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Regional Variation of Climatic Influences on West Nile Virus Outbreaks in the United States
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Abstract. The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors
responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to
humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian
communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual
variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter
temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipi-
tation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic
constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal
timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and
social characteristics.

INTRODUCTION

West Nile virus (WNV) is a prototypical emerging pathogen
that was introduced to the Western Hemisphere in 1999 and
has subsequently spread to all 48 conterminous United States
and across much of North and South America. WNV has had a
substantial public health impact at the national level. In total,
37,088 human WNV cases were reported to the Centers for
Disease Control (CDC) through 2012, including 16,196 cases
of severe neuroinvasive disease and 1,549 deaths. These effects
have been spatially heterogeneous, with geographic clusters of
persistently high WNV incidence in the Great Plains, the lower
Mississippi Valley, and portions of the Intermountain West.1

The incidence of human WNV disease has also varied consid-
erably over time. In the early years ofWNV spread, the pattern
of invasion was characterized by relatively low incidence of
human disease in the first year followed by a large epidemic in
the second year and a subsequent decline to endemic levels.2

After WNV becomes endemic, human case numbers typically
remain lower than during the initial epidemic but are highly
variable from year to year.3 In particular, the national resur-
gence of WNV in 2012 after several years of low incidence has
raised questions about the factors responsible for triggering
WNV outbreaks.4

Climatic variation has long been hypothesized to influence
the risk of vector-borne and zoonotic diseases through environ-
mental influences on arthropod vectors, avian hosts, microbial
pathogens, and human exposure.5 Mosquitoes require suffi-
cient rainfall to support habitats for their aquatic stages, and
these habitats are further influenced by evapotranspiration
and other hydrological processes that control the distribution
of water across the land surface.6 The length of the gonotrophic
cycle of the mosquito vector and the duration of the extrinsic
incubation period of the virus both generally decrease with
increasing temperature.7 As a result, warmer temperatures
can lead to larger mosquito populations with a higher propor-
tion of infected mosquitoes. Avian community structure also
changes in response to climatic variability, particularly extreme

heat and drought.8 Because of these myriad influences, climatic
anomalies can affect interannual variability in human disease
through their impacts on the sizes and spatial distributions of
vector and host populations, rates of virus amplification, and
risk of virus transmission to humans.
These associations are reflected in previous studies that have

documented relationships between climatic variation and the
spatial and temporal patterns of human WNV disease. Reisen
and others9 highlighted associations between positive temper-
ature anomalies and hot spots of WNV activity in the United
States from 2002 to 2004. Soverow and others10 conducted a
national analysis and found that temperature, humidity, and
precipitation all had positive effects at lags of 2–4 weeks on
the rate of human WNV disease after controlling for season-
ality. Chuang andWimberly11 studied humanWNV disease in
the northern Great Plains and found non-linear but generally
positive associations with temperature and greenness anomalies
in early spring, moisture anomalies in late spring and early
summer, and temperature anomalies during mid to late summer.
Chung and others12 documented an inverse relationship
between the number of days with low temperatures from
December to February and the annual rate of West Nile
neuroinvasive disease in Dallas County, Texas. Although

these studies and others have emphasized the ubiquity of
climatic associations with WNV, there is still need for addi-
tional research to develop a more generalized understanding
of how the many potential climatic drivers affect WNV risk to
humans across the United States.
One of the challenges to understanding the climatic triggers

of WNV outbreaks is the broad range of environments in
which the virus has become endemic. For example, the primary
mosquito vectors of WNV vary across diverse regions of the
United States, with the different species exhibiting a range of
habitat associations, climatic sensitivities, and feeding prefer-
ences.7 Similarly, geographic variability in bird community

composition influences local enzootic cycles and the potential
for WNV amplification and transmission to humans. Physical
environmental features, including seasonal climate patterns,
land cover, topography, and soils, also vary widely across
different regions of the United States. As a result, the rela-
tionships between climate and vector-borne and zoonotic dis-
eases, such as WNV, are often spatially heterogeneous, with
diverse sets of climatic controls operating in different areas.

*Address correspondence toMichael C.Wimberly, Geospatial Sciences
Center of Excellence, South Dakota State University, Brookings,
SD 57007. E-mail: michael.wimberly@sdstate.edu

677



For example, associations between precipitation and WNV
incidence varied across the United States, with correlations
ranging from positive to negative depending on the geographic
area and time period examined.13 In the Great Plains of east-
ern Colorado, human WNV cases were associated with moist
spring and dry summer conditions, whereas in the mountain-
ous areas of western Colorado, there were much weaker
associations with dry conditions in spring and summer.14

Comprehensive and consistent analyses of climatic relation-
ships with WNV risk across multiple regions are needed
to better distinguish generalizable relationships from more
localized contingencies.
To address this need, the primary of objective of this study

was to explore the influences of temperature and precipita-
tion on the interannual variation of human WNV disease in
various parts of the United States. To examine these relation-
ships, we used partial least squares (PLS) regression, a multi-
variate technique that accounts for the correlation structure of
multiple climatic variables and provides an intuitive method
for visualizing the distribution of human WNV risk in climatic
space as biplots. The results showed consistent positive influ-
ences of winter temperatures on human WNV risk, weaker
and more variable positive effects of spring and summer
temperatures, and highly variable precipitation effects that
ranged from positive to negative. These findings highlight the
potential as well as the limitations of modeling future WNV
risk based on temperature and precipitation and suggest future
avenues of research to improve our understanding of the
complex interactions between climatic variation and WNV.

MATERIALS AND METHODS

Study areas. We focused on three regions containing the
states that had the highest incidence rates during the resur-
gence of human WNV cases in 2012 (Figure 1): the northern
Great Plains (NGP), upper Midwest (UM), and southcentral
states (SC). The NGP region included Minnesota, Nebraska,
North Dakota, and South Dakota. The UM region included
Illinois, Indiana, Michigan, Ohio, and Wisconsin. The SC
region included Arkansas, Louisiana, Mississippi, Oklahoma,

and Texas. These states did not necessarily have the largest
numbers of human cases but instead, represented areas where
the risk of WNV transmission to humans was assumed to be
highest. Altogether, this selection encompassed the 10 states
with the highest rates of West Nile neuroinvasive disease in
2012, and all of the selected states had higher than the median
rates of West Nile neuroinvasive disease and total human
WNV disease (including West Nile fever in addition to West
Nile neuroinvasive disease) in 2012 (Table 1).
Data. WNV human case data were obtained from the US

Geological Survey disease map archive (http://diseasemaps
.usgs.gov). The total number of reported human WNV cases
per county, including both West Nile fever and West Nile
neuroinvasive disease, was used as the dependent variable
in the analyses. Human WNV incidence during the initial

Figure 1. Map of the 2012 county-level incidence of human WNV disease in the United States. Incidence was calculated based on all reported
WNV cases, including West Nile neuroinvasive disease and West Nile fever. The three study areas are outlined in bold.

Table 1

State-level incidence of human WNV disease in 2012 and interannual
correlations of neuroinvasive cases and total WNV cases from 2004
to 2012

Region/state

Neuroinvasive disease All disease

r‡ r§Incidence* Rank† Incidence* Rank†

UM
Illinois 1.43 9 2.19 10 0.99 1.00
Indiana 0.69 16 1.15 19 0.97 0.93
Michigan 1.40 10 2.04 12 1.00 0.96
Ohio 0.66 20 1.05 22 0.97 0.92
Wisconsin 0.68 18 0.98 25 0.96 0.98

NGP
Minnesota 0.63 21 1.30 15 0.98 0.98
Nebraska 2.16 7 10.02 3 0.87 0.75
North Dakota 5.57 2 12.72 2 0.93 0.95
South Dakota 7.44 1 24.36 1 0.97 0.86

SC
Arkansas 1.49 8 2.14 11 0.98 0.98
Louisiana 3.37 4 7.28 5 0.98 0.93
Mississippi 3.45 3 8.34 4 0.97 0.81
Oklahoma 2.65 6 4.90 7 0.99 1.00
Texas 3.01 5 6.67 6 0.99 1.00

*Per 100,000 population.
†Of all US states in 2012.
‡Pearson correlation of log-transformed case counts.
§Spearman rank correlation.
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outbreak years from 1999 to 2003 was likely affected by
immunologically naı̈ve avian and human populations and dis-
persal limitations.7 To focus on interannual climatic effects,
we analyzed years from 2004 onward, during which time we
assumed that WNV was endemic. Positive human cases met
the CDC arboviral case definition for neuroinvasive or non-
neuroinvasive disease, which included one or more clinical
criteria and one or more laboratory criteria.
Although reporting bias of WNV non-neuroinvasive cases

is a potential concern for this type of passive surveillance, a
strong spatial correlation between total reported WNV cases
and neuroinvasive cases was reported in a previous study.15

We further explored the temporal associations between
annual numbers of neuroinvasive cases and total WNV cases
using Spearman rank correlations and Pearson correlations of
log-transformed case numbers. We found extremely high cor-
relations (> 0.9) for the majority of states in our study area
(Table 1). Thus, we concluded that total numbers of reported
WNV cases were sufficient to capture to capture patterns of
variability through time similar to those observed in neuro-
invasive cases while allowing for a larger sample size.
Monthly mean temperature and total precipitation from

1981 to 2010 were obtained from the Phase 2 North American
Land Data Assimilation System (NLDAS) atmospheric forc-
ing data (Figure 2). These data have a spatial resolution of
0.125° (approximately 10.7 km E-W by 13.9 km N-S at
40° north latitude) and were derived from the assimilation of
data from multiple sources, including the North American
Regional Reanalysis dataset and the US Climate Prediction
Center unified gauge-based precipitation analysis.16 Data
from one NLDAS grid cell were assigned to each county by
overlaying the population-weighted county centroids onto the
NLDAS dataset.
Analysis. In the analyses, we included only counties with

18 or more cumulative WNV cases (a mean of 2 cases/year)
during the 9-year study period (2004–2012) to focus on areas
with the highest potential for measuring temporal variability
in risk to humans. The study, thus, encompassed 43 counties
in the NGP region (N = 387), 18 counties in the MW region
(N = 162), and 57 counties in the SC region (N = 513). To
quantify the interannual variability of WNV incidence for each
county, we calculated the logarithm of the relative rate (LRR)
of total WNV cases using the following equation:

LRRij = log2 1 +
Oij

Ei

� �
,

where i indexes counties, j indexes years, Oij is the number
of observed cases for county i and year j, and Ei is the
expected number of annual cases for county i computed as
the average number of cases from 2004 to 2012. After taking
the binary (base 2) logarithm, LRRij = 1 whenOij = Ei. Values
< 1 indicated a lower than expected number of cases, and
values > 1 indicated a higher than expected number of cases
for a given county.
We analyzed the relationship between county-level annual

LRR values and climatic anomalies for the 12 months during
and preceding the WNV transmission season. The WNV sea-
son in the three study regions occurs mainly between June
and September. Therefore, for the LRR in a given year, pre-
dictor variables included climate anomalies from January to
September of the same year and from October to December of

the preceding year. Standardized monthly climatic anomalies
from October of 2003 to September of 2012 were computed
for temperature and precipitation using the following equation:

ANOMijk =
CLIMijk �MCLIMik

� �
SDCLIMik

,

where k indexes months, CLIMijk is the raw climatic variable
(temperature or precipitation) for county i, year j, and month
k, MCLIMik is the mean, and SDCLIMik is the SD of the
climatic variable for county i and month k computed over all
30 years of the climatology (1981–2010).
Because of the potential for strong multicollinearity

among the 24 monthly climatic anomaly variables, standard
regression techniques are likely to yield inflated parameter
variances and unstable parameter estimates. Although vari-
able selection techniques, such as stepwise regression, can be
applied to reduce the predictor variables to a smaller subset,
these approaches are also sensitive to collinearity and can
lead to biases in parameter estimation, inconsistencies in
variable selection, and problems associated with multiple
hypothesis testing.17 We used an alternative approach, PLS
regression, as a variable reduction method. PLS regression
reduces the original set of predictor variables to a smaller
number of latent variables that maximizes the explained
variance in the dependent variable.18 These latent variables
provided a small set of independent climatic effects that
was expressed as linear functions of the correlated monthly
climate variables.
A separate PLS model was fitted for each of the three study

areas. The PLS models were cross-validated by excluding
each year (2004–2012) from the training dataset, using the
remaining data to fit the PLS model, and comparing the
excluded values with predicted values based on climate data
for the excluded year. Cross-validation results were used to
determine the number of latent factors to include in the final
model. PLS regression coefficients were computed for these
final models to identify the monthly climatic variables with
the strongest effects on LRR. The cross-validation results
were used to compute a jackknife estimate of the SE for each
regression coefficient.
Biplots of the final models were used to visualize the asso-

ciations between interannual variability in the rate of human
WNV cases and climatic anomalies. The biplots were generated
by constructing a scatterplot of the scores of each county/year
combination along two latent factors from the PLS model.
The relative positioning of points in this plot provided a
graphical representation of the climatic similarity of the
observations, with close points being more similar and distant
points being more different. The size of each point was scaled
to reflect the LRR for each county/year combination. Arrows
radiating outward from the origin were plotted to illustrate
the linear combination of monthly climate variables that com-
prised each of the latent variables. The distances in the x and y
dimensions from the origin to the tips of the arrows repre-
sented the strengths and directions of the associations between
the monthly climate variables and the latent variables. To
improve the clarity of the biplots and better highlight the most
important monthly variables for each latent variable, only var-
iables with a standardized PLS regression coefficient of 0.075
or greater were displayed on the biplots. All analyses were
carried out in the R statistical analysis environment.19
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The sp, raster, and rgdal packages were used for geospatial data
processing, and the pls library was used for PLS regression.

RESULTS

Biplots provided two-dimensional representations of the
distribution of county/year observations in a two-dimensional

reduced climate space (Figure 3). Large symbols were clus-
tered in different portions of this climate space than small
symbols, indicating that high and low LRR rates were associ-
ated with distinctive types of climate anomalies in all three of
the regions. The locations of the 2012 observations in these
biplots were near the ends of one or both axes, which showed
that climatic conditions in 2012 were extreme and distinctive

Figure 2. Examples of temperature and precipitation anomalies for 2012 calculated using the NLDAS atmospheric forcing data. Anomalies
were computed relative to a 30-year climatology from 1981 to 2010. (A) January temperature. (B) January precipitation. (C) March temperature.
(D) March precipitation. (E) July temperature. (F) July precipitation.
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from those observed in other years. In addition, the 2012 obser-
vations occurred in the same portions of the biplots as other
county/year observations with high LRR values, emphasizing
that the LRR values in 2012 were generally consistent with the
patterns of climatic associations observed across all counties
and years.
In the NGP region, the first two latent factors of the PLS

model accounted for 28.9% of the variance in the climatic var-
iables and explained 50.1% of the variance in LRR. County/
year observations with high LRR had high scores on axis 1 and
were associated with higher-than-average temperatures in
December, January, May, and June and lower-than-average
precipitation in January and July. High LRR values during
the 2007 outbreak had high scores on axis 2 and were associ-
ated with higher-than-average temperatures in December and
higher-than-average precipitation in March and August.
In the UM region, the first two latent factors of the PLS

model accounted for 31.4% of the variance in the climatic
variables and explained 64.2% of the variance in LRR.
County/year observations with high LRR had high scores on
axis 1 and were associated with higher-than-average January
and July temperatures and higher-than-average July precipi-
tation. High LRR values, particularly in 2006 and 2012, also
had higher scores on axis 2 and were associated with higher-
than-average January and February temperatures.

In the SC region, the first two latent factors of the PLSmodel
accounted for 23.4% of the variance in the climatic variables
and explained 38.7% of the variance in LRR. County/year
observations with high LRR had high scores on axis 1 and were
associated with higher-than-average temperatures in January,
February, and March. High LRR values also had higher
scores on axis 2 and were associated with higher-than-average
April and May temperatures and higher-than-average
December precipitation.
Cross-validation indicated that adding additional axes to

the PLS solution beyond the first two increased the coefficient
of variation in the model predictions. This result suggested
that adding additional latent variables to the PLS solution
resulted in overfitting, and therefore, standardized PLS
regression coefficients were computed only for the first two
latent variables to summarize climatic effects on LRR. The
eight variables with the highest standardized PLS coefficients
for each region were summarized in Figure 4. Temperature
anomalies tended to have the strongest influences in the PLS
solutions, and all but one of the temperature anomalies
(the October temperature anomaly in the UM region) had
positive relationships with LRR. In all three of the study
regions, a winter temperature variable (December in the NGP
and January in the UM and the SC) had the strongest influence
on LRR. Precipitation influences were more variable, with all

Figure 3. Biplots of PLS regression analysis of the LRR of humanWNV disease versus monthly climatic anomalies. The x and y axes represent
latent variables from the PLS models. Circles represent the locations of county/year combinations in climate space, and circle size is proportional
to LRR. Arrows represent the relative correlations of climate variables with each PLS axis. (A) NGP. (B) UM. (C) SC. Numbers represent months
(1 = January, 2 = February, etc.). P = precipitation; T = temperature.
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regions exhibiting a mix of positive and negative coefficients
for precipitation. SEs of the standardized PLS regression coef-
ficients were relatively high in the SC for all but the strongest
variable (January temperature), indicating greater uncertainty
about the climatic influences onWNV than in the other regions.

DISCUSSION

The strongest and most geographically consistent result from
this study was the positive relationship between interannual
variability in the rate of human WNV disease and temperature
anomalies during the winter months, particularly December
and January. This finding suggests that the overwintering phase
of the WNV enzootic cycle is a climatically sensitive period
that has the potential to influence virus amplification and
ultimately, the risk to humans during the subsequent trans-
mission season. However, overwintering is the least under-
stood part of the WNV transmission cycle, and geographic
variability in climate as well as mosquito species leads to
regional differences in the winter ecology of WNV. Whereas
Culex tarsalis is the most important WNV vector in the NGP
region,20,21 Cx. pipiens is the primary vector in the MW,22,23

and Cx. quinquefasciatus is predominant in the SC region.24,25

In areas with harsh winters, including most of the NGP and
MW regions, small proportions of Cx. tarsalis and Cx. pipiens

can acquire WNV through vertical transmission, enter dia-
pause, and carry the virus through the winter to infect avian
hosts the next year.26,27 In contrast, Cx. quinquefasciatus in
the SC region does not enter true diapause, can become active
during warm periods, and can maintain low levels of horizontal
WNV transmission throughout the winter.28 It is also possible
that the WNV could overwinter in birds and then infect mos-
quitoes through recrudescent viremias during the next trans-
mission season.29 However, it has not yet been shown that
birds with long-term infections can successfully transmit the
virus to a mosquito.7

Obtaining a better understanding of the overwintering period
will be critical to furthering our understanding of climatic
controls on WNV, a tropical virus that has become widely
established in cold-temperate climates in North America.12

The positive relationship between winter temperature and
WNV risk suggests that mosquito mortality caused by low
temperature may reduce the survival of infected mosquitoes
and limit the potential for virus amplification and transmis-
sion to humans in the following year. Culicine mosquitoes
hibernate in a wide variety of natural and anthropogenic hab-
itats, including caves and rock crevices, animal burrows, cellars,
and storm drains.30 High levels of overwintering mortality of
diapausing mosquitoes have been reported, and mortality has
been shown to increase during periods with particularly low
temperatures and relative humidities.31–33 Non-diapausing
mosquitoes were also shown to have decreased activity during
colder weather,34 which could reduce the potential for WNV
transmission during the winter. Improved knowledge of the
specific mechanisms that affect overwintering mosquito activity
and survival would help to more precisely identify the types
of climatic anomalies that can influence WNV risk during the
subsequent summer.
We also found positive relationships with temperature anom-

alies during the early amplification season from March to May,
although the months with the strongest temperature influences
were not consistent across regions. These effects are most
likely the result of temperature effects on the gonotrophic cycle
of the mosquito vector and the extrinsic incubation period of
WNV, and they are in agreement with previous studies that
have identified positive relationships between temperature
and WNV risk.9–11 Higher temperatures have been shown to
increase WNV transmission intensity by reducing the length of
the extrinsic incubation period relative to the length of the
gonotrophic period (i.e., the time between blood meals),
thereby increasing the potential for mosquitoes to acquire and
retransmit the virus within their lifetimes.35 However, the
results from the SC region should be interpreted with caution
because of the high SEs associated with the spring tempera-
ture coefficients. The weaker fit of the PLS model in this
region may indicate that other non-climatic drivers are
more important in this relatively warm climate, where temper-
ature is expected to be less of a limiting factor for WNV trans-
mission. Later-season (June to July) temperature anomalies
contribute to increased mosquito host-seeking activity that can
facilitate continued virus amplification as well as higher rates
of infected mosquitoes biting humans.20

The geographically variable precipitation associations reflect
the results of prior research that have found inconsistent

Figure 4. Standardized PLS regression coefficients for the three
study regions. The coefficients with the eight highest absolute values
are presented in decreasing order for each region. Error bars repre-
sent SEs estimated using a jackknife procedure. (A) NGP. (B) UM.
(C) SC. Numbers represent months (1 = January, 2 = February, etc.).
P = precipitation; T = temperature.
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relationships between precipitation and human WNV disease
in different years and geographic locations.13 These results
likely arise from ecological differences among the regions,
including variation in the breeding habitat associations of the
major vector species.7 Cx. tarsalis predominantly breeds in
rural habitats in the NGP region,20 whereas breeding habitats
for Cx. pipiens in the MW region and Cx. quinquefasciatus in
the SC region are more closely linked with anthropogenic
features, such as underground wastewater systems in urban-
ized environments.24,36 Furthermore, differences in hydrologi-
cal processes that result from distinctive climate, physiography,
vegetation, and land use in the various regions influence the
flux of moisture throughout the landscape and the consequent
distribution of standing water for mosquito breeding. Thus, the
inconsistencies in precipitation effects also reflect the limita-
tions of using precipitation as an explanatory variable. Other
sources of information, including measurement of standing
water and soil moisture from satellite remote sensing,37 and
predictions of these variables from hydrological models6,14

offer the potential for measuring surface moisture in a way that
is more directly relevant to mosquito biology.
Although most studies of climatic influences on WNV have

emphasized the effects of climate variability on mosquito
populations, there are other mechanisms through which cli-
mate can affect the risk of WNV transmission to humans. For
example, avian community composition has been shown to
fluctuate from year to year in response to climatic variability.8

Different bird species have variable levels of reservoir com-
petence for WNV, and the resulting sensitivity of virus
amplification to avian community composition has been well-
documented.38–40 In addition, winter temperature-driven
changes in avian reproductive phenology may influence the
timing of shifts of mosquito feeding from birds to mammals
and thereby, affect the potential for transmission of zoonotic
pathogens like WNV to humans.41 In combination, this evi-
dence suggests a strong potential for climatic influences on
WNV amplification and risk to humans to occur by effects on
birds as well as mosquitoes. There is also a growing body of
evidence that highlights the sensitivity of human outdoor
activities to climatic variation,42 suggesting another pathway
through which climate may influence exposure to infected
mosquitoes and the risk of human WNV disease.
Along with extrinsic factors, such as temperature and pre-

cipitation, WNV outbreaks are also sensitive to intrinsic feed-
backs within the WNV enzootic system. For example, WNV
outbreaks are more likely when the level of herd immunity in
avian communities is low, a situation that tends to occur after
several seasons of relatively low WNV transmission.43 WNV-
caused mortality has also had a substantial impact on many
bird populations and resulted in persistent declines in many
bird species; it has altered avian community structure and
likely affected community competence and enzootic transmis-
sion of WNV.44 Therefore, as with other vector-borne diseases,
such as malaria,45 it is expected that the dynamics of WNV
transmission will ultimately arise through the interactions of
these intrinsic and extrinsic factors. Whereas previous research
has often focused on lagged effects of climatic variability on
vector-borne and zoonotic diseases at scales ranging from a
few weeks to a few months, the results from this study support
the idea that climatic anomalies during winter and early
spring may have longer-term, cascading effects on WNV risk
during the subsequent transmission season.7 The potential for

multiple interacting pathways of climate effects on human
WNV risk further emphasizes the potential for spatially het-
erogeneous climate effects on WNV risk that are contingent
on the localized interactions of landscapes, mosquitoes, avian
communities, and human behaviors in response to a continu-
ally fluctuating climate.
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