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Abstract

Kaposi’s Sarcoma-associated Herpesvirus (KSHV) establishes stable latent infection in B-

lymphocytes and pleural effusion lymphomas (PELs). During latency, the viral genome per-

sists as an epigenetically constrained episome with restricted gene expression programs.

To identify epigenetic regulators of KSHV latency, we screened a focused small molecule

library containing known inhibitors of epigenetic factors. We identified JQ1, a Bromodomain

and Extended Terminal (BET) protein inhibitor, as a potent activator of KSHV lytic reactiva-

tion from B-cells carrying episomal KSHV. We validated that JQ1 and other BET inhibitors

efficiently stimulated reactivation of KSHV from latently infected PEL cells. We found that

BET proteins BRD2 and BRD4 localize to several regions of the viral genome, including the

LANA binding sites within the terminal repeats (TR), as well as at CTCF-cohesin sites in the

latent and lytic control regions. JQ1 did not disrupt the interaction of BRD4 or BRD2 with

LANA, but did reduce the binding of LANA with KSHV TR. We have previously demon-

strated a cohesin-dependent DNA-loop interaction between the latent and lytic control

regions that restrict expression of ORF50/RTA and ORF45 immediate early gene tran-

scripts. JQ1 reduced binding of cohesin subunit Rad21 with the CTCF binding sites in the

latency and lytic control regions. JQ1 also reduced DNA-loop interaction between latent and

lytic control regions. These findings implicate BET proteins BRD2 and BRD4 in the mainte-

nance of KSHV chromatin architecture during latency and reveal BET inhibitors as potent

activators of KSHV reactivation from latency.

Author Summary

KSHV is an oncogenic human herpesvirus implicated as the causative agent of KS and

cofactor in pleural effusion lymphomas (PELs). The latent virus persists in PELs as an epi-

genetically regulated episome. We found that small molecule inhibitors of BET family

have potent activity in triggering the lytic switch during latent infection in PELs. The BET

family inhibitor JQ1 disrupted the latent virus from maintaining a closed DNA loop con-

formation. These findings have implications for treatment of KSHV-associated malignan-

cies with epigenetic modulators of the BET inhibitor family.
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Introduction

Kaposi’s Sarcoma-associated Herpesvirus (KSHV) is a human gammaherpesvirus responsible

for all forms of Kaposi’s Sarcoma (KS) and strongly associated with pleural effusion lympho-

mas (PELs) and Castleman’s Disease[1]. KSHV can establish long-term latent infection in B-

lymphocytes where it persists as a stable, chromatin-associated circular minichromosome,

commonly referred to as an episome [2, 3]. During latent infection, the viral genome expresses

only a few viral genes required for maintaining the latent state and host-cell survival [4, 5]. The

major latency transcripts include the multi-cistronic RNAs encoding LANA (ORF73), vCyclin

(ORF72), vFLIP (ORF71), K1, and 21 miRNAs. The major immediate early genes are also reg-

ulated as a cluster of RNAs that can be initiated during the early stage of the reactivation pro-

cess. These include the immediate early transcriptional activator RTA (ORF50), KbZip

(ORF51), and a series of transcripts that are made in the opposite orientation that include

ORF45-49. Lytic transcription is repressed during latency, while latency transcription occurs

efficiently. How these regions are differentially regulated and how they communicate with

each other remains an area of active interest.

KSHV latency is maintained by several epigenetic regulatory mechanisms. Lytic cycle regu-

latory regions, especially the immediate early promoter regions controlling RTA transcription

are regulated by bivalent histone modifications that include both euchromatic H3K4me3 and

repressive H3K27me3 at the same regulatory locus [6, 7]. Inhibitors of polycomb-associated

H3K27me3 methyltransferase EZH2 are sufficient to induce lytic cycle replication [8–10]. In

KSHV positive B-cell pleural effusion lymphomas, KSHV latency can be reactivated by other

epigenetic pathways, including histone deacetylase (HDAC) inhibitors in combination with

phorbol esters [11]. Lytic reactivation may also be induced by other cellular stress pathways,

including hypoxia [12], reactive oxygen species (ROS)[13], cytokine stimulation[14], and ter-

minal differentiation[15].

During latent infection in PEL cells, the KSHV genome is also regulated by higher-order

epigenetic regulatory mechanisms [16]. We have shown that the chromatin organizing factor

CTCF colocalizes with cohesins at several locations in the KSHV genome, including the

latency control region [17]. Subsequent studies revealed that KSHV latency control region

formed a DNA-loop interaction with the lytic control region, mediated in part by the CTCF-

cohesin complex [18]. Chromosome conformation capture (3C) revealed that the control

regions for the lytic and latent cycle transcripts are in close proximity during latency, and that

this is disrupted during the reactivation process. Depletion of cohesin subunits, including

RAD21, SMC1, or SMC3 led to the reactivation of KSHV [19]. Depletion of CTCF, as well as

Rad21, were also found to be restriction factors for KSHV lytic reactivation, especially when

combined with HDAC inhibitor sodium butyrate [20]. CTCF is a sequence-specific DNA

binding protein that has multiple functions in gene regulation, including the formation of

chromatin boundaries and DNA-loop interactions [21]. Cohesins form a ring-like structure

that mediates DNA-DNA interactions important for sister chromatid cohesion, homologous

recombinational DNA repair, and promoter-enhancer communication for transcriptional reg-

ulation [22]. How other factors may regulate the formation and dissolution of these higher-

order DNA structures, and how these impact gene expression patterns is not completely

known.

The KSHV latent episome is maintained largely by the viral-encoded protein LANA [23,

24]. LANA is a sequence-specific DNA binding protein that interacts specifically with GC-rich

elements in the terminal repeats (TR) of KSHV [25]. LANA binding to the TR is necessary for

tethering the viral episome to metaphase chromosomes, and can also function as an efficient

origin of DNA replication [24, 26, 27]. LANA can also regulate transcription of viral and host
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genes, and interact with other regions of the viral and cellular chromosome, but with lower

affinity than at the viral TR [28, 29]. LANA interacts with many host proteins. Among these

are the Bromodomain 2 (BRD2) and BRD4 members of the BET family [30–33]. Bromodo-

mains are known to interact with acetylated lysines, most typically found on histone tails in

euchromatic regions [34, 35]. BRD2 and 4 have been implicated in the regulation of several

viruses, including tethering and transcriptional regulation of HPV through the E2 protein, a

viral orthologue of KSHV LANA [36–38]. The precise function of BRD2 or BRD4 in mediating

LANA function is not clear, but several lines of evidence suggest that these factors facilitate

LANA-dependent episome maintenance and transcription regulation.

Small molecule inhibitors of BET proteins, especially BRD2 and BRD4, have been highly

effective at disrupting their biochemical function in binding acetylated lysines on histone tails

[39, 40]. A prototype BET inhibitor, JQ1, has been shown to effectively inhibit transcription

mediated by BRD2 and BRD4 dependent super-enhancers, including those regulating the

cMyc oncogene in several cancer models [40, 41]. JQ1 has also been shown to trigger the reac-

tivation of latent HIV [42–46]. The mechanism of HIV reactivation by JQ1 is thought to be

through the redistribution of BRD2 and BRD4 to promote RNA polymerase elongation on

HIV genomes [43, 45]. The effects of BET inhibitors on KSHV latency is not as well under-

stood. One study found that BET inhibitors synergize with lenalidomide to selectively kill

KSHV positive PEL cells [47]. Here, we screened a library of small molecule epigenetic modu-

lators and found BET inhibitors to be among the most potent for activation of KSHV lytic

reactivation, and further investigate the mechanism of their action.

Results

Identification of BET-inhibitors as disruptors of KSHV latency

To identify epigenetic regulators of KSHV latent to lytic switch, we developed a simple reporter

cell line, BJAB-BAC16, consisting of BJAB cells stably infected with KSHV Bac16 that carry a

constitutively expressed GFP gene. BJAB-BAC16 cells were first tested for their ability to respond

to known lytic cycle reactivating reagents consisting of phorbol ester TPA combined with his-

tone deacetylase inhibitor sodium butyrate (NaB) (Fig 1). Addition of TPA with NaB led to a

robust stimulation of GFP signal from BJAB-BAC16 cells using FACS (Fig 1A), as well as by

high-content imaging using an Operetta (Fig 1C). This indicated that GFP signal could be used

as a surrogate for lytic cycle gene activation. Both assays were miniaturized for 384-well high-

throughput screening with 25,000 cells per well and demonstrated robust statistical properties

based on Z-factor>0.8 (Fig 1B). We then proceeded to screen a focus library of 24 compounds

with known epigenetic targets. Each compound was arrayed for a 10-point dose response curve

and an EC50 value was calculated for stimulation of GFP signal (Fig 1D). We found that several

compounds stimulated KSHV lytic cycle with EC50< 3 μM, while only one compound, the

BET inhibitor JQ1, activated GFP signal at EC50<1 μM in both FACS and Operetta assays.

Using the high-content analysis of the Operetta, JQ1 was found to have an EC50 of 0.58 μM (Fig

1E). The effect of JQ1 on KSHV lytic cycle gene expression was validated by RT-qPCR for

KSHV PAN, ORF50, and LANA (Fig 1F).

JQ1 induces KSHV lytic gene transcripts and DNA replication in latently

infected PEL cells

We next tested JQ1 for its ability to activate KSHV lytic cycle in various KSHV-positive cell

lines. BCBL1, BC-1, JSC-1, or SLK-BAC16 were treated with 4 μM JQ1 daily for 3 days (72

hrs) and then assayed by RT-qPCR for transcription of PAN, ORF50, and LANA (Fig 2A–2D).

JQ1 Disrupts KSHV Latency
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We found that JQ1 efficiently activated viral lytic genes for PAN and ORF50 in all PEL cell

lines (Fig 2A–2C). JQ1 efficiently stimulated PAN in the non-lymphoid cell line SLK-BAC16,

but had less significant activation on ORF50 (Fig 2D). The effects of JQ1 on LANA transcripts

were also cell-dependent, with an ~ 4 fold increase in BCLB1, a ~2 fold decrease in BC-1, and

no change in JSC-1 or SLK-BAC16 (Fig 2A–2D, lower panels). We next tested whether JQ1,

and another BET inhibitor I-BET151, could induce KSHV DNA replication (Fig 2E). Viral

DNA replication was monitored by qPCR by comparing viral relative to cellular DNA. We

Fig 1. Identification of JQ1 in a high-throughput screen for epigenetic regulators of KSHV lytic reactivation. (A)

BJAB-BAC16 cells were assayed by FACS for GFP fluorescence intensity after 48 hr incubation with 1% DMSO (red) or

TPA+2mM NaB (blue). (B) Z-factor calculation for high-throughput FACS analysis of KSHV lytic population. (C) Operetta

high-content image analysis for GFP intensity in BJAB-BAC16 cells treated for 24 or 48 hr with 1%DMSO (left panels), TPA

+2 mM NaB (middle panel), or 0.7 μM JQ1(right panel). (D) Summary of high-throughput screening using FACS (top panel)

or Operetta (lower panel). Compound activity was ranked from left to right based on the reciprocal of the EC50 value

calculated for each compound. (E) EC50 calculation for JQ1 using Operetta high-content imaging. (F) RT-qPCR for PAN,

ORF50, and LANA transcripts relative to cellular actin in BJAB-BAC16 cells treated for 24 hrs with 1% DMSO or 4 μM JQ1.

Error bars represent standard deviation from mean (sdm) and p-values were calculated by 2-tailed student t-test.

doi:10.1371/journal.ppat.1006100.g001
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found that JQ1, as well as I-BET151, efficiently induced DNA replication in BCBL1, BC-1,

JSC-1, and SLK-BAC16 cells. JQ1 and I-BET151 induced ~10 fold increase in viral DNA copy

number, while positive control sodium butyrate (NaB) induced only 3–5 fold in PEL cells (Fig

2E). To further analyze the status of KSHV genomes after treatment with JQ1, we analyzed

BCBL1 cells treated with DMSO or JQ1 by pulse-field gel electrophoresis (PFGE) followed

by Southern blot analysis. We observed a large amplification of viral linear and sub-linear

genomes (indicative of incomplete genome replication), confirming that lytic cycle DNA repli-

cation was activated by JQ1 (Fig 2F).

JQ1 is known to act rapidly on BRD2 and BRD4 binding to acetylated histones [41], but its

kinetic effects on transcription can be complex. We determined the time course of KSHV tran-

scripts after JQ1 treatment. As expected, cMyc transcription was reduced within 6 hrs after

JQ1 treatment (Fig 3A). Interestingly, KSHV transcripts for lytic cycle (ORF50 and PAN) were

Fig 2. JQ1 induces KSHV lytic transcription and DNA replication in latently infected PEL cells. (A) RT-

qPCR for PAN, ORF50 or LANA in BCLB1 cells treated daily for 72 hrs with 1% DMSO or 4 μM JQ1. (B)

RT-qPCR as in panel A for BC-1 cells (C) JSC-1 cells or (D) SLK-BAC16 cells. ** P < 0.01 *** P <
0.001. (E) qPCR of KSHV genome in different cell lines treated as in (A) with DMSO, 4 μM JQ1, or 4 μM

I-BET151, or 2mM NaB. The data are expressed as fold change of the treated versus untreated (DMSO)

cells. *** P < 0.001 (F) PFGE analysis of BCBL1 cells treated as in panel A, and detected by Southern blot

with probe specific for KSHV DNA. Electrophoretic positions for viral episomes, linear, and sublinear

genomes are indicated.

doi:10.1371/journal.ppat.1006100.g002
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also reduced at 6 hrs, while LANA transcription was modestly elevated. However, by 72 hrs,

KSHV lytic transcripts for ORF50 and PAN were 2 and 15 fold relative to DMSO control. Sim-

ilar results were observed with another pan-BET inhibitor I-BET151 (Fig 3B). On the other

hand, BIC-1, which is more selective for BRD2, had inhibited cMyc transcription by 24 hrs,

but did not activate KSHV lytic gene transcription (Fig 3C). Similar observations were made

with another PEL cell line BC3 (S1 Fig). These results indicate that structurally different pan-

BET inhibitors can stimulate KSHV lytic transcription, but also raise the possibility that BET

inhibitors may contribute indirectly to KSHV reactivation through suppression of myc or

other cellular targets.

Depletion of BRD4 or BRD2 reactivates lytic KSHV from latency

To determine whether BRD2 or BRD4 were the targets of JQ1-mediated reactivation of

KSHV, we transduced BCBL1 cells with lentivirus expressing shBRD2, shBRD4, or shControl

(shCtrl) (Fig 4). shBRD4 reduced BRD4 efficiently (Fig 4A), and produced a ~2.5 fold increase

in PAN and 2 fold increase in ORF50 (Fig 4B). Similarly, shBRD2 partially reduced BRD2

expression (Fig 4C), and led to a ~6 fold increase in PAN and ~2.5 fold increase in ORF50 (Fig

4D). Both shBRD4 and shBRD2 produced a modest (~2 fold) increase in linear and sublinear

KSHV genomes in PFGE analyses (Fig 4E). These results indicate that depletion of either

Fig 3. Time course of KSHV transcript response to various BET inhibitors. RT-qPCR for c-myc, LANA,

ORF50 and PAN relative to actin in BCBLI cells treated with 1%DMSO, or 4uM JQ1 (A), 4uM IBET-151 (B) or

4uM BIC1 (C) for the indicated times. DMSO was used as control. The data are expressed as fold change of

the treated versus untreated (DMSO) cells. * P < 0.05 ** P < 0.01 *** P < 0.001.

doi:10.1371/journal.ppat.1006100.g003
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BRD4 or BRD2 can partially induce KSHV lytic cycle transcription, and weakly induce lytic

DNA replication.

BRD2 and BRD4 binds regulatory regions of KSHV latent episome

BRD2 and BRD4 are known to interact directly with LANA protein, but it is not known how

they interact with the viral genome. We used Chromatin-Immunoprecipitation (ChIP) assay

to measure the relative association of BRD2 and BRD4 with the KSHV genome at the LANA-

binding site in the TR, and CTCF binding sites in latency control region and the lytic control

region (Fig 5A). We found that BRD2 and BRD4 associated with all three viral genome posi-

tions, showing the highest enrichment at the LANA binding sites at the TR. BRD2 and BRD4

were found enriched similarly at the CTCF binding sites within latency control region, while

BRD4 was selectively enriched at the lytic control region (Fig 5B). Neither BRD2 nor BRD4

bound to a region within the ORF37 gene (primer i), indicating that the enrichment at control

regulatory regions is selective.

To determine if JQ1 affected BRD4 or BRD2 interaction with LANA, we assayed the effects

of JQ1 on the coimmunoprecipitation (coIP) of LANA with BRD4 (Fig 5C, top panels) or with

BRD2 (Fig 5C, lower panels). We found that addition of JQ1 did not disrupt, and had a modest

stimulatory effect, on the interaction of LANA with BRD4 and BRD2 (Fig 5C). We next asked

whether JQ1 had any effect on the binding of BRD4 or BRD2 proteins to KSHV genome

by ChIP assay (Fig 5D and 5E). We found that JQ1 treatment reduced BRD2 and BRD4

Fig 4. Depletion of BRD2 or BRD4 activates KSHV lytic cycle. (A) Western blot of BCBL1 cells transduced with shControl

(shCtrl) or shBRD4, probed for BRD4 (top) or Actin (bottom). (B) RT-qPCR for PAN and ORF50 relative to actin in BCBL1 cells

transduced with shCtrl or shBRD4. (C) Western blot of BCBL1 cells transduced with shCtrl or shBRD2 probed for BRD2 (top) or

Actin (bottom). (D) RT-qPCR for PAN and ORF50 relative to actin in BCBL1 cells transduced with shCtrl or shBRD2. (E) PFGE

analysis of BCBL1 cells transduced with shCtrl, shBRD2 (in duplicate), or shBDR4 (in duplicate) as indicated, and assayed by

Southern blot with KSHV genome probe.

doi:10.1371/journal.ppat.1006100.g004
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interactions at the TR regions by ~50% (Fig 5D and 5E). BRD2 interactions at the latency con-

trol region were also reduced by ~50% by JQ1 (Fig 5D), while BRD4 interactions at the latency

and lytic control regions were reduced by only ~20% after JQ1 treatment (Fig 5E). These find-

ings indicate that BRD2 and BRD4 can interact with viral regulatory regions, and that JQ1 can

partially disrupt these interactions.

JQ1 causes a loss of RAD21, RNA pol II, and LANA from latency control

region

To better understand the mechanism through which JQ1 activates KSHV latent to lytic switch

in BCBL1 cells, we performed ChIP assays for several key factors known to regulate this

Fig 5. Interaction of BRD2 and BRD4 with KSHV latent episomes. (A) Schematic of KSHV genome regulatory regions tested

by ChIP assay and primer positions a-i. Red triangles represent CTCF binding sites and TR is terminal repeats. Open reading

frames for KSHV gene are indicated. The lytic control region (primers a-d) is considered the region between ORF45 and ORF50.

The latency control region (primers e-g) is considered as the region encompassing ORF75 to K14. The terminal repeat (TR)

contains high affinity LANA binding sites (primer h). (B) ChIP assay in BCBL1 cells with antibodies to BRD2 (red), BRD4 (green),

or control IgG (blue) at primer position a-i as indicated. (C) CoIP assay for FLAG-LANA interaction with Xpress-BRD4 (top panel)

or HA-BRD2 (lower panel) in the presence or absence of 4 μM JQ1. 293 cells were transfected with FLAG-LANA or FLAG-Vector

and treated with 4 μM JQ1 or 1% DMSO for 24 hrs as indicated with input extract (left lanes) or after FLAG-IP (right lanes), as

indicated. FLAG-IPs were then probed by Western blot with antibody to FLAG (LANA) or to Xpress (BRD4, top panel), or HA

(BRD2, lower panel). (D) BCBL1 cells treated daily with 1% DMSO, or 4 μM JQ1 for 72 hrs were assayed by ChIP with antibody to

BRD2 and assayed with primers a-h. (E) Same as in panel D, except with antibody to BRD4. Error bars are sdm and ** P < .01.

doi:10.1371/journal.ppat.1006100.g005

JQ1 Disrupts KSHV Latency
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process, including CTCF, RAD21, RNAPII, histone H3K9ac, and LANA (Fig 6). JQ1 had a

small inhibitory effect (~20% reduction) on CTCF binding at the latency control region (prim-

ers e-g), but no detectable changes in the lytic control region (primers a-d) or the TR (primer

h) (Fig 6B). On the other hand, JQ1 reduced cohesin subunit Rad21 by 50% at the latency con-

trol region (primers e and f), as well as at the lytic control region (primer d) (Fig 6C). RNA

polymerase II (RNAPII) was also reduced to 50% binding after JQ1 treatment at the latency

control region (primer f and g), but slightly increased at the lytic control region (primers a-d).

Similarly, histone H3 acetylated on K9 (H3Ac9) was reduced by 60% at the latency control

region (primers f and g), and to a lesser extent that the TR, but did not change at the lytic con-

trol regions (Fig 6E). We also observed that LANA binding was reduced by ~50% at the TR,

and by>80% at the latency control region and lytic control region after JQ1 treatment (Fig

6F). These findings indicate that JQ1 treatment alters the interaction with the latent KSHV

genome for several key regulatory factors, including Rad21, RNAPII, and LANA. These

Fig 6. JQ1 alters epigenomic programming of KSHV latency control region. (A) Schematic of KSHV genome and primer positions

a-h used for ChIP assays. (B-F) BCBL1 cells treated daily for 72 hrs with 1% DMSO or 4 μM JQ1 were assayed by ChIP for IgG or (B)

CTCF, (C) Rad21, (D) RNAPII, (E) H3AcK9, or (F) LANA. Error bars are sdm and ** P < .01.

doi:10.1371/journal.ppat.1006100.g006

JQ1 Disrupts KSHV Latency

PLOS Pathogens | DOI:10.1371/journal.ppat.1006100 January 20, 2017 9 / 22



findings also suggest that JQ1 leads to the selective loss of histone acetylation at the TR and

latency control region, but not at the transcriptionally active lytic control region.

JQ1 causes a loss of DNA looping between latent and lytic control

regions

DNA-loop formation has been shown to occur between the latent and lytic control regions of

KSHV in PEL cells [18], and disruption of this loop by depletion of Rad21 led to a reactivation

from latency [19]. To determine whether JQ1 had any effect on KSHV DNA loop interactions,

we performed chromatin conformation capture (3C) assays using an anchor primer at the

KSHV latency control region (Fig 7A and 7B). As expected, we observed a selective interaction

between the latent control region and the lytic control region (primer 69163) (Fig 7B). Treat-

ment with JQ1 reduced this 3C interaction by 50%, as well as other weaker 3C interactions at

positions downstream (56293 and 58589) and upstream (72974 and 77155) of the lytic control

region. These findings suggest that JQ1 treatment alters the DNA conformation associated

with stable episomal latency of KSHV.

To determine whether the effect of JQ1 chromatin factor binding was an indirect conse-

quence of viral DNA replication, we tested whether an inhibitor of viral lytic DNA replication

prevented the JQ1-induced loss of RAD21 or LANA binding to KSHV genome (S2 Fig).

Fig 7. JQ1 inhibits DNA-loop formation between KSHV latent and lytic control regions. (A) Schematic

of KSHV regulatory regions and primers used for 3C anchor at latency control region (128,264) and acceptor

sites in lytic control region (69163), and others regions as indicated. (B) 3C assay in BCBL1 cells treated daily

for 72 hrs with 1% DMSO or 4 μM JQ1 using anchor and acceptor primers, as indicated in (A).

doi:10.1371/journal.ppat.1006100.g007

JQ1 Disrupts KSHV Latency
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Phosphono-acetic acid (PAA) is a potent inhibitor of KSHV lytic replication [48, 49]. While

PAA inhibited KSHV genome replication by ~5 fold (S2A Fig), it did not reverse the effects of

JQ1 binding on RAD21 (S2B Fig) and further stimulated the loss of LANA binding to TR (S2C

Fig). We also show that induction of viral DNA replication by NaB treatment for 72 hrs, led to

the loss of BRD2 or BRD4 ChIP with KSHV genome (S3 Fig). However, at 1 hr post-treatment

with NaB, BRD4, but not BRD2, showed an increase binding to the lytic and latency control

regions (S3C Fig). Taken together, these findings suggest that JQ1 disruption of BRD2 and

BRD4 leads to a change in RAD21 and LANA binding to KSHV genome that can not be attrib-

uted to an indirect consequence of viral DNA replication.

To help resolve the question of whether JQ1 has a direct effect on KSHV epigenetic regula-

tion, we assayed its effects at 1 hr post-treatment. Although this time point is too early to detect

changes in KSHV transcription and DNA replication, its effect on BRD2 and BRD4 ChIP

could be detected at the TR, and latency control region (Fig 8B and 8C). We also found a

reduction in CTCF, RAD21, and LANA ChIP at the latency control region (Fig 8D, 8E and

8G), and a more modest loss of LANA and H3K9ac at TR (Fig 8E and 8G). We also observed a

small increase in RNAPII occupancy at the latent and lytic control regions (Fig 8F). This sug-

gests that JQ1 treatment leads to a rapid (1 hr) change chromatin regulatory factors interac-

tions, including the loss of RAD21 and an increase of RNAPII at lytic promoters. This occurs

as early as BRD2 and BRD4 disruption can be detected. To investigate whether chromosome

conformation was also affected at this early time point, we performed 3C at 1 hr post-treat-

ment with JQ1 (Fig 8I). We observed a small, but statistically significant decrease in 3C link-

ages at 72974 and 77153, indicating that the interaction between the latent and lytic control

regions show signs of disruption at the earliest time points measured, and preceding viral lytic

DNA replication.

Discussion

Pharmacogenomics is a valuable tool for understanding biological process and pathways

affected by small molecules and candidate pharmacological agents. Here, we have screened a

focus library of small molecules with known inhibitory activities directed towards cellular epi-

genetic regulators and assayed these for their ability to stimulate KSHV lytic cycle gene expres-

sion in latently infected B-lymphoma cells. We found that bromodomain inhibitors, including

JQ1, were among the more potent activators of KSHV lytic cycle gene expression. JQ1 was

found to induce KSHV lytic cycle transcription, as well as DNA replication, in several different

PEL cell lines. We investigated the mechanism of action of JQ1, focusing on the well-character-

ized JQ1 target proteins BRD2 and BRD4. BRD2 and BRD4 were found to interact with KSHV

episomes at latency control regions, including the LANA binding sites in TR, and CTCF-cohe-

sin sites at the latency and lytic control regions. Depletion of BRD2 or BRD4 partially phe-

nocopied JQ1 activation of KSHV lytic transcription. JQ1 reduced binding of LANA to the TR

and latency control region, but did not destabilize the interaction of BRD4 or BRD2 with

LANA protein. JQ1 reduced RAD21 binding and disrupted a DNA loop interaction between

the latent and lytic control regions. Taken together, these findings suggest that BRD2 and

BRD4 contribute to maintaining the KSHV latent state, including a RAD21-dependent chro-

mosome conformation important for KSHV latency control (Fig 9).

In contrast to our findings, others have found that JQ1 and another BET inhibitor I-BET151

show no evidence of KSHV reactivation [47, 50]. One possible explanation for these different

observations is the different conditions used for JQ1 treatment. In our study, we applied 4 μM

JQ1 every day for 3 days, while the previous study applied 0.5 μM once and assayed 72 hrs later.

We confirmed that JQ1 can inhibit cMyc transcription as early as 6 hrs after addition of JQ1
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(Figs 3 and S1). JQ1 has been shown to inhibit B-cell lymphoma proliferation by disrupting

the super-enhancer activation of the cMyc gene [41, 51]. For KSHV infected PEL cells, JQ1

was found to enhance cell killing in the presence of lenalidomide which was found to selec-

tively degrade and inhibit the IKZF1-IRF4 pathway [50]. It is possible that lenalidomide in

Fig 8. JQ1 alters epigenomic programming of KSHV latency control region. (A) Schematic of KSHV

genome and primer positions a-h used for ChIP assays. (B-H) BCBL1 cells treated with 1% DMSO or 4uM

JQ1 for 1 hr were assayed by ChIP for IgG or (B) BRD4, (C) BRD2, (D) CTCF (E) Rad21 (F) RNAPII, (G)

H3AcK9, or (H) LANA. (I) 3C assay in BCBL1 cells treated with 1% DMSO or 4uM JQ1 for 1 hr using anchor

and acceptor primers, as indicated, * P < 0.05 ** P < 0.01, nd is not determined.

doi:10.1371/journal.ppat.1006100.g008
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combination with BET inhibitors prevents KSHV lytic reactivation. It is also possible that JQ1

inhibition of cMyc and other targets may trigger disruption of KSHV latency through addi-

tional indirect mechanisms. This would be consistent with the relatively slow kinetics of viral

reactivation after JQ1 treatment. However, our finding that JQ1 rapidly reduces BRD2,

BRD4, LANA and RAD21 interaction with KSHV genomes, and alters KSHV chromatin con-

formation independently of viral DNA replication, suggest that JQ1 can also act directly on

the KSHV epigenome.

BET inhibitors, including JQ1, are known to activate transcription of latent forms of HIV

[42]. For this reason, BET inhibitors have been considered for lytic therapy to cure latent HIV

[52]. The mechanism for BET inhibitor activation of HIV may involve complicated and indi-

rect mechanisms for BRD4 and BRD2 [42, 53]. Inhibition of BRD4 has been shown to release

Fig 9. Model of JQ1 interruption of KSHV latency epigenome. Latent KSHV episomes bind BRD2 and

BRD4 at sites that stabilize RNA polymerase pausing and elongation at latency control region for efficient

LANA transcription. BRD2 and BRD4 binding to LANA protein promotes LANA binding to TR and stabilizes

interactions between latent and lytic control regions. JQ1 reduces LANA binding to TR and latency control

region, prevents efficient RNA pol II transcription of LANA, and destabilization DNA loop between latency and

lytic control region.

doi:10.1371/journal.ppat.1006100.g009
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its interaction with 7SK repressor complex to activate RNA polymerase elongation factor

pTEFb (cyclin T1 and CDK9) to drive RNA polymerase past positioned nucleosome and TAR

RNA barriers [54]. In addition, BRD2 can associate with acetylated TAT protein, as well as

interact with transcriptional activators and repressors that regulate HIV reactivation [53].

There are interesting parallels between HIV and KSHV latency control. Similar to HIV, KSHV

latency transcription is regulated by a strongly positioned nucleosome and RNA polymerase

pausing [55, 56]. The positioned nucleosome and RNA polymerase pausing depends on the

cluster of CTCF binding sites in the first intron of the LANA transcript [55]. Moreover, RNA

polymerase associated negative elongation factor (NELF) has been implicated in the control of

KSHV lytic transcripts [57]. We found that JQ1 increased RNA polymerase II occupancy at

the LANA transcript at very early times (1 hr) after treatment (Fig 8E), but this decreased at

later times (72 hrs) (Fig 6D). JQ1 decreases 3C loop formation partially at early times (Fig 8I),

and more significant at later times (Fig 7B). JQ1 disruption of BRD2 and BRD4 interaction

with chromatin is known to occur at very early times, but how these early events regulate sub-

sequent transcriptional and conformational events are not known. We suggest that JQ1 direct

disruption of BRD2 and BRD4 interaction with KSHV chromatin leads to several subsequent

events, including the loss of LANA binding to TR, loss of RAD21-dependent conformational

control, and transcriptional derepression of KSHV lytic immediate early genes.

LANA is known to bind to BRD2 [58] and BRD4 [31, 32], and biophysical analyses revealed

a direct interaction with the LANA DNA binding domain [30]. Interaction with BRD2/4 has

been implicated in LANA metaphase chromosome tethering, as well as with transcriptional

regulation [31, 32]. Our results provide evidence that inhibition of bromodomain function by

JQ1 reduces LANA interaction with viral genomic DNA, suggesting that these interactions are

mediated, in part, through BRD2 and BRD4 association with acetylated lysines. While LANA

may have acetylated lysines [59], it is unlikely that BRD4 associated with LANA through ace-

tyl-lysine binding, as this interaction is known to occur through the BET domain indepen-

dently of the bromodomains [31]. Consistent with this, we show that JQ1 did not disrupt the

interaction between LANA and BRD2 or BRD4 (Fig 5C). In contrast, JQ1 interfered with

LANA binding at multiple regions of the genome, including sites that lack known consensus

DNA recognition sites, such as at the latency and lytic control regions. We also observed that

lytic induction by NaB reduced BRD2 binding throughout the KSHV genome (S3 Fig), but

increased BRD4 binding to the latent and lytic control regions at early times after treatment

(S3 Fig). This suggests that BRD2 and BRD4 have separate functions in KSHV reactivation,

although additional experiments will be necessary to sort these out more precisely. BRD2 and

BRD4 association with LANA is likely to facilitate LANA interaction with acetylated histones

at these sites on the viral genome. This suggests that BRD2 and BRD4 facilitate LANA binding

to TR in the context of chromatin, as well as target LANA to some epigenetic modifications

associated with latent and lytic control regions on the viral genome.

Our findings also suggest that JQ1 disrupts the 3D conformation of the KSHV genome dur-

ing latency. This disruption was reflected in the loss of 3C DNA interactions between latent

and lytic control regions, as well as the reduction in Rad21 binding at the latency control

region. Previous studies have indicated that Rad21 is essential for KSHV DNA conformation

and loop interactions, consistent with the known function of cohesin in mediating DNA-DNA

interactions [19]. LANA is also found to interact weakly with the latency and lytic control

regions by ChIP assay (Fig 6F) [29, 59]. Therefore, it is possible that LANA in association with

BRD2 and BRD4 mediates additional contacts between the TR and other regions of the viral

genome during latency. Since JQ1 has a major effect on LANA-BRD4/BRD2 binding to TR,

we propose that LANA binding at TR is important for maintaining the overall conformation

of KSHV during latency (Fig 9). However, we were unable to demonstrate any direct physical
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interaction between BRD2 or BRD4 with cohesin subunit RAD21 (S4 Fig), suggesting the con-

formational control of KSHV latency involves additional factors.

High-throughput screening identified several other epigenetic modulators that may regu-

late KSHV lytic reactivation. We found that other BET inhibitors, including IBET-151 (Figs 3

and S1), PFI-1 and Bromosporine (general inhibitors of BRD2 and BRD4), showed low micro-

molar activity for KSHV reactivation. We also observed activity with several other epigenetic

modulators, including inhibitors of G9A and GLP histone H3K9 methylation (UNC0638,

UNC0642, and A-366). This may suggest that H3K9 methylation is an important regulator of

KSHV latency in B-lymphocytes (e.g. BJAB cells) and PEL cells. This is consistent with previous

studies that found peaks and valleys of H3K9me3 on the KSHV genome in latently infected

BCBL1 cells [60], and may warrant future investigation. Inhibitors of EZH2 H3K27me3 methyl-

transferase, such as DZNep, has previously been shown to reactivate KSHV [7]. DZNep was not

part of our compound library screen, and although we confirmed that H3K27me3 was enriched

at lytic promoter regions (S5 Fig), we did not see any effect on H3K27me3 after BRD2 or BRD4

depletion. This suggests that BRD2 and BRD4 may function independently of the H3K27me3

associated Polycomb repression of KSHV.

The findings from this study suggest that multiple epigenetic pathways regulate KSHV

latent to lytic switch. Various epigenetic modifications and processes are required to maintain

the stable latent cycle gene expression program and the associated chromosome conformation.

This information may provide some clinical insights into the treatment of KSHV associated

disease. As JQ1 can provide a robust lytic initiating signal for latent KSHV, it may serve as an

adjuvant for immune-based therapies and in combination with lytic cycle inhibitors, like gan-

cyclovir, for pharmacological treatment of KS.

Methods

Cells culture and transfection

BJAB (uninfected B cell lymphoma) cells (ATCC), SLK (uninfected) cells (NIH AIDS reagent

program), BJAB-BAC16 cells, KSHV positive PEL cells (BCBL1, BC3) (gift of Yan Yuan,

UPENN), and double positive KSHV and EBV infected PEL cells (JSC-1, BC1) (gift of Yan

Yuan, UPENN) were grown in RPMI medium (Gibco BRL) containing 10% heat-inactivated

fetal bovine serum and the antibiotics penicillin and streptomycin (50U/ml). 293T cells

(ATCC), iSLK (gift of J. Jung, USC and D. Ganem, Novartis) and SLK-BAC16 were cultured

in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum and the antibiotics. iSLK

cells were cultured in the presence of 1 μg/ml puromycin and 250 μg/ml G418. KSHV BAC16

and its derivatives were introduced into iSLK cells via Fugene HD transfection as described

previously [61]. Two days post transfection, iSLK-BAC16 cell lines were established and main-

tained in the presence of 1ug/ml puromycin, 250ug/ml G418, and 1,000ug/ml hygromycin B.

For transient transfection, actively growing 293T cells were processed with Lipofectamine

reagent (Invitrogen), and the cells were harvested 72 hours post transfection. All cells were cul-

tured at 37˚C in a 5% CO2 environment.

KSHV BAC16 virus production and infection

Stable iSLK-BAC16 cells were induced in the presence of both doxycycline (1 μg/ml) and

sodium butyrate (1 mM) and the absence of hygromycin, puromycin, and G418. Four days

later, supernatant was collected and cleared of cells and debris by centrifugation (1,000 g for 15

min at 4˚C) and filtration (0.45 μm). Virus particles were pelleted in 25% sucrose/1x PBS solu-

tion by ultracentrifugation (100,000 g for 1 h at 4˚C). BJAB and SLK cells were infected with

concentrated KSHV-BAC16 viruses derived from induced iSLK-BAC16 cells as described
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above. BJAB cells were subjected to spin infection for 30 min at 450 x g and 25˚C in the pres-

ence of 8 ug/ml of polybrene (Sigma). SLK cells were seeded at approximately 2x105 cells/well

in 6 well plate 24h prior to infection and then inoculate overnight. After 48 hrs, cells were

selected by hygromycin at 200ug/ml for 2 weeks and KSHV episome presence was checked by

PFGE. Derived stable lines were designated as BJAB-BAC16 or SLK-BAC16 cells.

Plasmids

KSHV LANA was cloned into p3XFLAG-CMV-24 (Sigma) as described previously [59].

Human BRD4 and BRD2 expression constructs were a gift from Dr. Jianxin You (University

of Pennsylvania, School of Medicine).

Generation of shRNA lentiviruses and lentivirus infection

Lentiviruses were generated and lentivirus infection were performed as described previously

[16]. PEL cells were harvested at 6 or 10 days post puromycin selection. shRNA for BRD2

(TRCN0000006308 and 6309) and BRD4 (TRCN0000021427 and 21428) were obtained from

Sigma TRC library.

Compound screening of epigenetic library

A library of 24 compounds with known epigenetic targets were arrayed in 10-point dose

response analysis from 20μM to 1nM. Row B17-B22 and O3-O8 received 2 μM sodium buty-

rate and 50 μg/ml TPA as positive control for lytic reactivation, and the remaining wells of row

B and O received DMSO (0.2% final concentration).

BJAB-BAC16 cells were generated by infecting BJAB cells with recombinant BAC16 KSHV

derived virus and maintained in RPMI with 10% FBS. 50 μl containing 25,000 BJAB-BAC16 cells

were dispensed using a Biotek Microflo into clear 384-well tissue culture plates (Greiner Inc., cat#

781–192). Fifty nanoliters per well of test compound was transferred to assay plates using a Janus

MDT equipped with a 384 nanohead (Perkin-Elmer Inc). Cells were incubated with compounds

for 48 h at 37˚C in 5% CO2 incubator. To determine the lytic population, 10,000 GFP-positive

live cells were analyzed by fluorescence activated flow cytometry (FACS) using a high-throughput

sampler attached to a BD FACSCalibur (BD Biosciences). The gate for the lytic population was

set by the increment of GFP intensity during lytic reactivation. The percentage of lytic cells was

acquired from this gate for data analysis. Similarly, cells were analyzed to by an Operetta high con-

tent scanner (Perkin Elmer, Inc) with a 20x objective. For Operetta analysis, assay plates were pre-

pared by incubating 5,000 BJAB-BAC16 cells with compounds in 50 μl of RPMI at 37˚C in 5%

CO2. Plates were centrifuged at 250g for one minute and 3 fields per well were subsequently

imaged at 24h and 48h post drug treatment. The acquired GFP fluorescent images were analyzed

using Harmony software and GFP intensity per cell was determined. Data of test compounds was

normalized to DMSO controls to calculate fold lytic activation (i.e., fold lytic activation = test

(compound)/average(DMSO)). EC50 values were determined using Spotfire (TIBCO, Perkin-

Elmer) data analysis. Active compounds of interest for further study were defined as those with a

reproducible EC50 of less than 1μM in activating lytic replication. A Z’-factor was calculated to

measure the statistical relevance of the screen, where Z’ equals (1 − 3(σp − σn)/|μp − μn|) where σ
is variance, μ is mean, with p representing positive controls, and n negative.

ChIP

Chromatin immunoprecipitation (ChIP) assays were performed as described previously [19].

Antibodies used in the ChIP assays are listed below. Primers for ChIP assays were used as
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described previously [19]. PCR data were normalized to input values that were quantified in

parallel for each experiment.

Antibodies and reagents

The following antibodies were used for ChIP assays: anti-IgG (Santa Cruz Biotechnology), anti-

CTCF (Millipore), anti-Rad21 (Abcam), anti-acetylated H3K9 (Millipore), RNA polymerase II

(Santa Cruz sc-889x), anti-BRD2 (Bethyl), anti-BRD4 (Bethyl) antibodies. The mouse monoclonal

antibody anti-IgG (Santa Cruz Biotechnology) and Rat anti-KSHV LANA antibody (Advanced

Biotechnologies Inc.) were used for ChIP assays. Rabbit polyclonal anti-BRD4 (Bethyl), mouse

monoclonal anti-actin (Sigma) and anti-FLAG (Sigma) antibodies were used for Western blot-

ting. JQ1 was a gift from the Jay Bradner Lab, I-BET151 from Sigma-Aldrich and BIC1 from Cal-

biochem and were used at a concentration of 4 uM. Phosphonoacetic acid (PAA) was purchased

from Sigma and used at a concentration of 400 ug/ml.

Quantification of viral intracellular DNA.

The amount of intracellular KSHV DNA was determined by quantitative PCR (qPCR) analysis

of purified total genomic DNA as described previously [19].

IP

Immunoprecipitation (IP) was performed as described previously [62].

RT-qPCR

RT-PCR was performed as described previously [19].

PFGE and southern analysis

BCBL1 cells infected with lentivirus expressing shControl, shBRD2 or shBRD4 were used for

PFGE and PFGE was performed as described previously [19]. Hirt DNA extraction and South-

ern analysis were performed as described previously [19]. KSHV DNA was quantified by

PhorphorImager.

Statistical analysis

p-values were calculated by 2-tailed student t-test using Excel (Microsoft, Redmond, WA). �

p<0.05, �� p<0.01, ��� p<0.001.

Supporting Information

S1 Fig. BET inhibitors induce KSHV lytic reactivation in BC3 cells. RT-qPCR for c-myc,

LANA, ORF50 and PAN relative to actin in BC3 cells treated with 1%DMSO, 4uM JQ1, or

4uM IBET-151 for the indicated times. The data are expressed as fold change of the JQ1 or

I-BET151 versus untreated (DMSO) cells. � P < 0.05 �� P< 0.01 ��� P< 0.001.

(TIF)

S2 Fig. Effects of viral lytic replication on JQ1 inhibition of RAD21 and LANA binding.

(A) qPCR of KSHV genome in BCBL1 cells treated daily with DMSO, JQ1 (4 μM), or JQ1

(4 μM) + PAA (400 μg/ml) for 72 hrs. The data are expressed as fold change of the JQ1 + PAA

treated versus JQ1 treated cells. ��� P < 0.001. (B) ChIP assay for RAD21 in BCBL1 cells

treated as described in panel A. (C) ChIP assay for LANA in BCLB1 cells treated as described

in panel A. ChIP DNA was analyzed at KSHV genome with primers sets described in Fig 5A. �
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P< 0.05 �� P < 0.01.

(TIF)

S3 Fig. Sodium Butyrate (NaB) alters BRD2 and BRD4 binding to KSHV genome. (A)

Schematic of KSHV genome and position of primers used for ChIP assay. (B -D) BCBL1 cells

were treated with DMSO control, JQ1 (4 μM) or NaB (2 mM) for 1 hr (panels B and C) or 72

hrs (panels D and E) and then assayed by ChIP with antibody to either BRD2 (panels B and

D) or BRD4 (panel C and E). � P< 0.05 �� P < 0.01.

(TIF)

S4 Fig. Failure to CoIP BRD2 or BRD4 with RAD21. BCBL1 cells were treated with DMSO

or JQ1 for 1 hr and then processed for IP with antibody to RAD21 or IgG and then assayed by

Western blot with antibody to RAD21, BRD4, BRD2, or SMC1 (left panel). Similarly, BCBL1

cells were processed for IP with either BRD2, BRD4, or IgG and assayed by Western blot with

antibody for RAD21, BRD4, BRD2, or LANA (right panel). While RAD21 could coIP with

SMC1, it did not coIP with BRD2 or BRD4. Similarly, while BRD4 could coIP with LANA it

did not coIP with RAD21 or BRD2. BRD2 did not coIP with LANA, BRD4, or RAD21.

(TIF)

S5 Fig. H3K27me3 is elevated at KSHV lytic control region but not affected by shRNA

depletion of BRD2 or BRD4. (A) KSHV genome and primer positions for ChIP assay. (B)

BCBL1 cells transduced with shControl, shBRD2, or shBRD4 were subject to ChIP assay with

antibody to IgG or H3K27me3. While H3K27me3 is elevated at lytic control region (primers

a-d), the depletion of BRD2 or BRD4 did not affect H3K27me3 levels. shBRD2 and shBRD4

depletion was from material shown in Fig 4.

(TIF)
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