduction strategy
that comes up with summarized data with computationally manageable volumes, which
would be then analyzed by existing methods and software. One concern with the use of
summarized data would be the loss of potential fine features that can only be captured
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in data of high resolution. Recently, some researchers have attempted to use the entire
functional AC curve through functional data analysis techniques [6,9,10]. Further details on
current methods being used to retrieve and interpret accelerometer data can be found
in [11]. Our contribution in this paper pertains to a new framework in that tri-axis
accelerometer data are used as three-dimensional correlated functional predictors in an
association analysis with a potential health outcome such as the Body Mass Index (BMI).
The relationship between physical activities and childhood obesity has long been a central
interest of public health sciences, and our new scalar-on-functional regression model can
provide some new insights into this important scientific problem.

Figure 1. Activity counts over 7 d from a tri-axis (X-, Y- and Z-axis) accelerometer of a subject.

We begin with a brief review of existing functional data models, the least-squares
kernel machine model, and different variable selection techniques, which prelude the
framework for this paper.

1.1. Functional Regression

There has been much attention in recent years given to functional data analysis
(FDA) where either covariates, or response, or both are functional as opposed to scalar
in nature [12–17]. In this paper, we focused on the methodology that allows us to relate
multiple functional covariates to a scalar outcome in a nonlinear way in the presence of
other scalar covariates. To proceed, let us introduce some notation. Let L2(T ) be the class of
square-integrable functions on a compact set T . This is a separable Hilbert space with inner
product < f , g >:=

∫
T f g for f , g ∈ L2(T ). Consider a probability space (Ω,F , P), where

Z denotes a functional random variable that maps into L2(T ), namely Z : Ω 7→ L2(T ).
Define L2(Ω) := {Z : (

∫
Ω‖Z‖

2dP)
1
2 < ∞}, where P is a certain probability measure,

‖Z‖2 = < Z , Z >, and assume Z ∈ L2(Ω) in the rest of this paper. For convenience, we
also assume that Z is mean centered, namely E(Z) = 0.

The class of functional linear models (FLM) (e.g., [13–15]) is proposed to relate a
functional covariate Z with a mean-centered scalar outcome y, which is also known
as scalar-on-functional regression: y = < b, Z > + ε, where the error term ε is a
mean zero random variable uncorrelated with Z. An optimal solution of the unknown
functional parameter b ∈ L2(T ) is typically obtained by minimizing the mean-squared
error: infb∈L2(T ) E(y− < b, Z >)2. Moreover, the mean model for the mean-centered scalar
y takes the form E(y|Z) =

∫
T Z(t)b(t)dt.

As suggested in the literature, we may obtain an optimal estimator of b by expanding
functional predictor Z under certain basis functions. In this paper, we focus on the
utility of functional principal component analysis (FPCA) to perform the decomposition
of the functional Z. By the Karhunen–Loève expansion (e.g., [18–20]), we may write
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Z(t) = ∑∞
k=1
√

ςkξkφk(t), where ςk > 0 are the eigenvalues, and the loadings are given
by ξk := 1√

ςk
< Z, φk >. These coefficients satisfy (i) mean zero, E(ξk) = 0; (ii) variance

one, E(ξ2
k) = 1; (iii) uncorrelated, E(ξkξ j) = 0 for k 6= j. Then, the mean model may be

rewritten as follows,

E(y|Z) =
∞

∑
k=1

βkξk, (1)

where coefficients βk =< b,
√

ςkφk >, k = 1, · · ·, which are unknown due to the unknown b.
Equation (1) presents a linear projection of scalar outcome y on the space spanned by the
standardized principal components (PCs) ξk’s of functional predictor Z. On these lines of
research, Müller and Yao (2008) proposed a class of functional additive models (FAMs) that
extends Equation (1) by allowing a nonparametric form of the projection:

E(y|Z) =
∞

∑
k=1

fk(ξk), (2)

where fk is a fully unspecified nonlinear smooth function to be estimated. It is obvious that
Müller and Yao’s extension given in (2) takes an additive model on individual coefficient
(or feature) components ξk’s. Regularization is often needed for both (1) and (2) in order
to deal with these infinite-dimensional unknowns. One of the challenges concerning
regularization for (2) lies in the technical treatment in the functional space. Müller and Yao
(2008) [21] proposed truncation (or a hard threshold) of the eigenspace to retain only the
leading components that explain the majority of the total variation in Z. Zhu, Yao, and
Zhang (2014) [15] proposed another regularization for the functions fk using the powerful
COSSO method [22]. One advantage for this kind of regularization method is that sums
of higher-order functional principal components are allowed to be potentially included in
the fit model, if they make stronger contributions to the functional relationship than the
leading functional principal components. This regularization method [15] begins with an
additive model E(y|Z) = ∑s

k=1 fk(ξk), where s represents some initial degrees of truncation
to specify the total number of additive components to be considered. Then, COSSO
helps simultaneously regularize and select important functional components among the s
functions fk. Although the above discussion is based on a single functional predictor Z in
mind, it is appealing to extend such a framework with multiple functional predictors for a
broad range of problems.

When multiple functional predictors, say Z1, . . . , Zp, are considered, it is not clear
if the above additive model specification remains suitable to handle the complexity,
especially a non-additive relationship (e.g., interactions) may be of interest to understand
the association between a scalar outcome and multiple functional predictors. In effect, from
both the perspectives of theoretical advances and application needs, relaxing the additive
relationship is an important task in functional data analysis. Alternatively, there are some
methods (e.g., [16,17]) in the literature that do not use the strategy of decomposing Z
into its functional components. In this paper, we adopt the framework of kernel machine
regression models to extend the methodologies with non-additive relationships between
multiple functional predictors and the scalar outcome.

1.2. Least-Squares Kernel Machine

Liu, Lin, and Ghosh (2007) [23] proposed a semi-parametric regression model
yi = x>i β + h(zi) + εi for subject i = 1, . . . , n, where they used the least-squares kernel
machine (LSKM) to analyze multidimensional genetic pathways denoted by a vector zi.
The key feature of this model is the nonlinear relationship between the outcome yi and a
vector of gene expressions zi, which is characterized by a nonparametric smooth function h.
Under the theory of smoothing splines, function h is assumed to lie in a reproducing kernel
Hilbert space (RKHS),HK, generated by a positive-definite kernel function K(·, ·). For the
ease of exposition, we suppress the bandwidth for the kernel K in the following discussion.
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Then, both parameter β and function h are estimated by maximizing the scaled penalized
likelihood function:

J(h, β) = −1
2

n

∑
i=1
{yi − x>i β− h(zi)}2 − 1

2
λ1‖h‖2

HK , (3)

where λ1 > 0 is the tuning parameter and ‖·‖HK is the norm of the RKHS. For a function

h ∈ L2(HK), we have h(·) = ∑n
i=1 αiK(·, zi). Then, ‖h‖2

HK = α>Kα, where K is an n× n
matrix whose (i, j) entry is K(zi, zj) and α = (α1, . . . , αn)>.

It is known in the literature (e.g., [23,24]) that maximizing J(h, β) in (3) turns out to be
equivalent to solving the normal equations from the following linear mixed-effects model
(LMM): Y = Xβ + h + ε, where h is an n× 1 vector of random effects with distribution
N(0, τK) and an n-dimensional vector error term ε ∼ N(0, σ2I), with τ = λ−1

1 σ2 > 0.
One remarkable advantage of solving (3) through the existing numerical procedure of the
LMM is most advocated in the literature [25], where we can determine the smoothing
parameter λ1 as part of the estimation of the variance components of the LMM. Therefore,
instead of using cross-validation or other information-based tuning methods on λ1, we can
solve simultaneously for all the model parameters in (3), as shown in [23]. Utilizing this
numerical strength of the kernel machine regression model, we propose a semi-parametric
regression model by incorporating functional principal components of functional predictors
(i.e., the zi) to evaluate a nonlinear relationship of a scalar outcome with multiple functional
covariates in a non-additive way. Assuming that function h belongs to an RKHS, we can use
existing software packages for solving LMMs to obtain estimates of all model parameters
and the smoothing parameter.

1.3. Feature Selection

To deal with high-dimensional functional principal components from functional
covariates, we invoked the sparse regularization approach in the kernel machine regression
model. Note that for both mean models (1) and (2), one needs to truncate the series from the
Karhunen–Loève expansion. Regularization helps reduce from an infinite number of terms to
a sum of finite terms. To introduce some notations, here we present a brief review on the group
lasso (GL) [26], sparse group lasso (SGL) [27], and non-negative garrote [28]. See also the
series of work originated by COSSO [22]. Yuan and Lin (2007) [26] proposed the group lasso,

which solves the convex optimization problem: minβ∈Rp

∥∥∥Y−∑L
`=1 X`β`

∥∥∥2

2
+ λ ∑L

`=1

∥∥∥β`
∥∥∥

2
,

where L is the total number of groups of covariates and X` refers to a subset of covariates
associated with group `. Friedman, Hastie, and Tibshirani [27] extended the group lasso

to allow within-group sparsity, namely SGL, given as minβ∈Rp

∥∥∥Y−∑L
`=1 X`β`

∥∥∥2

2
+ λ(1−

δ)∑L
`=1

∥∥∥β`
∥∥∥

2
+ λδ‖β‖1, where δ ∈ [0, 1]. The additional `1-norm penalty term on β

encourages individual sparsity, while the first penalty targets sparsity at the group level. It
is easy to see that group lasso is a special case of the SGL when δ = 0.

The non-negative garrote proposed by Breiman (1995) [28] is another useful means
of variable selection. It invokes a scaled version of least-squares estimation given by:
arg mind

1
2

∥∥Y− X̃d
∥∥2

2 + λ ∑
p
j=1 dj, subject to dj ≥ 0, j = 1, . . . , p. Here, X̃ = (x̃1, . . . , x̃p) is

an n× p matrix with columns x̃j = xj β̂
OLS
j , with β̂OLS

j being the least-squares estimates

from arg minβ
1
2‖Y− Xβ‖2

2 with no constraints. Obviously, estimate d̂j = 0 implies that
covariate xj would be excluded from the fit model. Breiman’s formulation that turns a
variable selection problem into a parameter estimation problem will be applied for the
development of feature selection on functional principal components in this paper.

This paper is organized as follows. Section 2 introduces our proposed high-dimensional
kernel machine regression. Section 3 outlines a simple step-by-step algorithm that is used
to implement the sparse estimation method. Section 4 concerns asymptotic properties
for our proposed sparse kernel machine regression. Section 5 provides simulation results
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to examine the performance of our method, with comparisons with existing methods.
Section 6 illustrates the proposed method by an association analysis of the relationship
between the BMI and functional accelerometer data. Section 7 includes our conclusions.
The Appendix A contains some key technical details, including the proofs of the theoretical
results, while Appendix B presents a discussion on the model identifiability issue.

2. Model and Estimation

Consider a regression analysis of a scalar outcome y on p functional covariates, Z`,
` = 1, . . . , p. Let z`i = (ξ`1, . . . , ξ`s`)

>
i be the s`-element vector of functional principal

component (FPC) features from the ith observation of the `th functional covariate Z`, and
let~zi = [(z1

i )
>, . . . , (zp

i )
>]> be the grand vector of all FPC features from all p functional

covariates for subject i, i = 1, . . . , n. Clearly, the set of FPC features from each functional
covariate forms a group, and in total, there are p groups with s = ∑

p
`=1 s` many FPC features

and~zi ∈ Rs. The high dimensionality of FPC features presents the key methodological
challenge in the analysis. We consider the following functional kernel machine regression
(FKMR) model:

yi = x>i β + h(~zi) + εi, i = 1, · · ·, n, (4)

where β ∈ Rq is a set of parameters for the effects of q scalar covariates x = (x1, . . . , xq)>,
h ∈ HK is an s-variate smooth nonparametric function with HK being the functional

space generated by a Mercer kernel K and error terms εi
iid∼ N(0, σ2). The FKMR model (4)

allows for not only nonlinear, but also non-additive relationships with multiple functional
covariates Z` via their FPC features, ` = 1, . . . , p, and a scalar outcome, y. The statistical
task is to estimate and select important functional covariates that are related to the outcome
of interest through regularizing the FPC features within each functional covariate. To
proceed, following Beiman’s [28] non-negative garrote method, we here introduce a new
s-dimensional scaling vector γ ∈ Rs, γ = (γ1, . . . , γs1 , . . . , γs)>, by which we can set
γ ◦~zi = (γ1ξ1

1, . . . , γs1 ξ1
s1

, . . . , γsξ
p
sp)
>
i a new vector of weighted FPC features by γ via the

Hadamard product (i.e., elementwise product). Note that γ is grouped and denoted by
γ = ((γ1)>, . . . , (γp)>)> where γ` is an s`-element vector of FPC features z` of the `th

functional covariate Z`. When the element, say γj, is equal to zero, the corresponding
FPC feature ξ j will not be selected in the set of important FPCs, and moreover, functional
covariate Z` is excluded from the FKMR model when the entire vector (γ`)> = 0.

We estimate the unknowns in the FKMR model (4), as well as the scaling parameters
γ by minimizing the penalized objective function J1(h, β, γ), whose expression is given on
the right-hand side of the following Equation (5):

min
h,β,γ

J1(h, β, γ) = min
h,β,γ

1
2n

n

∑
i=1
{yi − x>i β− h(γ ◦ zi)}2 +

1
2

λ1‖h‖2
HK

+ λ2ρ(γ; δ), (5)

where λ1 > 0 and λ2 > 0 are two tuning parameters, and penalty ρ(γ; δ) may be specified
according to a certain regularization method. For the case of sparse group lasso (SGL),
we take p(γ; δ) = (1− δ)∑

p
`=1

∥∥∥γ`
∥∥∥

2
+ δ‖γ‖1, δ ∈ [0, 1]. Typically, δ is predetermined and

set to 0.95 or 0.05 depending on the trade-off between group and within-group sparsity,
while the factor (1− δ) controls the relative group sparsity to individual sparsity of each
functional predictor Z`. Meanwhile, a large tuning parameter for λ2 would remove a
certain group of FPC features from the FKMR model when all elements in the vector γ`

are zero. Given h ∈ HK, an equivalent optimization to the above (5) can be formulated
as follows:

min
α,β,γ

J2(α, β, γ) = min
α,β,γ

1
2n

n

∑
i=1

{
yi − x>i β−

n

∑
k=1

αkK(γ ◦~zi, γ ◦~zk)

}2

+
1
2

λ1α>K(γ; Z)α + λ2ρ(γ; δ),

(6)
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where K(γ; Z) is an n× n matrix whose (i, k)th element is [K(γ; Z)]ik = K(γ ◦~zi, γ ◦~zk).
Lemma 1 below establishes the equivalency of optimization solutions between (5) and (6),
which is crucial in our estimation procedure.

Lemma 1. A solution (ĥ, β̂, γ̂) is a minimizer of (5) if and only if (α̂, β̂, γ̂) is a minimizer of (6),
where ĥ(γ̂ ◦~z) = ∑n

k=1 α̂kK(γ̂ ◦~z, γ̂ ◦~zk).

The proof of Lemma 1 is given in Appendix A.1.

Theorem 1 (Existence of optimizers). If the kernel K(·, γ ◦~z) is continuous with respect to
γ ∈ Rs, then there exists a global minimizer (ĥ, β̂, γ̂) for the optimization problem (5).

The proof of Theorem 1 is given in Appendix A.3. Note that there may exist multiple
optimal minimizers for (5); Theorem 1 ensures only the existence of optimal solutions, but
provides no guarantees for uniqueness due to the fact that (5) or (6) is a nonlinear and
non-convex optimization problem. It is worth noting that in both (5) and (6), we set the
bandwidth for the kernel at a fixed value due to the identifiability issue with respect to the
scaling parameters γ. Refer to Appendix B for more detailed discussions on the issue of
parameter identifiability.

3. Implementation and Algorithm

We propose an iterative algorithm to implement our proposed estimation procedure in
which we require the differentiability of the kernel with respect to the scaling factor γ and
some additional assumptions presented below in order to ensure algorithmic convergence.
One part of the algorithm solving (5) is carried out under fixed γ, where the resulting
minimization problem reduces to the equivalent maximization problem in the least-squares
kernel machine (3) with the FPC features,~zi, being replaced by γ ◦~zi. As pointed out in
Section 1.2, the step of numerical calculation can be easily executed in the same fashion as
the solution from the linear mixed model, including the REML estimation of the smoothing
parameter λ1. The other part of the algorithm is performed under fixed α, β and λ1, where
we solve the nonlinear and non-convex optimization problem to update estimates of γ.
Lemma 2 below helps us solve for the scaling parameter γ.

Lemma 2. For fixed (α, β, λ1), minimizing (6) over γ is equivalent to minimizing over γ the
following objective function:

1
2n
∥∥F(γ)− Ỹ

∥∥2
2 + λ2ρ(γ; δ), for λ2 > 0, (7)

where F(γ) = K(γ; Z)α and Ỹ = Y− Xβ− n
2 λ1α.

The proof of Lemma 2 is given in Appendix A.2. Linearizing the function F(γ) in (7)
leads to an equivalent form:

min
γ

1
2n

∥∥∥∥∥Ỹ−
p

∑
`=1
∇γF(`)(γ̃)γ`

∥∥∥∥∥
2

2

+ λ2ρ(γ; δ), (8)

where Ỹ =
(
Y− Xβ− n

2 λ1α
)
− F(γ̃) +∇γF(γ̃)γ̃, with ∇γF(γ̃) being the gradient of the

function F with respect to γ evaluated at γ̃ for some γ̃, and∇γF(`)(γ̃) being the columns of
∇γF(γ̃) associated with the `th group of γ`. This is precisely the form of the standard sparse

group regularization problem: minβ∈Rp 1
2n

∥∥∥Y−∑
p
`=1 X`β`

∥∥∥2

2
+ λ2ρ(γ; δ). This implies that

(8) presents a standard sparse group regularization problem with a specific choice of penalty
function ρ(γ; δ).
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The convergence of the above iterative search algorithm for updating γ̃ for fixed
(α, β, λ1) can be justified by the proximal Gauss–Newton method [29]. Readers are referred
to [30] for details on the proximal Gauss–Newton method. One of the key assumptions of
the proximal Gauss–Newton method is the existence of a local minimizer. This condition
is satisfied in the above (8). This is because according to Theorem 1, there exists a
global minimizer.

Algorithm 1 summarizes these iterative steps, which is showed to satisfy a descent
property: J2(α

(r+1), β(r+1), γ(r+1))≤ J2(α
(r), β(r), γ(r)) under the convergence of the proximal

Gauss–Newton algorithm for Step 2.2.

Algorithm 1 An iterative algorithm for optimization in FKMR.

1.1 Perform FPCA (e.g., the R package fdapace) to extract the functional component
features for the p functional predictors, and store them in a grand vector for each
individual subject~zi = [(z1

i )
>, . . . , (zp

i )
>)]>, i = 1, · · ·, n;

1.2 Initialize γ to be a vector of ones. which translates to mapping the original component
scores to itself. Set up a grid of possible tuning parameters for λ1 and λ2, respectively.
Set the kernel bandwidth parameter, which may depend on λ1. For each pair of
(λ1, λ2) from our grid, perform Steps 2.1-2.3 and 3.1 below.

2.1 At the (r + 1)-th step in the algorithm, first solve the LSKM problem with fixed
(γ(r), λ1) (based on a closed-form solution) to update β(r+1) and α(r+1).

2.2 Solve the group regularity problem (8) with fixed γ̃ = γ(r) and fixed (α(r+1), β(r+1),
λ1, λ2) using the r + 1 updates from the previous iteration. At this step, the proximal
Gauss–Newton algorithm produces an update γ(r+1) at convergence.

2.3 Repeat Steps 2.1–2.2 until convergence.
3.1 Perform cross-validation over all pairs of (λ1, λ2) to determine the final (α, β, γ).

To speed up Algorithm 1, we propose the following operational schemes that avoid
setting up the pairs of (λ1,λ2) and performing Step 3.1. Here are a few remarks on the two
algorithms. (i) Algorithm 2 depends on good starting values in order to enjoy a fast search.
(ii) The main difference between Algorithms 1 and 2 is that λ2 is fixed in Algorithm 1, while
it is changing in Algorithm 2. Some similar algorithms with changing tuning parameters
have been proposed in the literature, such as the single index model [31]. (iii) There is no
guarantee that both algorithms converge to a global minimizer, and the proximal Gauss–
Newton method used in the implementation can only find stationary points. Numerical
solvers for the optimization problem in (5) or in (6) indeed remain an open problem in the
field of nonlinear and nonconvex optimization.

Algorithm 2 A fast operational scheme of Algorithm 1.

1. Step 2.1 of Algorithm 1 is performed by running the linear mixed model with our
initial fixed γ from Step 1.2 of Algorithm 1 to obtained updated values of λ1, β, and α.

2. Step 2.2 is performed with solving the group regularity problem (8) through the
Gauss–Newton algorithm using cross-validation-based tuning (e.g., R package oem).

3. Rerun Step 2.1 using the updated γ from Step 2.2 to obtain the estimates for β and α.

4. Theoretical Guarantees

Our theoretical analysis focuses on the finite-sample L2 error bounds for the estimators
(ĥ, γ̂) obtained by (5) or (6). Consequently, we are able to establish the estimation consistency.
For simplicity, we set β = 0 and consider a general setting of random vectors z1, . . . , zn so
that the FPC features~z1, . . . ,~zn correspond to a special case. Along similar lines as those
of [15,32], the estimation consistency is proven in the case of the SGL penalty function. We
define a map Γ with an s-element vector γ ∈ Rs, which gives rise to a collection of all scaling
map functions: A = {Γ : Rs 7→ Rs | Γ(z) = γ ◦ z, z ∈ Rs and γ ∈ Rs}. Since Γ is a linear
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(and bounded) operator,A is a real vector space where (c1Γ1 + c2Γ2)(z) = c1Γ1(z)+ c2Γ2(z)
with any c1, c2 ∈ R and Γ1, Γ2 ∈ A. To perform a group regularization estimation, we
define an SGL penalty by a norm on A for a fixed δ ∈ [0, 1] as follows:

‖Γ‖SGL = δ
p

∑
`=1

∥∥∥γ`
∥∥∥

2
+ (1− δ)‖γ‖1. (9)

Consequently, the SGL regularization estimation requires the following constrained
optimization:

min
Γ∈A, h∈HK

J3(Γ, h) = min
Γ∈A, h∈HK

‖Y− h ◦ Γ‖2
n + λ1‖h‖2

HK
+ λ2‖Γ‖SGL, (10)

where ‖Y− h ◦ Γ‖2
n = 1

n ∑n
i=1{yi − (h ◦ Γ)(zi)}2. Lemma 3 below provides the essential

finite-sample inequalities that lead to the estimation consistency.

Lemma 3 (Basic inequality). Let ĥ ◦ Γ̂ be the minimizer of (10). Let h0 ◦ Γ0 be the true function.
Then, we have:

J3(Γ̂, ĥ) ≤ 2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n + λ1‖h0‖2
HK + λ2‖Γ0‖SGL, (11)

where 2(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n = 2
n ∑n

i=1 εi

{
(ĥ ◦ Γ̂)(zi)− (h0 ◦ Γ0)(zi)

}
.

We need the following notation before presenting our theoretical guarantees. Let
N (δ, M, Pn) denote the minimal δ covering number of the function set M under the
empirical metric Pn based on the random vectors z1, · · · , zn. Let N = N (δ, M, Pn) be a
shorthand notation. This means that there exist functions m1, · · · , mN (not necessarily in
the setM) such that for every function m ∈ M, there exists a j ∈ {1, · · · , N} such that∥∥m−mj

∥∥
Pn
≤ δ, with

∥∥m−mj
∥∥

Pn
:=
√

1
n ∑n

i=1{m(zi)−mj(zi)}2. Define the δ-entropy of
M for the empirical metric, Pn, as H(δ,M, Pn) := log(N (δ,M, Pn)). Consider a functional
space of the form:

B =

{
b := b(h, Γ) =

h ◦ Γ− h0 ◦ Γ0

‖h‖2
HK + ‖h0‖2

HK + ‖Γ‖
2
SGL + ‖Γ0‖2

SGL

|h ∈ HK, Γ ∈ A
}

.

We postulate the following assumptions.

Assumption 1. The error term ε = (ε1, . . . , εn)> is uniformly sub-Gaussian; that is, for constants
C1 and C2,

max
n≥1

max
i=1,··· ,n

C2
1

[
E

{
exp

(
εi

2

C2
1

)}
− 1

]
≤ C2.

Clearly, the moment condition is bounded below from zero.

Assumption 2. ‖Γ0‖2
SGL + ‖h0‖2

HK > 0, and the entropy of space B with respect to the empirical
metric Pn is bounded as follows:

H(δ,B, Pn) ≤ C3δ−2ψ,

where C3 is some constant and ψ ∈ (0, 1).

Assumption 3. supb∈B‖b‖Pn
≤ C4 for some constant C4.

Theorem 2. (Consistency) Under Assumptions 1-3 above, if tuning parameters λ1 and λ2 satisfy

λ−1
2 = n

1
1+ψ

(
‖h0‖2

HK + ‖Γ0‖SGL

) 1−ψ
1+ψ , and λ1 = Op(1)λ2,



Entropy 2022, 24, 203 9 of 24

then we have ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2+2ψ )

(
‖h‖2

HK + ‖Γ‖SGL

) ψ
1+ψ , and (12)

∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖SGL

)
. (13)

Theorem 2 implies estimation consistency under the right rates for the two tuning
parameters λ1 and λ2. Due to the potential identifiability issues explained in detail in
Appendix B, although the estimator (ĥ, Γ̂) may not be unique, the sum of ĥ and Γ̂ is not too
far away from the sum of the true h0 and Γ0.

Corollary 1. If the RKHS,HK, contains differentiable functions∇h(z) whose norm ‖∇h(z)‖HK
is uniformly bounded for all functions h ∈ HK and z ∈ Rs, then Assumption 2 holds when
Theorem 2 is replaced by H(δ,HK, Pn) ≤ C1δ−2ψ, for all δ ≥ 0.

The proofs of Theorem 2 and Corollary 1 are given in Appendices A.4 and A.5,
respectively. Often, when we are only interested in a subset of functions in the RKHS (e.g.,
functions with norm less than one), we can substitute the full spaceHK in Corollary 1 with
the subspace of interest. Refer to [15] or [32], where both considered an RKHS (i.e., Sobolev
space) with functions of norm less than or equal to one.

5. Simulation Experiments

We performed extensive simulation to investigate the performance of our proposed
procedure, including the performance of SGL variable selection and its overall accuracy.
Due to the limitations of space, we include results from two simulation experiments in this
section, and more results may be found in the first author’s Ph.D. dissertation [30].

5.1. Setup

In the evaluation of the performance accuracy, following [15], we used both quasi-R2

and adjusted quasi-R2 defined as follows:

R2
Q := 1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳi)2 , and R2

AQ := 1−
(

1− R2
Q

)( n− 1
n− (k + 1)

)
.

The latter is known to be appealing for the comparison of the estimation sparsity. There
is another performance metric of interest in addition to model accuracy. Performance
in variable selection is summarized in terms of the stability measured by sensitivity and
specificity for both functional and variable selections under these simulation experiments.
Our algorithm uses existing R packages, including emmreml, kspm, and oem.

Specifically, we designed the following two simulation settings.

Scenario 1: A single functional predictor with sparsity in the FPC features.
Scenario 2: Multiple functional predictors with sparsity in the functional predictors and
with sparsity in the FPC features of important functional predictors.

Each of these two scenarios would be handled using certain suitable penalty functions
to address the designed sparsity; for example, in Scenario 2 we used a two-level variable
selection penalty (e.g., SGL) to deal with two types of sparsity in the true model. In all
analyses, we used the Gaussian kernel K(u, v) = exp(− 1

p‖u− v‖2) in our estimation,
where p was set as the number of features, which is equivalent to dividing the γ vector
by
√

p. This scaling parameter may be either estimated or set to the number of features
to overcome the identifiability issue according to [33], where theoretical justification was
given for the use of the number of features for the bandwidth parameter in the case of the
Gaussian kernel.
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According to [23], due to the difficulty of the graphical display for the estimated
s-dimensional function h(·) of z, we summarized the goodness-of-fit by regressing the
true h on the estimated ĥ, with both being evaluated at the design points. From this
concordance regression analysis, we may measure the goodness-of-fit on ĥ through the
average intercepts, slopes, and R-squared (also known as the coefficient of determination)
obtained over the number of replications. Clearly, a high-quality fit is reflected by (i) the
intercept being close to zero, (ii) the slope being close to one, and (iii) the R-squared being
close to one. Moreover, we graphically display the estimated function ĥ by setting all
variables equal to 0.5 except the one of interest over a grid of 100 equally spaced points on
the interval [0, 1]. Such visualization of the functional estimation at each margin further
facilitates the evaluation of the proposed algorithm in addition to the results obtained from
the concordance regression analyses.

In all scenarios, we generated 1000 IID functional paths, of which 750 paths were
assigned to the training set and 250 paths were assigned to the test set for an external
performance evaluation. It is the test set that we used to display the performance accuracy.
We used a one-dimensional covariate xi to show the flexibility of our model in a semi-
parametric setting, with independent copies of xi ∼ N(0, 1). We chose the true coefficients
in the kernel machine model similar to those given in [23].

5.2. Simulation in Scenario 1

In this simple scenario with a single functional predictor, we simulated data from
a model with sparsity in its FPC features. To do so, we generated a single functional
predictor based on the first 15 eigenbasis of the Fourier basis functions over the interval
[0, 1]: Z(t) = ∑15

j=1
√

ς jξ jφj(t). That is, a functional predictor was created as a linear

combination of the 15 basis functions, where φj(·) is the jth Fourier basis function, ς j is
the jth eigenvalue of Z, and ξ j is the jth FPC feature that is simulated from a normal
distribution detailed as follows.

There were 100 sampled points that were first equally spaced in the interval [0, 1] and
then varied with certain small deviations drawn from ν ∼ N(0, 0.001). Set ς j = 45× 0.64j

and ξ j ∼ N(0, 1) independently over j = 1, . . . , 15. As was done in [17], instead of directly
using ξ j, we used ζ j = Φ(ξ j), where Φ is the CDF of the standard normal. This resulted in
~z = (ζ1, . . . , ζ15)

>. We chose the second, ζ2, and ninth, ζ9, features as important features in
the following true nonlinear non-additive model:

yi = 2xi + 20 cos(2πζi2)− 10 sin(2πζi9) + ζi2ζi9 + εi,

with εi
iid∼ N(0, 1). FPCA was performed by the R package PACE [34], producing the

estimated FPC scores, ξ̂ j, as well as the estimated eigenvalues, ς̂ j, which in turn enabled us
to compute ζ̂ j, j = 1, . . . , 15.

We applied both LASSO and MCP penalty functions in our implementation, termed
as FKMRLasso and FKMRMCP, respectively. We compared the results of our method
with the standard linear approach with both LASSO and MCP under the assumption
of linear functional relationships, as well as the COSSO method for functional additive
regression [15] using the R package COSSO [15,34]. Since the COSSO package is built for
nonparametric regression (and not partial linear models), we adopted the backfitting
strategy and regressed the residuals with our estimated effect of xi removed.

In addition, we compared our method with an oracle FKMR estimator, called FKMRoracle,
that assumed the full knowledge of the true ζ j containing two true nonzero signals,
ζ2 and ζ9. We also considered two oracle versions of our proposed algorithm, FKMRoracle

Lasso
and FKMRoracle

MCP , both of which used the knowledge of true ζ j in order to evaluate the
performance of the FPCA procedure. This evaluation is important as our proposed
procedure can be in principle used in simpler cases that do not involve functional covariates.
Note that once we used FPCA to obtain ζ̂ j features, our algorithm essentially works in a
standard regression setting with the sparsity of covariates. Thus, our proposed procedure
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can be in principle used in simpler cases with scalar covariates. In Scenario 1, due to the
highly nonlinear relationships between the FPC features and the outcome, as expected,
the naive linear model performed poorly in terms of both model selection and model
consistency. The detailed simulation results for Scenario 1 can be found in the first author’s
Ph.D. dissertation [30]. In brief, our proposed method worked well in all aspects. In this
setting, COSSO also worked well in terms of model fit, but it tended to select noisy features
more frequently than our proposed method, leading to more false positives.

5.3. Simulation in Scenario 2

Now, we generated four functional predictors of the form: Z`(t) = ∑9
j=1

√
ς`j ξ

`
j φ`

j (t),

` = 1, . . . , 4, where φ`
j , ς`j , and ξ`j were set in the same way as those given in Scenario

1. It follows that ~z = (ζ1
1, . . . , ζ1

9, . . . , ζ4
1, . . . , ζ4

9)
>, where ζ`j is the jth Φ-transformed

feature for the `th functional covariate. Sparsity was specified as follows: the first and
second functional covariates, Z1 and Z2, were chosen as important signals in which these
transformed FPC features, {ζ1

1, ζ1
3, ζ1

4, ζ2
2, ζ2

7}, are five important features (three features
from the Z1 and two features from Z2) that are related to the outcome:

yi = 2xi + ζ1
i1 + ζ1

i3 + ζ1
i4 + ζ2

i2 + ζ2
i7 + 10 cos(2πζ1

i1)− 10
(

ζ2
i2

)2
+ 10

(
ζ2

i7

)2
− 10

(
ζ1

i3

)2

+ 10 exp(−ζ1
i3)ζ

1
i4 − 8 sin(2πζ2

i7) cos(2πζ1
i3) + 20ζ1

i1ζ2
i7 + εi, i = 1, . . . , n,

where εi
iid∼ N(0, 1). This model specifies both group sparsity (two of the four functional

predictors) and within-group sparsity (three of the nine FPC features in Z1 and two of the
nine FPC features in Z2). In addition, we specified non-additive relationships in the true
model across multiple functional covariates.

We fit the data using the proposed methods, including FKMRoracle
GMCP, FKMRLasso,

FKMRGLasso, FKMRSGL, FKMRMCP, and FKMRGMCP, and the results based on
100 replicates are summarized in Table 1. For comparison, we also fit the simulated data by
existing methods, including the linear model (denoted by LM + penalty), COSSO functional
additive regression, and the oracle method using the knowledge of true important features
in the analysis, as done in the above simulation of Scenario 1. From Table 1 regarding the
goodness-of-fit, we see that all of our FKMR estimators outperformed the standard linear
estimators in terms of R2

AQ among all of our penalty functions, and they outperformed
COSSO for penalties that accounted for group sparsity. In the concordance regression
analysis, we see that all intercepts were close to zero, all slopes close to one, and all R2

close to one, indicating a high goodness-of-fit for functional estimation. COSSO tended
to perform on par for penalties that did not account for group sparsity (LASSO and
MCP). It is evident that using a group sparsity penalty function (SGL, GLasso, and GMCP)
clearly outperformed the methods that did not regularize the grouping of covariates (Lasso
and MCP). In addition, our FKMR estimators (except FKMRLasso) performed as well as
the oracle estimator FKMRoracle

GMCP both in terms of R2
AQ and in terms of our estimate of

functional h. The results also indicated that there were little differences between using
a concave (MCP or GMCP) penalty function or using a convex (GLasso or SGL) penalty
function.

As regards the group sparsity, Table 2 indicates that the all methods had a high
sensitivity of detecting functional signals, while the proposed FKMR methods had better
specificity than both sparse linear models and COSSO. Concerning the within-group
sparsity, it is interesting to note that a bigger difference was seen in terms of what type of
penalty function was being used in feature selection. As shown in Tables 3 and 4, using a
general penalty (e.g., Lasso and MCP) that does not take the grouping structure into account
tended to under-select important features within a group. COSSO tended to perform well
within group sparsity. Moreover, Figure 2 shows that the FKMR method estimated the five
signal functions (Z1 and Z2) well.
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Table 1. Goodness-of-fit and the concordance regression for Scenario 2.

Model R2
AQ β

Reg of h on ĥ

Intercept Slope R2

FKMRLasso 0.830 2.00 −0.062 1.01 0.848
FKMRGLasso 0.937 1.99 −0.055 1.01 0.972
FKMRSGL 0.928 2.00 −0.051 1.01 0.955
FKMRMCP 0.835 2.01 −0.062 1.01 0.856
FKMRGMCP 0.935 1.99 −0.056 1.01 0.970
FKMRoracle

GMCP 0.911 1.99 −0.049 1.01 0.937
COSSO 0.832 – – – –
LM + Lasso 0.453 – – – –
LM + GLasso 0.324 – – – –
LM + SGL 0.450 – – – –
LM + MCP 0.513 – – – –
LM + GMCP 0.307 – – – –

Table 2. Sensitivity and specificity of functional selection for Scenario 2.

Model
Selection Frequency

Ẑ1 Ẑ2 Ẑ3 Ẑ4

FKMRLasso 100 100 0 0
FKMRGLasso 100 100 4 4
FKMRSGL 100 100 0 0
FKMRMCP 100 100 0 0
FKMRGMCP 100 100 3 4
COSSO 100 100 5 6
LM + Lasso 100 100 19 21
LM + GLasso 94 99 7 8
LM + SGL 100 100 19 18
LM + MCP 100 100 20 19
LM + GMCP 93 99 7 8

Table 3. FPC feature selection for signal functional Z1 in Scenario 2.

Model
Selection Frequency

ζ̂1
1 ζ̂1

2 ζ̂1
3 ζ̂1

4 ζ̂1
5 ζ̂1

6 ζ̂1
7 ζ̂1

8 ζ̂1
9

FKMRLasso 100 1 97 0 0 0 0 0 0
FKMRGLasso 100 100 100 100 100 100 100 100 100
FKMRSGL 100 21 100 71 26 20 17 16 15
FKMRMCP 100 1 99 1 0 0 0 0 0
FKMRGMCP 100 100 100 100 100 100 100 100 100
COSSO 100 2 100 93 1 0 0 1 0
LM + Lasso 100 10 100 100 10 8 7 10 5
LM + GLasso 94 94 94 94 94 94 94 94 94
LM + SGL 100 12 100 100 10 8 8 11 5
LM + MCP 100 10 100 100 9 8 9 7 5
LM + GMCP 93 93 93 93 93 93 93 93 93



Entropy 2022, 24, 203 13 of 24

Table 4. FPC feature selection for signal functional Z2 in Scenario 2.

Model
Selection Frequency

ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂2

6 ζ̂2
7 ζ̂2

8 ζ̂2
9

FKMRLasso 0 3 0 0 0 0 100 0 0
FKMRGLasso 100 100 100 100 100 100 100 100 100
FKMRSGL 16 100 14 7 16 23 100 15 7
FKMRMCP 0 11 0 0 0 1 100 0 0
FKMRGMCP 100 100 100 100 100 100 100 100 100
COSSO 8 97 5 5 5 15 100 3 3
LM + Lasso 17 100 14 7 16 23 100 15 6
LM + GLasso 99 99 99 99 99 99 99 99 99
LM + SGL 17 100 14 7 16 23 100 15 7
LM + MCP 17 100 13 6 16 23 100 15 8
LM + GMCP 99 99 99 99 99 99 99 99 99

Figure 2. Five marginal estimates of important feature functions with 95% shaded confidence bands
evaluated at 100 grid points while holding all other components equal to 0.5 in Scenario 2.

6. Data Example

To show the usefulness of our proposed methodology, we analyzed data of 550 children
recruited by the ELEMENTS study [35], who had consent to wear an actigraph (ActiGraph
GT3X+; ActiGraph LLC. Pensacola, FL, USA). This wearable was to be placed on their
non-dominant wrist for five to seven days with no interruption. The actigraph measured
tri-axis accelerometer data sampled at 30 Hz, which captured three different directions of
a person’s movement. The BMI was the outcome of interest as it is biomarker of obesity.
Sex and age were confounding factors used in the analysis. Due to some missing data, our
analysis only included children who wore the device properly for 85% or more over the
study period, which resulted in 395 participants, consisting of 189 males and 206 females.
Other studies such as [36] have excluded days of accelerometer data with more than five
percent missing. The mean ± SD BMI of the study cohort was 21.5 ± 4.1. The mean age of
the study participants was 14.3 ± 2.1 y. A more detailed description of the dataset used for
this paper can be found in [37]. Our primary interest was to see if the BMI is associated
with physical activity in the presence of other covariates, specifically sex and age. We
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preprocessed the activity counts over the 7 d of wear by taking the median in the 1 min
epoch over the entire 7 d of wear. For example, since all the participants started wearing
the device at 3 p.m., the first data point for each individual was a median of 7 ACs (each for
one day) for the 1 min epoch of 3:00–3:01 p.m. This procedure that takes the medians across
the minutes from different days has been considered in other applications such as [36]. See
Figure 3 as an example of the resulting time series of medians derived from the AC data
displayed in Figure 1.

Figure 3. The 24 h minute-by-minute medians of 7 d ACs for one subject.

We applied the following five models, labeled as M0–M4 for convenience, to analyze
the data with the 24 h median ACs as functional predictors. Let ξk

ij be the ith person’s kth
FPC score for functional predictor j.

M0: Linear model (LM) with only the fixed features: BMIi ∼ β0 + β1 Agei + β2Sexi;
M1: Linear model with SGL penalty (LM+SGL) using the FPCA features: BMIi ∼ β0 +

β1 Agei + β2Sexi + ∑3
j=1 ∑sk

k=1 βk
j ξk

ij;

M2: LSKM using the FPCA features: BMIi ∼ β0 + β1 Agei + β2Sexi + h(zi);
M3: FKMR model with SGL penalty (FKMRSGL) using the FPCA features: BMIi ∼ β0 +

β1 Agei + β2Sex + h(γ ◦ zi);
M4: COSSO using the FPCA features: res(BMIi)|zi ∼ ∑3

j=1 ∑sk
k=1 fij(ξ

k
ij). In order for a

direct application of the COSSO R package, we used residuals res(BMIi) = BMIi −
β̂0 + β̂1 Agei + β̂2Sexi in the COSSO model fit, with β̂0, β̂1 and β̂2 being the estimates
of the coefficients from Model M0.

The BMI and age were mean centered and scaled to be a standard deviation of one, so
β0 was absent in the models. Here are some key findings from the data analyses. First, in
terms of the goodness-of-fit, Table 5 suggests that M3, i.e., our proposed model FKMR with
the SGL penalty, gave the best performance, where the adjusted R2 of M3 was nearly twice
as big as all the other four models. Second, it is interesting to note that both the COSSO and
the FKMRSGL did not select the FPC scores associated with the Z-axis. Third, as shown in
Table 6, all of the FPC components chosen by COSSO were also chosen by the FKMRSGL.
It is worth noting that the linear model together with the SGL penalty selected the highest
number of FPC components, yet performed the worst in terms of the model fit.
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Table 5. Goodness-of-fit for the five models used in the data analysis.

Model Adjusted R2

M0: LM 0.07
M1: LM + SGL 0.13
M2 : LSKM 0.18
M3: FKMRSGL 0.30
M4: COSSO 0.14

Table 6. Axis-specific FPC feature selection.

Model
X-Axis Y-Axis Z-Axis

ζ̂1
1 ζ̂1

2 ζ̂1
3 ζ̂1

4 ζ̂1
5 ζ̂1

6 ζ̂2
1 ζ̂2

2 ζ̂2
3 ζ̂2

4 ζ̂2
5 ζ̂3

1 ζ̂3
2 ζ̂3

3 ζ̂3
4

FKMRSGL X X X X X X X
COSSO X X X
LM + SGL X X X X X X X X

7. Conclusions

In this paper, we proposed a method to model the nonlinear relationship between
multiple functional predictors and a scalar outcome in the presence of other scalar confounders.
We used the FPCA to decompose the functional predictors for feature extraction and
used the LSKM framework to model the functional relationship between the outcome
and principal components. We developed a simultaneous procedure to select important
functional predictors and important features within selected functionals. We proposed
a computationally efficient algorithm to implement our regularization method, which
was easily programmed in R with the utility of multiple existing R packages. It should
be noted that although we focused on functional regression in this paper, the method
proposed can be applied to non-functional predictors. In effect, by using functional
principal components, we essentially bypassed the infinite-dimensional problem and
worked effectively in a non-functional framework with the FPC features. Through simulation
and using data from the ELEMENT dataset, we demonstrated how the FKMR estimator
outperformed existing methods in terms of both variable selection and model fit. It should
be noted that the existing COSSO method did perform well in terms of variable selection,
as shown in Section 5.

A technical issue pertains to identifiability limitations with regard to the bandwidth
parameter and to the RKHS estimator. To overcome this, we suggested fixing the bandwidth
parameter; see the detailed discussion in Section 3. We established key theoretical guarantees
for our proposed estimator. In the case where there are multiple proposed estimators (and
thus the identifiability issues arise), the established theoretical properties in Section 4 apply
to any of those estimators.

Variable section on functional predictors presents many technical challenges, and
there are many methodological problems that remain unsolved. This paper demonstrated
a possible framework to regularize estimation with a bi-level sparsity of functional group
sparsity and within-group sparsity. In the LSKM paper [23], it was briefly mentioned that
if the relationship between the scalar outcome and p genetic pathways is additive, we can
tweak the model as yi = x>i β + h1(z1

i ) + · · · + hp(z
p
i ) + εi where each hj belongs to its

own RKHS. It is easy to extend our method and algorithms to handle this case. For future
research, an extension on longitudinal outcomes may be considered via a mixed-effects
model yij = x>i β + h(zij) + u>ij vi + εij where u>ij vi are the random effects. Other useful
extensions to the proposed paradigm would be on the lines of generalized linear models
and Cox regression models.
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Appendix A. Technical Assumptions and Proofs

Appendix A.1. Proof of Lemma 1

It suffices to show that for any J1(h, β, γ) in (5) we can always find α ∈ Rn such
that J1(h̃ = ∑n

i=1 αiK(·, γ ◦~zi), γ, β) ≤ J1(h, β, γ) where h̃ is the projection of h onto the
linearly spanned space given by span{K(·, γ ◦~zi), · · · ,K(·, γ ◦~zn)}. For any h we can write
h = h⊥ + h̃ where h⊥ ∈ span{K(·, γ ◦~z1), · · ·,K(·, γ ◦~zn)}⊥. Since Hk is a reproducing
kernel Hilbert space we can rewrite (5) as follows:

J1(h, γ, β) =
1

2n

n

∑
i=1
{yi − x>i β− < h,K(·, γ ◦~zi) >}2 +

1
2

λ1‖h‖2
Hk

+ λ2ρ(γ; δ).

Since < h⊥,K(·, γ ◦~zi) >= 0 for every i, we obtain

J1(h, γ, β) =
1

2n

n

∑
i=1

{
yi − x>i β−

n

∑
k=1

αkK(γ ◦~zi, γ ◦~zk))

}2

+
1
2

λ1

∥∥∥h⊥ + h̃
∥∥∥2

Hk
+ λ2ρ(γ; δ)

≥ 1
2n

n

∑
i=1

{
yi − x>i β−

n

∑
k=1

αkK(γ ◦~zi, γ ◦~zk))

}2

+
1
2

λ1
∥∥h̃
∥∥2
Hk

+ λ2ρ(γ; δ)

= J1(h̃, γ, β).

Appendix A.2. Proof of Lemma 2

The equivalence of forms become clear once we rewrite (6) in the matrix notation.
Equation (6) can be written as follows:

min
α,β,γ

J2(α, β, γ) = min
α,β,γ

1
2n
‖Y− Xβ−K(γ; Z)α‖2

2 +
1
2

λ1α>K(γ; Z)α + λ2ρ(γ; δ). (A1)

For fixed α , β and λ1, minimizing the function in (A1) with respect to γ is equivalent to

min
γ

{
1

2n

∥∥∥(Y− Xβ− n
2

λ1α
)
−K(γ; Z)α

∥∥∥2

2
+ λ2ρ(γ; δ)

}
. (A2)

Appendix A.3. Proof of Theorem 1

With loss of the generality we use the penalty function for sparse group lasso but this
proof can easily be modified for other penalty functions. Also, we fix λ1 = λ2 = δ = 1,
and consider β ∈ R as well as set the design matrix X (or vector in this case) scaled to
have norm 1. The case of β ∈ Rq will follow along similar lines of arguments. Let γ ∈ D3

with D3 = {γ : ‖γ‖1 ≤ 1
2n‖Y‖

2
2}. Define f (γ) = ‖K(γ; Z)‖ = ηmax(K(γ; Z)) ≥ 0, where

ηmax(K(γ; Z)) denotes the largest eigenvalue of K(γ; Z) with the operator norm (the norm
of K(γ; Z)) defined in its usual way ‖K(γ; Z)‖ = sup{‖K(γ; Z)x‖2

2 : ‖x‖2
2 = 1}. Since D3
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is compact and K(γ; Z) is continuous with respect to γ it achieves its maximum over D3.
Thus, we define η? = supγ∈D3 f (γ) ≥ 0. Define D2 = {β :| β |≤ (1 + η?)‖Y‖2}, where the
upper bound is denoted by b? = (1 + η?)‖Y‖2 ≥ 0. Moreover, define D1 = {α : ‖α‖2 ≤√

n(‖Y‖2 + b?)}.
Since D1, D2 and D3 are compact there exists a (α?, β?, γ?) such that J2(α

?, β?, γ?) ≤
J2(α, β, γ) for all (α, β, γ) ∈ D1 × D2 × D3. Note that J2(0, 0, 0) = 1

2n‖Y‖
2
2 and (0, 0, 0) ∈

D1 × D2 × D3. We claim that (α?, β?, γ?) is a global minimizer, which is proved below
by contradiction.

Suppose that there exists (α̃, β̃, γ̃) /∈ D1 × D2 × D3 where J2(α̃, β̃, γ̃) < J2(α
?, β?, γ?).

We must have that γ̃ ∈ D3; if not, we have J2(α̃, β̃, γ̃) ≥ ‖γ̃‖1 ≥ J2(0, 0, 0) ≥ J2(α
?, β?, γ?).

Let q1, · · ·, qn be the orthonormal vectors of K(γ̃; Z) with its associated eigenvalues
η1 ≥ · · · ≥ ηn ≥ 0. We can write out α̃, X, Y in terms of these basis functions where
α̃ = ∑n

i=1 < α̃, qi > qi, Y = ∑n
i=1 < Y, qi > qi and X = ∑n

i=1 < X, qi > qi. Let Cα̃
i =< α̃, qi >,

CY
i =< Y, qi > and CX

i =< X, qi >. It follows that

J2(α̃, β̃, γ̃) ≥ 1
2n

∥∥∥∥∥ n

∑
i=1

CY
i qi −

n

∑
i=1

CX
i β̃qi −

n

∑
i=1

Cα̃
i ηiqi

∥∥∥∥∥
2

2

+
1
2

n

∑
i=1

(Cα̃
i )

2ηi,

which is equal to 1
2n ∑n

i=1(C
Y
i − CX

i β̃− Cα̃
i ηi)

2 + 1
2 ∑n

i=1(C
α̃
i )

2ηi. We can minimize the above
objective function with respect to Cα̃

i and β̃. First, note that for any ηi = 0 we can let Cα̃
i = 0

as it will not affect the expression above. It is sufficient to consider ηi > 0. Taking the first
derivative and setting it equal to zero, we obtain the score equations the minimizer must
satisfy, for our minimum β̃ and Cα̃

i

β =
n

∑
i=1

CX
i (C

Y
i − Cα̃

i ηi) (A3)

Cα̃
i =

1
n + ηi

(CY
i − CX

i β̃). (A4)

In the above derivation we used the fact that 1 = ‖X‖2
2 = ∑n

i=1(C
X
i )

2. Plugging (A4) into (A3),
we obtain

β =
∑n

i=1 CX
i CY

i (1−
ηi

n+ηi
)

1−∑n
i=1(C

X
i )

2 ηi
n+ηi

. (A5)

It follows that

β ≤ ∑n
i=1 | CX

i CY
i |

1−∑n
i=1(C

X
i )

2 η?

n+η?

≤ ‖X‖2‖Y‖2

‖X‖2
2(1−

η?

n+η? )
≤ ‖Y‖2

(1− η?

1+η? )
= b?.

Thus, the β that minimizes J2 for a given γ ∈ D3 is in D2. Also, (A4) implies that
| Cα̃

i |≤ (‖Y‖2 + ‖X‖2‖β‖2); consequently, the optimal α for the given γ̃ ∈ D3 and β ∈ D2
that minimizes J2 satisfies ‖α‖2 ≤

√
n(‖Y‖2 + b?). As a result, α ∈ D2. This suggests

that for any (α̃, β̃, γ̃) /∈ D1 × D2 × D3 we can find an (α, β, γ) ∈ D1 × D2 × D3 such that
J2(α̃, β̃, γ̃) ≥ J2(α, β, γ).

Appendix A.4. Proof of Theorem 2

By Lemma 8.4 on page 129 in [32], Assumptions 1, 2, and 3 imply:

P

sup
b∈B

1√
n |∑

n
i=1 εib(zi)|

‖b‖1−ψ
Pn

≥ T

 ≤ c exp
(
−T2

c2

)
, T ≥ c (A6)

where the constant c is dependent on C1, C2, C3, C4, and ψ. It follows that
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sup
b∈B

1√
n |∑

n
i=1 εib(zi)|

‖b‖1−ψ
Pn

= Op(1). (A7)

Therefore, for any h ∈ HK and a scaling map function Γ ∈ A, we obtain

√
n(ε, h ◦ Γ− h0 ◦ Γ0)n

(
‖h‖2

HK + ‖h0‖2
HK + ‖Γ‖

2
SGL + ‖Γ0‖2

SGL

)−ψ

‖h ◦ Γ− h0 ◦ Γ0‖
1−ψ
Pn

= Op(1). (A8)

For our estimators, ĥ and Γ̂, it is easy to see that

(ε, ĥ ◦ Γ̂− h0 ◦ Γ0)n =

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

.
(A9)

From (A9), we obtain the following inequality:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ1

∥∥∥ĥ
∥∥∥2

HK
+ λ2

∥∥Γ̂
∥∥2

SGL ≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

+ λ1‖h0‖2
HK + λ2‖Γ0‖2

SGL.

(A10)

We require λ1 = Op(1)λ2, namely λ2 and λ1 go to zero at the same rate. We will show
at the end of the proof what happens if they are not of the same order. Therefore, without
loss of generality, we set λ1 = λ2, denoted by λ. In what follows, we divide (A10) into
two cases.
Case 1: Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≥ λ
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

In this case, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

.
(A11)

Above (A11) is further discussed separately in two sub-cases.

Case 1a: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≤
∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL, then we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)ψ

.
(A12)

Therefore, (∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)ψ

≤ Op(n
− ψ

2(1−ψ) )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥ψ

n
λ
− ψ

1−ψ . (A13)

It follows that
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∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ),∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(n
− 1

1−ψ )Op(λ
− 1+ψ

1−ψ ).
(A14)

Case 1b: If ‖h0‖2
HK + ‖Γ0‖2

SGL ≥
∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL, then:∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(‖h0‖2
HK + ‖Γ0‖2

SGL)Op(1).

Therefore, ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1+ψ) )

(
‖h0‖2

HK + ‖Γ‖
2
SGL]

) ψ
1+ψ .

Consequently, we obtain∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ),∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(n
− 1

1−ψ )Op(λ
− 1+ψ

1−ψ ).
(A15)

Both terms in (A15) are the same rates as those in (A14).
Case 2: Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≤ λ(‖h0‖2
HK + ‖Γ0‖2

SGL).

Then, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥2

n
+ λ

(∥∥∥ĥ
∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL

)
≤ 2λ

(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

This implies that ∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2 )
(
‖h0‖2

HK + ‖Γ0‖2
SGL

) 1
2 ,∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
.

(A16)

In order to make (A14) and (A16) have the same rates we first equate the two term

Op(λ
1
2 )
(
‖h‖2

HK + ‖Γ‖
2
SGL

) 1
2 and Op(n

− 1
2(1−ψ) )Op(λ

− ψ
1−ψ ), and then solve for a common λ.

The solution is given as follows:

λ−1 = n
1

1+ψ

(
‖h‖2

HK + ‖Γ‖
2
SGL

) 1−ψ
1+ψ .

Under this λ value we obtain that (A14)–(A16) as of the form:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(n

− 1
2(1+ψ) )

(
‖h0‖2

HK + ‖Γ0‖2
SGL

) ψ
1+ψ , (A17)∥∥∥ĥ

∥∥∥2

HK
+
∥∥Γ̂
∥∥2

SGL = Op(1)
(
‖h0‖2

HK + ‖Γ0‖2
SGL

)
. (A18)

This completes the proof of Theorem 2.
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Now we discuss the situation where the tuning parameters λ1 and λ2 are not of the
same order. As seen blow, the selection consistency may not be guaranteed. Take Case 2 as
an example. Suppose that

Op(n−
1
2 )
∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥1−ψ

n

(∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

)ψ

≤ λ1‖h0‖2
HK + λ2‖Γ0‖2

SGL.

Let us consider two cases.
Case 2a: If λ1‖h0‖2

HK ≤ λ2‖Γ0‖2
SGL, following the same arguments above, we have∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2
2 )‖Γ0‖SGL),∥∥∥ĥ

∥∥∥2

HK
= Op(

λ2

λ1
)‖Γ0‖2

SGL,∥∥Γ̂
∥∥2

SGL = Op(1)‖Γ0‖2
SGL.

(A19)

Case 2b: If λ1‖h0‖2
HK ≥ λ2‖Γ0‖2

SGL, then following the same logic as before:∥∥∥ĥ ◦ Γ̂− h0 ◦ Γ0

∥∥∥
n
= Op(λ

1
2
1 )‖h0‖HK ),∥∥Γ̂

∥∥2
SGL = Op(

λ1

λ2
)‖h0‖2

HK ,∥∥∥ĥ
∥∥∥2

HK
= Op(1)‖h0‖2

HK .

(A20)

Both terms involve Op(
λ1
λ2
) and Op(

λ2
λ1
), indicating that these two tuning parameters

λ1 and λ2 should go to zero at the same rates. Moreover, we can think of our estimator
ĥ ◦ Γ̂ as one operational object. See Appendix B for more details on this, which can further
explain the need of one rate for the two penalties.

Appendix A.5. Proof of Corollary 1

For convenience, we present the following lemma proved by [32] (on page 20).

Lemma A1. (Geer’s Lemma) A d dimensional ball of radius R, Bd(R), in Rd with Euclidean
metric can be covered by ( 4R+δ

δ )d balls of radius δ.

We have shown in the proof of Theorem 1 that the optimal γ vector is restricted to
be within a ball of a radius that depends on the norm of Y. For the sake of simplicity
let us confine our γ to be within a norm ball of radius 1, γ ∈ G = {γ : ‖γ‖2

2 ≤ 1}.
We then confine our set which we called A to be restricted to those γ, that is A = {Γ :
Γ(z) = γ ◦ z, γ ∈ G}. Since our γ ∈ Rs, we can use above Lemma A1 and cover our set

A with N1 =
(

4+δ
δ

)s
number of functions in the following sense. The ball of radius 1 in

Rs can be covered (using the Euclidean metric) by {γ1, · · · γN1}. Since there is a one to
one relationship between the functions Γ and γ, take the set {Γ1, . . . , ΓN1} and define the
metric between some Γj and Γk in the set A as d(Γj, Γk) =

∥∥γj − γk
∥∥

2. Then, the set of
functions {Γ1, . . . , ΓN1} is a δ-covering for A under this metric with entropy s log( 4+δ

δ ).
For each Γj we have an induced RKHS, HK◦Γj = {h ◦ Γj : h ∈ HK} with entropy no
larger than that of HK, which according to the assumption, has entropy ≤ Aδ−2ψ for
some ψ ∈ (0, 1) and A ∈ R. Therefore, the covering number N2 = N(δ,HK◦Γj , Pn) ≤
exp{Aδ−2ψ}. This implies that for every Γj there exists a set {hj1 ◦ Γj, · · · , hjN2

◦ Γj}
such that for every h ◦ Γj ∈ HK◦Γj there exists an integer i ∈ {1, . . . , N2} we have∥∥h ◦ Γj − hji ◦ Γj

∥∥
Pn
≤ δ. Set B is essentially the union of the different Hilbert spaces
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of the form HK◦Γ. Under the setup, a natural estimate of the delta-covering number
of this set would be approximately of size N1 × N2 where functions take the form of
{h11 ◦ Γ1, · · · , h1N2

◦ Γ1, · · · , hN11
◦ ΓN1 , · · · , hN1 N2

◦ ΓN1}. In addition, we add N2 functions
from the set {h1 ◦ Γ0, · · · , hN2 ◦ Γ0} where Γ0 is the true Γ0 (or one of the true Γ0). Since

HK◦Γj is a Hilbert space for every j, if h ◦ Γj ∈ HK◦Γj so is
h◦Γj

‖h‖2
HK

+‖h0‖2
HK

+‖Γj‖2
SGL+‖Γ0‖2

SGL
.

We can simply ignore the denominator and substitute
h◦Γj

‖h‖2
HK

+‖h0‖2
HK

+‖Γj‖2
SGL+‖Γ0‖2

SGL
with

h̃ ◦ Γj ∈ HK◦Γj where h̃ = h
‖h‖2
HK

+‖h0‖2
HK

+‖Γj‖2
SGL+‖Γ0‖2

SGL
.

We now prove Corollary 1.

Proof. Set M = suph < ∇h(z),∇h(z) > where the inner product is the standard Euclidean
inner product. This is for a fixed z, or under the assumption that the gradient is uniformly

bounded, we can take the suph∈HK ,z∈Rs < ∇h(z),∇h(z) >. Let N1 =
4+

(
δ

3M
1
2

)
(

δ

3M
1
2

)
s

which

is the number of balls needed to provide a
(

δ

3M
1
2

)
covering for a norm 1 ball in Rs. Let

N2 = exp
{(

A( δ
3 )
−2ψ
)}

which is the covering number needed to provide a δ
3 cover of our

spaceHK. Let:

˜̂h ◦ Γ̂− h̃0 ◦ Γ0 =

ĥ ◦ Γ̂∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

− h0 ◦ Γ0∥∥∥ĥ
∥∥∥2

HK
+ ‖h0‖2

HK +
∥∥Γ̂
∥∥2

SGL + ‖Γ0‖2
SGL

be an arbitrary function in the set B. There exists a Γj where j ∈ {1, . . . , N1} such
that d(Γj, Γ̂) ≤ δ

3 max
i=1,··· ,n

‖zi‖2
√

M
, and there exists an i where i ∈ {1, . . . , N2} such that∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj

∥∥∥
Pn
≤ δ

3 .

Similarly, there exists a t ∈ {1, . . . , N2} such that
∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥
Pn
≤ δ

3 . We

construct our approximating function of ˜̂h ◦ Γ̂− h̃0 ◦ Γ0 as hji ◦ Γj − ht ◦ Γ0. We now show

that this function is within δ of our arbitrary function ˜̂h ◦ Γ̂− h̃0 ◦ Γ0. Applying the mean
value theorem for multivariate functions, ˜̂h ◦ Γ̂(z) = ˜̂h ◦ Γj(z) +∇ ˜̂h(C(z))( ˆΓ(z)− Γj(z)),
we have: ∥∥∥( ˜̂h ◦ Γ̂− h̃0 ◦ Γ0)− (hji ◦ Γj − ht ◦ Γ0)

∥∥∥
Pn

≤
∥∥∥ ˜̂h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
∥∥h̃0 ◦ Γ0 − ht ◦ Γ0

∥∥
Pn

≤
∥∥∥ ˜̂h ◦ Γ̂− hji ◦ Γj

∥∥∥
Pn

+
δ

3

=
∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj +∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
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where vector z ∈ Rs lies in the segment from γj ◦ z and γ̂ ◦ z, and C(·) is an unknown
function that maps from Rs into Rs that allows for the formula to hold. Continuing our
chain of inequalities, we obtain:∥∥∥ ˜̂h ◦ Γj − hji ◦ Γj +∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
≤∥∥∥∇ ˜̂h(C(·))(Γ̂− Γj)

∥∥∥
Pn

+
δ

3
+

δ

3
=√

1
n

n

∑
i=1

(
∇ ˜̂h(C(zi))(Γ̂(zi)− Γj(zi))

)2
+

δ

3
+

δ

3
≤√

1
n

n

∑
i=1

M
∥∥γ̂ ◦ zi − γj ◦ zi

∥∥2
2 +

δ

3
+

δ

3
≤√√√√√√M

 δ

3 max
i=1,··· ,n

‖zi‖2

√
M


2

max
i=1,··· ,n
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Therefore, to provide a δ cover we need N1 × N2 + N2 number of functions or:

exp{
(

A(
δ

3
)−2ψ

)
}

4 +
(

δ

3M
1
2

)
(

δ

3M
1
2

)


s

+ exp

{(
A
(

δ

3

)−2ψ
)}

=

exp{Ãδ−2ψ}
(

C + δ

δ

)s
+ exp{Ãδ−2ψ},

where Ã = A
3−2ψ and C = 12M

1
2 . Taking the log we see the entropy is ≤ Ãδ−2ψ +

log
(
(C+δ

δ )s + 1
)

which is of the same order as ≤ Ãδ−2ψ (the log term is dominated by
the first term). Therefore a sufficient (but not necessary) condition for our set B to have
the same entropy as that of the original RKHS HK is for the suph < ∇h(z),∇h(z) > to
be bounded. Having bounded derivatives is reasonable for any RKHS since every RKHS
satisfies the Lipschitz condition of the form:

|h(X)− h(Y)|= |< h,KX > − < h,KY > |≤ ‖h‖HK < KX ,KY >
1
2 = ‖h‖HKd(X, Y),

where the distance metric in Rs is defined as d(X, Y)2 = K(X, X)− 2K(X, Y) +K(Y, Y).
If we restrict our functions in the RKHS of norm ≤ C for some constant C then we have a
universal Lipschitz constant C to ensure bounded derivatives.

Appendix B. Discussion about the FKMR Estimator

We introduce γ as a way of performing variable selection on our vector of FPC
features. We want to illustrate this technical trick with some concrete examples and discuss
identifiability issues with the resulting estimator. There are two ways of looking at the
estimation of the unknown functions h0 and Γ0. The first way is to view our feature vector,
z, as being related to the dependent variable y through the composite function h ◦ Γ, as
explained in Section 4. The second and equivalent way is to view our features as unknown.
The true features take the form of γ ◦ z, where in this case the ◦ denotes the Hadamard
product. We are given z and need to estimate the “true" features γ ◦ z. In addition, we
need to estimate the relationship between γ ◦ z and y, which is done through the function
h ∈ HK.
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The first way is to estimate the function h0 ◦ Γ0. The function belongs to the RKHS
HK◦Γ. We essentially consider many different function spaces to construct our estimator. The
intersection between the function spaces is not necessarily empty, implying that our estimator
may not be unique. We proceed this discussion more formally. Let K : Rs ×Rs 7→ R be
a positive definite function. Let Γ : Rs 7→ Rs. We define K ◦ Γ : Rs × Rs 7→ R as
the function given by K ◦ Γ(s, t) = K(Γ(s), Γ(t)). This new function, K ◦ Γ is positive
definite. There is a relationship between the original RKHS, HK and the new RKHS,
HK◦Γ. This results in HK◦Γ = {h ◦ Γ : h ∈ HK}. For any vector u ∈ HK◦Γ, we have that
‖u‖HK◦Γ = in f {‖h‖HK : u = h ◦ Γ}. In general, HK◦Γ 6⊂ HK. In (5), we take the norm
with respect to the original space HK. Our iterative procedure essentially presents the
second way in which the true features are unknown, whereas our theoretical arguments
are justified through the first way. Given the knowledge of the features (which translates to
fixing a γ), we are confined to just one RKHS,HK. Take the linear kernel, K(x1, x2) = x>1 x2
as an example. Suppose the truth is that y is related to a one-dimensional feature z0 through
the following formulation: y = h0(z0) + ε where h0 ∈ HK1 , where K1 is the kernel that
maps from R ×R 7→ R. Therefore, if we knew the feature z1, we would proceed to
optimize (6) using the standard LSKM. However, when each y is associated with a two-
dimensional vector z = (z1, z2), where z2 is a “noisy” feature and unrelated to y. Suppose
that a priori we do not know this information. Typically we use a model y = h(z1, z2) + ε
where h ∈ HK, where K is the kernel that maps from R2 ×R2 7→ R. In this case, we
introduce our γ vector (γ1, γ2) and formulate y = h(γ1z1, γ2z2) + ε. All functions, h in the
spaceHK, are of the form h(z) = x>z for some two-dimensional vector x = (x1, x2). There
is a one-to-one relationship between h and x. The true function, h0, has an associated real
number c where h1(z1) = cz1. We can recover h1 ∈ HK1 from our estimation of h and γ
if we set γ = (1, 0) and x = (c, ?) , where "?" is any real number. Equivalently, we can
recover h1 under γ = (1, 1) where x = (c, 0). There are many functions that may recover
the original function in the RKHS corresponding to the linear space kernel. Formulating
our problem in the first way, through function composition, we can estimate Γ0 with the γ
being (1, 0) or (1, 1).

We can now see that in the intersection between HK◦Γ1 and HK◦Γ2 , where Γ1 has
associated γ1 = (1, 0) and Γ2 has associated γ2 = (1, 1), lies our estimate of h1. In truth,
for the linear space RKHS, there is no need to apply our method since h0 ∈ HK1 can be
estimated directly from the larger spaceHK where we set h(z) = x>z where x = (c, 0). We
can never hope to have variable selection consistency nor can we hope to have identifiability
of our estimator for these types of spaces. However, from a goodness-of-fit standpoint,
we are able to do just as good a job with many types of function compositions. Our hope
is that we can glean some variable selection by penalizing the γ vector with the ρ(γ; δ)
term which, going back to the above scenario, should give preference to γ = (1, 0) over
γ = (1, 1). For the RKHS associated with the Gaussian Kernel, the “larger dimensional
space”, a Gaussian Kernel mapping from higher dimensions, does not necessarily contain
the functions from a “lower dimensional space”, a Gaussian Kernel mapping from lower
dimensions. However through the introduction of the γ transformation of the features, we
can recover the equivalent functions of the "lower dimensional space”.
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