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Abstract: Pulsed laser ablation in liquid, used for nanoparticle synthesis from solid bulk metal targets
(a top-down approach), has been a hot topic of research in the past few decades. It is a highly
efficient and ‘green’ fabrication method for producing pure, stable, non-toxic (ligand-free), colloidal
nanoparticles, which is often challenging using traditional chemical methods. Due to the short time
scale interaction between the laser pulses and the target, it is difficult to achieve complete control on
the physical characteristics of metallic nanoparticles. Laser process parameters, liquid environment,
and external fields vastly effect the shape and structure of nanoparticles for targeted applications.
Past reviews on pulsed laser ablation have focused extensively on synthesising different materials
using this technique but little attention has been given to explaining the dependency aspect of the
process parameters in fine-tuning the nanoparticle characteristics. In this study, we reviewed the
state of the art literature available on this technique, which can help the scientific community develop
a comprehensive understanding with special insights into the laser ablation mechanism. We further
examined the importance of these process parameters in improving the ablation rate and productivity
and analysed the morphology, size distribution, and structure of the obtained nanoparticles. Finally,
the challenges faced in nanoparticle research and prospects are presented.

Keywords: pulsed laser ablation; colloidal; nanoparticles; physiochemical interactions; laser pro-
cess parameters

1. Introduction

Owing to their various functions, applications, and unique physiochemical properties,
nanoparticles (NPs) have attained significant technological attention in the past [1]. Because
of their larger surface area to volume ratio, NPs are highly reactive and provide an excellent
depiction of catalytic, optical, physicochemical and magnetic properties relative to bulk ma-
terials [2]. In the viewpoint of application, metal NPs have been extensively used in various
industrial applications, such as in nanofilters for wastewater treatment in the petroleum
industry [3], heterogeneous catalysts in the chemical industry [4], photodetectors in the
automotive and space industries [5,6], quantum dots in the semiconductor industry [7],
and disease diagnosis and drug delivery in the medical and pharmaceutical industries [8].
They are mainly classified based on top-down (bulk material to powder or particle form)
or bottom-up (atoms to nanoclusters) approaches. However, another relevant way of

Nanomaterials 2022, 12, 2144. https://doi.org/10.3390/nano12132144 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12132144
https://doi.org/10.3390/nano12132144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-6532-2284
https://orcid.org/0000-0002-8356-0542
https://doi.org/10.3390/nano12132144
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12132144?type=check_update&version=2


Nanomaterials 2022, 12, 2144 2 of 32

representing their classifications is the precise methods [9–24] (i.e., physical, chemical, and
biological as detailed in Figure 1) that have been used for synthesising metal NPs.

Figure 1. Different methods found in the literature for synthesising metal nanoparticles.

The chemical method is a bottom-up technique that involves the use of the wet-
chemistry approach for producing NPs from chemical reactions, which has been a popular
synthesis approach for many years [25]. However, the use of precursors, surfactants,
capping agents, and solvents for particle stabilisation is challenging and along with it are
risks of residual contamination, difficulty in particle functionalisation, and further harmful
effects on the environment, which remain unrealised.

Biological synthesis is a green and environment-friendly approach that uses extracts
from plants (e.g., algae, fungi, and yeast), microbes, and natural sources [26]. It has been
found effective in producing biocatalysts in the agriculture sector and is currently being
researched for other fields of application. However, significant improvements are still
needed to develop this technology for the commercial scale of NP production.

Physical methods involve producing NPs in an environment-friendly manner using a
top-down approach and avoiding solvent contamination. The use of high temperature and
pressure conditions assisting stabilised and controlled particle growth makes it attractive
to researchers and industries. However, the challenge in using this approach is its cost-
effectiveness as the manufacturing equipment and energy requirement for NP fabrication
at a commercial scale are expensive.

Among the physical methods, one such technique that stands out in terms of ease of
production and effectiveness in controlling particle size distribution and nanostructure
growth is pulsed laser ablation. Additionally, the advantage PLAL offers is that it is
the fastest way to obtain colloidal nanoparticles. It may be performed in various media
(i.e., air, vacuum, or liquid) [27]. Compared with air and gaseous media, pulsed laser
ablation in liquid (PLAL) medium is a highly popular technique extensively used for NP
fabrication [28].

RStudio was used to perform bibliometric analysis, and then, a word cloud was
generated (Figure 2), which is a descriptive visualisation of keywords found in the literature
related to PLAL. The relative font size in the word cloud signifies the frequency of the
keywords appearing in PLAL-related manuscripts.
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Figure 2. Bibliometric analysis of keywords related to pulsed laser ablation in liquid medium found
in the literature using word cloud tool.

The use of the pulsed laser ablation technique was first reported in 1987 by Patil
et al. [29] for synthesising iron oxide NPs and, since then, the synthesis of different metallic
NPs using PLAL has been used in various commercial industries, such as food, biomedical,
electronics, and optical (Table 1).

PLAL has several advantages over other methods, which include reduced reaction
time, the avoidance of multistep synthetic procedures, the absence of reducing agents,
laboratory safety, low toxicity, and the ease of extraction because the generated NPs are
confined within the liquid zone, making it an environment-friendly process [30].

Apart from its usage in the commercial industry, researchers have studied the use
of PLAL in increasing the productivity of NPs. Mahdieh and Khosravi [31] reported an
increase in the productivity of colloidal brass NPs synthesised using PLAL in the presence
of external electric fields. Moreover, their findings encompassed surface plasmon resonance
and particle size distributions and showed an increase in particle concentration due to the
presence of an electric field.

Furthermore, researchers have proven that each laser type has its unique advantages,
which greatly broaden the range of choices available for synthesising different types of
nanomaterials, as required. Numerous new PLAL-generated nanomaterials have been
reported recently. Forsythe et al. [32] proposed the preparation of nanomaterials using
pulsed laser in liquids for catalysis in water oxidation, oxygen reduction, hydrogen evo-
lution, nitrogen reduction, carbon dioxide reduction, and organic oxidation, followed by
laser-made nanomaterials for light-driven catalytic processes and heterogeneous catalysis
of thermochemical processes. In their review, Fazio et al. [33] focused on laser-synthesised
NPs for selected applications (i.e., sensing, biomedicine, and catalysis). Moreover, Naser
et al. [34] presented the parameters affecting the size of gold NPs prepared using PLAL.
Xiao et al. [35] reported the progress in external field-assisted laser ablation in liquid, an
efficient strategy for nanocrystal synthesis and nanostructure assembly. Zhang et al. [36]
proposed the preparation of colloidal metal NPs through laser ablation and their applica-
tions in catalysis, biology, sensing, and clean energy generation and storage. Jaleh et al. [37]
reported on the recent investigations into laser-mediated synthesis of nanocomposites for
environmental remediation. Al-Kattan et al. [38] analysed short-pulse lasers as a versatile
tool for creating novel nano- and microstructures and compositional analysis for healthcare
and wellbeing challenges, respectively.
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Table 1. Applications of various metal-based nanoparticles used in various industrial sectors.

Reference Metal-Based Nanoparticle Industry Applications

Hussain et al. (2021) [39]
Hogeweg et al. (2018) [40]
Mahmoud et al. (2018) [41]

You et al. (2021) [42]

ZnO, SiO2,
CuO, Al2O3, TiO2

Fe2O3

Oil and gas
For enhanced oil recovery (EOR),

drilling fluids,
wastewater treatment

Chellaram et al. (2014) [43]
Sahani et al. (2021) [44]

Madkour et al. (2021) [45]
Tayel et al. (2011) [46]

TiO2, SiO2
ZnO, MgO Food industry

Food packaging and preservation,
additive to improve food texture

and colour, contaminant
detection;

flavouring powders

Díez-Pascual (2018) [47]
Bhattacharyya et al. (2011) [48]

Rodrigues et al. (2019) [49]

ZnO, CuO, Ag2O3, NiO,
Bi2O3, MnO2, Al2O3, MgO Medical Used in antimicrobial,

antibacterial, antifungal treatment

Kong et al. (2017) [50]
Gu et al. (2020) [51]

Adams et al. (2014) [52]
Au, Pt, Pd. TiO, CeO Pharmaceutical industry

Used as catalyst in drug delivery
for anti-cancer, radiotherapy,

gene delivery

Aliofkhazraei (2016) [53]
Ali et al. (2016) [54]
Tan et al. (2019) [55]

FeO2,
Ag, CdS, GaN, Si, TiO2, Al Electronic industry

Used in solar cell development,
semiconductor devices, ink for 3D

printing in electronics

Al tuwirqi et al. (2020) [56]
Geppert et al. (2021) [57]

Jiang et al. (2018) [58]
Kalajahi et al. (2020) [59]

Fe2O3, ZnO, Medical devices
Imaging & bio-analysis, metal
nanoparticles doped carbon

quantum dots (CQDs)

Dinca et al. (2012) [60]
Rana et al. (2016) [61]

TiN
SiC,

Al, Fe2O3, Fe3O4, Cr
Aerospace industry

Nanoparticles as composites,
surface coatings for improving

the mechanical strength of aircraft
structures, data storage media

Factors, such as laser ablation time and medium, affect the properties of the produced
NPs [62]. Altuwirqi et al. [63] used the PLAL technique to fabricate copper (Cu) and copper
oxide (CuxO) NPs with a size range of 1–12 nm using spinach leaf extracts as the ablation
medium to increase the oxidation and productivity of NPs. They observed a reduction in
the particle size with an increase in the ablation time. Meanwhile, Du et al. [64] recognised
rare-earth-activated NPs from various applications, including high-tech products, green
technologies, bioimaging, and medical usage. To obtain inorganic NPs with different
morphologies and sizes, PLAL is a green and versatile technique. Additionally, they
investigated persistent luminescent SrAl2O4: Eu2+, Dy3+ by laser ablation in liquids and
their optical features. Cui et al. [65] fabricated carbon quantum dots (CQDs) by ablating
low-cost carbon cloth by ultrafast and highly efficient dual-beam pulsed laser ablation.
Furthermore, the CQDs have favourable stability and excellent anti-jamming performance,
which are well-suitable for cell bioimaging. Therefore, studying the PLAL mechanism is
particularly compelling to increase the primary understanding of the technique, precisely
because of the high interest of researchers involved in PLAL nanostructure production.
Some recent reviews of PLAL [66–68] have discussed the importance of the purity of NPs
as efficient catalysts for hydrogen production, multiplicity of targets, and different liquid
environments. In their study, Reichenberger et al. [68] demonstrated the importance of
laser synthesis for producing functionalised and ligand-free catalysts. However, PLAL still
continues to defy researchers on having a complete comprehension. Challenges in terms
of developing multi-metallic functionalised NPs and improvements in productivity and
stability remain a hot topic in this field of study.

Several reviews have extensively focused on application-oriented nanostructures.
Only a few review articles have focused on the essential aspects of explaining the differ-
ent nanostructural formations and morphologies obtained by varying input parameters.
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Furthermore, the simplicity of this process seems to be misunderstood with the internal
process interactions, which are far more complex in developing a complete understanding
of the PLAL technique. In this context, this review was designed to present a detailed
understanding of the effects of various laser parameters, the liquid environment, and
external fields (i.e., magnetic, electric, and temperature) on the ablation of various solid
metal targets and the resulting NP morphology, with a special focus on the challenges to
engineering the desired output nanostructure.

2. Mechanism of the PLAL Process

PLA is a product-output-oriented process that can be used for generating NPs and in
micro-machining applications [69]. Compared with the air medium, the liquid medium
has shown a prominent effect on the structural formation of NPs [70].

For synthesising customised NPs, the PLAL technique was first used and reported by
Nedderson et al. [71]. The PLAL process starts by directing a high-energy optical source
(pulsed laser radiation) in the perpendicular direction [72,73] towards the solid bulk metal
target submerged in liquid. The laser source can be directed from the top (Figure 3A) and
sideways (Figure 3B).

Figure 3. (A) Illustration of pulsed laser ablation in liquid technique showing the parametric
influence of laser input parameters, bulk material properties, and sequential events leading to
ablation. (B) Stages of pulsed laser ablation in liquid. Adapted with permission from Ref. [74].
Copyright 2016, intechopen.
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Once the laser–matter interaction occurs, a series of thermodynamic reactions occur
instantaneously, as sequenced below:

1. The absorption of radiation by the target metal surface electrons and transfer of energy
to the lattice;

2. Explosive vaporisation and creation of a plasma plume;
3. The generation of shockwaves in the solution due to temperature and pressure variations;
4. The creation of a cavitation bubble expansion, shrinkage at supersonic speeds, and

further diffusion, leading to the ablation of the metal target and release of NPs.

Due to the presence of a liquid medium (usually deionised water), these NPs further
interact to initiate various other chemical reactions depending on the properties of the target
material, type of solvent, pulse energy, and duration. Subsequently, the plasma is quenched
in the liquid, leading to the formation of electrically charged NPs in metastable phases [74].
Owing to the low productivity of this process, attributed to the higher threshold limit of
ablation in liquids compared to gaseous media, the adequate use of the aforementioned
process parameters is a critical aspect of this field of research [75].

3. Physical Interactions in the PLAL Process
3.1. Laser–Liquid Interaction

The high-intensity laser must initially pass through the liquid medium before inter-
acting with the target metal surface, which results in the refraction of the laser beam by
ambient liquid media [75]. Hence, to achieve a desirable focus on the target, the optimum
focal length should be calculated as given by [76].

∆ f = l

⌊
1 − f√

n2 f 2 + (n2 − 1)r2

⌋
(1)

Then, the laser intensity reduces due to dispersal by the liquid medium, interaction
with the reflected beam, and secondary interactions with the already generated NPs. Light-
scattering in laser attenuation systems in the different media was studied by Sulaiman
et al. [77]. The concentration of the solution can be calculated by measuring the absorbance
using the Beer–Lambert law.

A = εclo (2)

3.2. Radiation Absorption and Energy Transfer to the Lattice

When laser-induced photonic energy strikes the metal surface, inverse bremsstrahlung
(IB) [78] occurs, where radiation absorption results in the vibration of the electrons,
which are ejected because of the formation of superheated plasma at temperatures of
4000–6000 K [79] and explosive solid–vapor phase transition. The plasma further expands
adiabatically to create a shockwave at supersonic speeds, followed by rapid quenching
and confinement due to the presence of a liquid environment. It is further shown that
pulse duration (i.e., femtosecond, picosecond, and nanosecond pulses) affects the energy
absorption by electrons and lattice heating time using a two-temperature thermal-optical
model [80].

3.3. Cavitation Bubble Dynamics

Studies [81] have focused on the dynamics of cavitation bubble formation, shrinkage
and diffusion; some aspects of this thermodynamic process remain to be fully understood,
such as the boundary layer interactions between the profile of the metal target and the
liquid, surface tension, and pressure drop. Because these changes occur at a rapid level
(in a few micro-nanoseconds), it is assumed that the bubble expands and collapses due to
inertial cavitation and depends on the viscosity of the liquid. The shadowgraph technique
(Figure 4) has been used to record the bubble dynamics; however, due to gas, vapour, and
liquid media, as well as the refractive index being different in each medium, accurately
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predicting the thermodynamic behaviour of the bubble is impossible. It is further shown
that the impact of the laser pulse energy contributes to bubble growth.

Figure 4. Shadowgraph images of pulsed laser ablation of Ag in liquid showing optical emissions at
0 ns, shockwave generation at 60 and 570 ns, and cavitation bubble motion (i.e., generation, shrinkage,
and collapse) at 1.3–300 µs. Adapted with permission from Ref. [81]. Copyright 2007, The Japan
Society of Applied Physics.

Huang et al. [82] examined the bubble dynamics in terms of three oscillations and
found that the velocity and pressure variations inside the bubble led to their expansion
and shrinkage. They reported that the expansion velocity decreases moderately with
the oscillations and the shrinkage velocity increases immediately after each oscillation.
However, why the oscillations in the bubble appeared thrice before releasing NPs remains
to be explained. Senegačnik et al. [83] demonstrated that using the diffused illumination
technique, the fluid dynamics of the bubble growth, expansion, and shrinkage can be
examined more accurately. Dell Aglio et al. [72] explained the PLAL process using a time-
resolved diagnostic technique and it was shown that during bubble collapse and diffusion,
the NPs were released into the surrounding liquid, forming a colloidal solution. Reich
et al. [84] used visible light stroboscopic imaging and X-ray radiography to investigate the
bubble dynamics and found that the solid–liquid interface was a crucial factor in bubble
motion and contributed to the particle isolation and withdrawal force to create a secondary
collage of NPs. Moreover, changes in the liquid layer thickness have been shown to change
plasma dynamics. Nguyen et al. [85] investigated this point in their study and concluded
that if the liquid layer equates with the plasma size, a portion of the plasma forms in the air.
However, if it is thicker, plasma confinement occurs, causing the cavitation area to be in the
free boundary region [86].
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3.4. NP Formation and Release

To predict the formation of NPs, various theories have been presented [87–89]. Gia-
como et al. [90] examined plasma cooling using fast imaging and emission spectroscopy
techniques. It was shown that plasma intensities and temperature increased rapidly and
further decreased at an exponential rate. This rapid quenching phenomenon leads to
an energy transfer from the plume to the surrounding liquid (of high thermal capacity),
leading to an instant condensation and nucleation growth, leading to the formation of NPs.

To understand the physics behind the nucleation time and growth velocity of nano-
diamond particles by PLA of graphite targets in water, Wang et al. [91] proposed a theoreti-
cal kinetic approach and validated with experimental work that the isothermal nucleation
time ranges between 10−10 second and 1 nanosecond. Barbero et al. [92] investigated
the nucleation and aggregation stages of metallic NPs in a colloidal solution during laser
ablation. They explained that the nucleation mechanism is based on atoms evaporating
from the sample surface during the first microsecond of irradiation and then nucleating
into a plasma plume.

Taccogna et al. [93] presented a kinetic approach based on embryo growth through
explicit sequential adhesion of ions by coupling between granule charge and plasma plume
dynamics, resulting in the further aggregation and evaporation of atoms. However, an
explanation of the mechanism of the formation of NPs remains elusive. It is assumed
that vapour condensation has a dominant effect on the birth and growth of NPs, and
electron-ion combination in the confined plasma induces a chemical reaction that dictates
the size of NPs.

Once the ablated mass (newly formed NPs) gathers near the bubble surface, their vol-
ume increases due to aggregation, thereby exerting pressure on the bubble itself (Figure 4).
Bubble collapse induces a natural repelling force, which pushes the NPs away from the
target and releases them into the solution for further interaction with the surrounding
liquid medium.

A study on ZnO NPs [94] showed that the nanostructure and particle concentrations
heavily rely on laser input parameters. Furthermore, particle size control could be estab-
lished using the method adopted by Choudhury et al. [95], where the target geometry (Cu
and Au) was confined to a limited space due to which the generated shockwave reflected
from the confined boundary and interacted with the plasma plume, leading to longer
nucleation and hence the formation of larger NPs.

4. Laser Parameters Influencing the Ablation and Synthesis of Colloidal NPs

When performing a PLAL process in metals, the properties of the target material,
such as light and heat absorption, thermal diffusivity (DT), attenuation coefficient (α), the
heat of vaporisation (Hv), and density (ρ), dictate the laser performance [18]. Once the
target material properties are understood, the laser parameters can be chosen appropriately,
which are necessary to achieve the desired ablation of metals. Recently [73–96], research
has taken a further step, which involved the application of external magnetic, electric, and
temperature fields to examine the impact of light–matter interaction and to achieve shape
control on various types of nanocrystals. Experimental studies provide a perspective on
the working mechanism in PLAL but a critical review is necessary to find research gaps
related to this technique. To achieve the optimal conditions of laser parameters for the
desired nanostructure, no accurate model exists to date. However, with the experimental
investigations using the trial-and-error method, researchers have optimised them.

4.1. Source and Wavelength of Laser

Laser sources used in pulsed ablation of solid materials are classified into two cat-
egories; that is, a solid-state medium uses doped crystals or glass, such as Nd:YAG or
Ti-Sapphire, and the gas phase (excimer or CO2) uses photoemissions from unstable com-
pounds and decomposition [96]. The selection of the laser source and its wavelength is
essential in generating NPs with the desired morphology. Nd:YAG is the most common
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laser source that is pumped using an arc lamp or a laser diode, which produces near IR
wavelengths of light at λ = 1064 nm with the ability to double, triple, or quadruple the
frequency using optics, adding to the versatility of this solid-state source [97].

The simplicity of this source and the avoidance of hazardous gases make it the
most popular laser source in pulsed ablation research of solid metals. Ti-Sapphire re-
quires pumping from another laser source with a highly tuneable emission wavelength
(λ = 650–1100 nm) and could generate tens of femtoseconds of pulse duration [98]. They
can be very expensive because they require a second laser source. Excimer systems can
provide pulses as short as tens of nanoseconds, making them the source of choice in PLA
due to the versatility of ultraviolet light, which ablates many materials [99]. CO2 uses gas
discharge pumping and significant cooling to produce far IR wavelengths at two frequen-
cies, which could generate pulses of hundreds of nanoseconds, which makes their usage in
high-power industrial systems [100] favoured. The effects of wavelength (λ = 1064 nm and
193 nm) and laser source (Nd:YAG and ArF excimer) on the structure and productivity of
Pd NPs were shown by Mortazavi et al. [101].

It is shown that the Nd:YAG laser has a higher plasma temperature with an excellent
spherical structure and a high production rate of NPs compared to the ultraviolet wave-
length. The influence of ablation efficiency and the properties of NPs using picosecond
pulse ablation in Ag, Zn, and Mg in polyurethane-doped tetrahydrofuran was studied
by Schwenke et al. [102]. The use of a fundamental wavelength (λ = 1030 nm) yields a
much higher ablated mass after the same process time than the second harmonic wave-
length (λ = 515 nm). The influence of wavelength on size control of Pd NPs was studied
by Kim et al. [103]. The average size of NPs is small but has homogeneous distribu-
tion at λ = 355 nm and 532 nm, whereas, at λ = 1064 nm, the NP size is large and non-
homogeneous. Baladi et al. [104] synthesised Al NPs using PLA of an Al target in ethanol
and observed higher ablation efficiency and fine NP generation at higher wavelengths
(1064 nm) than at a wavelength of 533 nm.

Torrisi et al. [105] compared the effects of wavelength on solid Cu using Nd:YAG
(λ = 1064 nm) and XeCl excimer laser (λ = 308 nm) and showed that ultraviolet laser is
more efficient in evaporating the Cu atoms, even though IR radiation has higher kinetic
energy and plasma temperature. Solati et al. [106] investigated the effects of wavelength
and pulse energy on the morphology of ZnO NPs in deionised water. At a pulse wave-
length of 532 nm (Figure 5), they observed spherical-shaped NPs adjoined, whereas, at
1064 nm, they observed both spherical and sheet-like structures. In the case of graphene
sheets, Solati et al. [107] investigated the influence of both laser wavelength and fluence
on structural formation. Multilayer sheets were formed at 532 nm, and two layers were
formed at 1064 nm.

Figure 5. Cont.
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Figure 5. Scanning electron microscopy showing the morphology of ZnO nanoparticles at laser
wavelengths of 532 nm (top row) and 1064 nm (bottom). Adapted with permission from Ref. [106].
Copyright 2013, Elsevier Ltd.

It can be concluded that source and wavelength are important parameters to investi-
gate for nanoparticle formation. Choosing the laser source with fundamental and harmonic
wavelengths is critical in achieving the desired nanoparticle morphology and size distribu-
tion. Additionally, considering the cost effectiveness, some laser sources require additional
cooling setup and periodic maintenance.

4.2. Pulse Duration (Pulse Width)

Pulse duration (τL), as shown in Figure 6, is the time during which the active energy
is directed to the metal surface, resulting in light absorption, heat generation, and further
ionisation of the metal targets. Laser ablation of solids can be mathematically modelled
using a two-temperature thermal-optical model given by [35].

Figure 6. Representation of pulse width or duration.

The optical penetration (lα) of the laser on the target material is a function of the
attenuation coefficient (α) given by the following relation:

lα = 1/α (3)

The thermal penetration (lt) is a function of the thermal diffusivity (DT) of the target
material given by the following relation:

lt=
√

DT ·τL (4)

DT =
k

ρCP
(5)

where k is the thermal conductivity, ρ is the density, and Cp is the specific heat capacity of
the target material.
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The two-temperature model accounts for the energy absorption by the electrons and
tracks the transfer of thermal energy to the lattice over time. The model uses the heat
capacities of the electrons in the lattice.

This model uses three time scales:
Electron cooling time (τe)
Lattice heating time (τp)
Pulse duration (τL)

Ce
∂Te
∂t

=
∂

∂z

(
ke

∂Te
∂z

)
− γ(Te − T) + (1 − R)αI(T)e−αz (6)

C
∂T
∂t

= γ(Te − T) (7)

where Ce is the volumetric heat capacity of the electron, Te is the electron temperature,
C is the lattice volumetric heat capacity, ke is the electron thermal conductivity, γ is the
electron lattice energy transfer coefficient, α is the target attenuation coefficient, R is the
target reflectivity, and I is the laser intensity.

For femtosecond pulses, the energy is fully deposited before the electron cooling time
passes (τL << τe), resulting in:

Ce
∂T2

e
∂t

= 2(1 − R)αI(T)e−αz (8)

Ablation per pulse is further given by:

∆h ≈ ln
F

Fth
·α−1 (9)

For picosecond pulses, the electron cooling time is passed but not the lattice heating
time (τe << τp << τL), resulting in the following:

0 =
∂

∂z

(
ke

∂Te
∂z

)
− γ(Te − T) + (1 − R)αI(T)e−αz (10)

∆h ≈ ln
F

Fth
·α−1 (11)

For nanosecond pulses, the lattice heating time is exceeded (τp << τL), resulting in the
equilibrium of the lattice and electron given by the following:

C
∂T
∂t

=
∂

∂z

(
k

∂T
∂z

)
+ αIe−αz (12)

∆h ≈
√

D·τL (13)

Studies have shown that pulse duration can affect the structure, size, and composition
of NPs with time (i.e., initial, transition, and stable phases).

The ablation of aluminium (Al) targets in distilled water was analysed at different
pulse durations (i.e., 5 ns, 200 ps, and 30 fs) by Zhang et al. [108]. Moreover, the suspensions
resulted in variations in colour (nanosecond pulses showed a white colour, picosecond
pulses showed a light grey colour, and femtosecond pulses showed a brown colour) due
to surface plasmon effects. The size of the particles significantly increases with ageing
mainly due to coagulation with a spherical to doughnut-like structure observed, with
a cone structure using ns pulses, a triangular structure using picosecond pulses, and a
granular structure with uniform size distribution using fs pulses. Furthermore, it was
shown that ultrashort pulses resulted in short and homogeneous structures.

Sakka et al. [109] observed an increase in pulse duration, which decreased the ablation
rate, using ns-PLA of Cu in water. The influence of pulse duration on the mechanisms
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responsible for the generation of NPs at the initial stage of laser ablation was studied by
Shih et al. [110]. The mechanisms are the formation of a thin transient layer between the
interface of the plasma plume and liquid environment; nucleation, growth, and rapid
cooling of NPs above the transient metal layer; decomposition of ablation plume below
the transient layer leading to higher productivity; and broad size distribution of NPs using
nanosecond PLA.

Kabashin et al. [111] analysed the effects of femtosecond pulses on Au NPs in deionised
water. That is, thermal free ablation leads to colloids with sizes ranging from 3 to 10 nm,
and plasma-induced heating leads to a broader size distribution and larger particle size.
Jeon et al. [112] studied the effects of pulse width on Ag NPs in distilled water using
fs tons variation. The synthesis of the Ag NPs using fs and ps laser pulses produced a
yellow solution, whereas nanosecond pulses resulted in a grey solution. Regarding size
distribution, fs and ps pulses resulted in NP diameters ranging from 10 to 15 nm, whereas,
using ns pulses, the particle diameter increased with sizes reaching 75–85 nm (Figure 7).

Figure 7. Transmission electron microscopy images showing variations in shapes of dried Ag
nanoparticles using different pulse durations: (a) 164 fs, (b) 5 ps, (c) 4 ns, (d) 32 ns, (e) 64 ns, and
(f) 100 ns. Adapted with permission from Ref. [112]. Copyright 2017, Printed Electronics.

Thus, it can be concluded that pulse duration directly relates to optical and thermal
penetration depths into the lattice structure and dictates the shape of the produced nanopar-
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ticles, which is highly significant. In addition, it was observed that research utilizing
femtosecond and picosecond pulses are limited compared to experimental studies done
using nanosecond pulses. The dynamics of an ultra-short time scale still eludes researchers
to develop a complete understanding of the PLAL mechanism.

4.3. Laser Fluence

Laser fluence is an important parameter that influences the ablation of the metal target,
which measures the amount of optical energy deposited per unit area on the material
(J/m2). In contrast, laser intensity is the measure of the optical power per unit area (W/m2)
related to the optical breakdown of the liquid environment.

To ablate the material, the minimum deposition energy needed to achieve vapori-
sation is the threshold fluence (Fth). For short pulses, τL ≤ 10−11sec, the volume in the
heat-affected zone can be limited to optical penetration depth giving a threshold fluence
independent of the pulse duration.

Fth =
ρHv

α
(14)

For pulses
(
τL ≥ 10−11s

)
, the thermal penetration depth exceeds the optical penetra-

tion depth; therefore, the threshold fluence grows with the pulse length.

Fth = ρHvlt (15)

where Hv is the heat of vaporisation.
Research has shown that laser fluence influences NP size and distribution. Abbasi

et al. [113] examined the effects of laser fluence (1–3 J/m2) on Al NPs generated using
PLA of Al in deionised water. They observed that the size of the produced Al-oxide NPs
increased with fluence at levels below the threshold value. For values above the threshold
fluence, the particle size decreased. This is explained by the larger pulse energy absorption
in the liquid medium. Furthermore, the ablation rate increases with its fluence. Similarly,
Zn NPs were synthesised by PLAL in distilled water by Guillen et al. [114] at different
fluence ranges and water temperatures. They observed different morphologies (elongated
and spherical) with varying fluence rates (Figure 8).

Figure 8. Transmission electron microscopy images of the zinc nanoparticles produced at a laser
wavelength of 532 nm in distilled water (a–d) at 70 ◦C and (e–h) 90 ◦C with fluence values of
(a,b,e,f) 6.0 J/cm2 and (c,d,g,h) 8.6 J/cm2. Inset images illustrate (b,d,f,h) the size distribution,
(a,c,e,g) the selected area diffraction (SAED) patterns, and (a) the high-resolution transmission
electron microscopy image. Adapted with permission from Ref. [114]. Copyright 2015, Elsevier B.V.
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Haram et al. [115] investigated the effects of fluence (5.73–9.87 J/cm2) on CuO NPs in
distilled water. They observed that the width of the particle distribution and the mean size
increased with fluence. Amendola and Meneghetti [116] examined Au NPs in an aqueous
solution with laser fluence values varying from 12 to 442 mJ/cm2. They observed that
with ns pulses in the range of 4–30 nm, effective control of particle diameters was possible
through the mechanism of heating and rapid cooling.

Furthermore, for Au, a theoretical correlation between particle diameter and laser
fluence was reported by Pyatenko et al. [117] and experimentally investigated by Tsuji
et al. [118]. Laser fluence affects the optical properties and structure of CuO NPs by ablating
Cu in water, which was examined by Aghdam et al. [119]. They observed the crystal growth
of Cu2O NPs with increasing fluence. Xu et al. [120] analysed the effects of fluence on
Ag colloid NPs in distilled water. They observed that the smallest mean diameter was
17.54 nm and the narrowest particle distribution was 36.86 nm at a fluence of 4.2 J/cm2.
Colloidal NPs produced by ablating Al in ethanol are synthesised, and their effects on
fluence was investigated by Mozaffari et al. [121]. They observed that at two experimental
schemes (the electric field parallel and perpendicular to the laser propagation), the ablation
rate of NPs increased with fluence. Al-Douri et al. [122] examined the effects of laser
fluence on the size distribution of GaO NPs and observed an increased particle size with
higher fluence; moreover, they reported that the particle size depended on the nature of the
liquid environment.

Hence, past research has shown that fluence is an important aspect in determining
effective control on particle diameter. Additionally, the ablation rate of nanoparticles is
directly related to energy density.

4.4. Pulse Repetition Rate (PRR) or Pulse Frequency

Pulse frequency is the number of laser pulses emitted per second (Hz) (Figure 9). The
control of the pulse frequency is necessary due to the shielding effect produced by the
plasma over the laser pulse, which indirectly affects the productivity of the ablated NPs.
Thus, to reduce this shielding effect from the previous pulse and the successive overlap
with the next pulse, variance in PRR, beam spot size and relative motion between the
laser and target is required. An empirical relationship between the ablation rate and target
surface condition is given by the overlapping factor [70].

O f =

[
1 −

V
PRR

S + Vτ

]
× 100 (16)

where V is the scanning speed, T is the pulse duration, and S refers to the laser spot size on
the target.

Figure 9. Illustration of the pulse repetition rate of a laser wave.
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The average laser power is given by the product of the laser pulse energy and
pulse frequency.

Pavg = E·PRR (17)

If we increase the pulse energy (E), it may result in productivity losses in ablation;
therefore, methods for controlling the PRR in achieving the desired ablation productivity
are necessary. This can be performed by deflecting the laser using scanning and beam guid-
ance methods for achieving full temporal pulse separation. Meanwhile, Waag et al. [123]
conducted a comparative study on beam guidance methods (using galvanometric mirrors
and polygon wheels) in picosecond pulsed laser synthesis of Au and Pt colloidal NPs and
their alloys. They observed that the optimum laser power delivery for NP generation
depended on the scanning length of the beam, which further depended on the length of the
target material itself. Polygon wheel scanners are efficient in this case but at the expense
of power losses. Furthermore, Sa’adah et al. [124] analysed the effects of the PRR (i.e.,
5 HZ, 10 Hz and 15 Hz) on the synthesis of Zn colloidal NPs (Figure 10). It was observed
that varying the PRR changed the colour of the colloidal solution, indicating that different
particle size distribution and spherical shapes (single surface plasmon resonance peak) at
λ = 300 nm were obtained. For a PRR of 10 Hz and 15 Hz, the diameter of Zn NPs was
12.1 and 5.6, respectively.

Figure 10. (A) Zn nanoparticles prepared using pulsed laser ablation of Zn in deionised water at
different pulse frequencies of 5 Hz (light brown), 10 Hz (medium brown), and 15 Hz (dark brown).
(B) Scanning electron microscopy images showing the morphology of dried Zn nanoparticles at a
pulse repetition rate of 10 Hz. Adapted with permission from Ref. [124]. Copyright 2019, IOPscience.

Similarly, Alva et al. [125] investigated the effects of the laser ablation efficiency by
varying the PRR (1–10 Hz) of Ag NPs in ethanol. It was shown that the productivity
and ablation efficiency of Ag NPs increased with an increase in the PRR. For PLA of Ag
NPs in distilled water, the effects of the PRR (20 kHz) on morphology was studied by
Nikolov et al. [126] and optimal conditions were determined to achieve the highest ablation
efficiency. Similarly, Ganjali et al. [127] examined how Ni NPs were produced. Thus, the
significance of laser parameters in achieving control of the nanostructure and NP size is
demonstrated in Table 2.

Therefore, the laser ablation rate, productivity, and ablation efficiency increase with the
PRR and show an effect on the bandgap in semiconductors. The temperature and density
distribution in the plume strongly depend on pulse frequency and inter-pulse separation.
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Table 2. State of the art studies on different metal nanoparticles showing the influence of laser
parameters on the morphological, structural, and property changes in nanoparticles.

Reference Studied Metal/Metal
Oxide Nanoparticle Laser Parameters Characteristic

Investigated Remarks

Alwa et al. [125] Ag NPs

Laser wavelength
(355 nm, 532 nm)

Laser fluence
(38.2, 76.4, 144.6 J/cm2)

Stability
and size distribution

Spherical nanostructure
NP size increased with

wavelength
broader size distribution
with increased fluence

Ganjali et al. [127] Ni NPs Laser fluence per pulse
(50, 100, 150 mJ)

Structural, optical,
antibacterial property

Energy bandgap changed
with fluence. Enhanced
antibacterial activity by
reducing particle size

El Faham et al. [128] Mg NPs

Laser wavelength
(1064 nm)

Pulse duration: 7 ns
PRR: 10 Hz

Ablation time:
10–30 min

Spectral line intensities,
plasma parameters

An increase in ablation
time leads to a blue shift

in absorption, particle
size reduction (20–30 nm)

Menazea et al. [129] Ag NPs

Laser wavelength
(800 nm)

Pulse width: 40 fs
Power 1 mJ
PRR: 1 KHz

Ablation time: 15 min

Antibacterial efficiency,
structural &

optical properties

Spherical-shaped NPs,
uniform size distribution

Mostafa et al. [130] CdO NPs Pulse duration: 7 ns
Energy per pulse: 80 mJ Stability, morphology Crystalline and spherical

NPs of size 47 nm

Altowyan et al. [131] Au-Ag NPs
Pulse duration: 7 ns
Energy per pulse: 50,

150, 250 mJ

Effect of laser energy
on nanostructure

(Au)Core-(Ag)shell
nanostructure formation.

Ag-Shell thickness
increased with laser

energy

Alluhaybi et al. [132] Au NPs

Laser wavelength:
1064 nm

Pulse width: 8 ns
Fluence: 7.28, 17.03,

21.55 and 23.96 J/cm2

Structural,
morphological,

optical properties

Generation of spherical
NPs (7–30 nm)

An increase in ablation
energy yielded a blue

shift in absorbance,
smaller particles (30.1 to

7.5 nm)

Ibarra et al. [133] TiO2

Laser wavelength:
532 nm

Pulse width: 10 ns
Fluence: 0.65 J/cm2

Irradiation time: 45, 60,
75, 90 min

Optical properties,
energy bandgap

The shift of diffraction
peaks and bigger

spherical nanoparticles
with an increase in

irradiation time, phase
change of TiO2

Mendivil et al. [134] Pd NPs

Laser wavelength:
1064 nm

Pulse width: 10 ns
Fluence: 40.5–8 J/cm2

Irradiation time: 45, 60,
75, 90 min

Morphology,
nanostructure, the

effect of fluence on size
of nanoparticles

Spherical morphology,
cubic crystalline

nanostructure. Average
diameter increased with

reduction in fluence
(17 ± 6 nm for 40.5 J/cm2.
24 ± 7 nm for 18 J/cm2

27 ± 9 nm for 8 J/cm2)
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Table 2. Cont.

Reference Studied Metal/Metal
Oxide Nanoparticle Laser Parameters Characteristic

Investigated Remarks

Kupracz et al. [135] Fe based NPs

Laser wavelength:
1064 nm

Pulse width:6 ns
PRR: 10 Hz

Fluence: 9–21 J/cm2

Irradiation time:
2–32 min

Stability, composition

An increase in fluence
incrementally changes

the NP diameter. Longer
irradiation and storage
lead to agglomeration

Goncharova et al. [136] Cu NPs

Laser wavelength:
1064 nm

Pulse width: 7 ns
PRR: 20 Hz

Structure, morphology,
stability, composition

Cubic-shaped NPs
formed initially,

10–50-nm size range,
nanoribbons formed after

2 weeks

Altuwirqi et al. [56] Al NPs

Laser wavelength:
532 nm

Ablation time: 15 min
PRR: 10 Hz

Pulse width: 6 ns

Structure, morphology

Spherical morphology,
core-shell nanostructure

formation
Average diameter:

12 ± 9 nm

Riahi et al. [137] Al NPs

Laser wavelength:
1064 nm

Ablation time: 15 min
PRR: 10 Hz

Pulse width: 6–7 ns

Thermal conductivity,
optical properties

Increased thermal
conductivity of nanofluid.
Change in nanoparticle

concentration

Nassar et al. [138] Zn NPs

Laser wavelength:
800 nm

Ablation time: 10 min
PRR: 1 KHz

Pulse width: 130 fs

Effect of pulse energy
(0.05 mJ, 1.11 mJ, 1.15

mJ) on NP size and
distribution

NP size increases with
pulse energy

Higher absorption

5. Effects of a Liquid Environment on the Synthesis of NPs

The addition of reactive solutes in the liquid environment results in the chemical
interaction of metal NPs with oxygen atoms. Control on the composition of NPs can be
established by the nature of the solvent used because of the chemical interactivity of the
plasma plume with the solvent, particularly if the restriction of the plume is limited by the
viscosity/density of the solvent. Moreover, by using different solvents, the composition
of the nanostructure formed can vary. Kanitz et al. [139] examined the structure and mor-
phology of magnetic NPs using five solvents with femtosecond laser pulses and concluded
that the molecular structure of the liquid medium dictates the nanostructural formation.
However, the difference that femtosecond pulses make in structure formation compared
to nanosecond pulses has not been explained. Ablation in water has shown higher ab-
sorption than in other liquid mediums (i.e., ethanol and acetone). Gondal et al. [140]
assessed this effect on ZrO2 NPs and observed that the crystallite size changes due to the
oxidising medium.

Furthermore, Tsuji et al. [141] showed that solvent affects the ablation efficacy and
stability of NPs as well. Chemically reactive metals in water usually form oxides or
hydroxides. PLA of Ni and Sn in liquid has been shown to produce core-shell type
formations with a metal core and oxide layer on the surface [142]. Using femtosecond laser
pulse radiation and the β-cyclodextrin aqueous solution, stable Au NPs of sizes up to 2 nm
were achieved by Svetlichnyi et al. [143]. Using HCl, NaCl, and NaOH as electrolytes in an
aqueous solution, stable Ag NPs were produced [144]. Amendola et al. [145] examined PLA
of Fe in water that yielded a polycrystalline structure of FeOx NPs, which exhibit magnetic
properties and can have biomedical applications [146,147]. He et al. [148] observed the
behaviour of ZnO NPs using PLA of Zn in surfactant-free aqueous solutions. An increased
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surface charge of NPs leads to a narrow size distribution using surfactant-free solution,
and coalescence using NaCl by decreasing the surface charge was observed.

Bajaj et al. [149] investigated the effects of various liquid environments (i.e., deionised
water, ethanol, and acetone) on the size and shape of Sn NPs produced using the PLAL
technique and observed that the size distribution and particle size decreased with the use of
surfactants. PLA of Co in different solvents (i.e., water and hexane) was examined by Tsuji
et al. [150]. They observed that the formation of different compounds of Co mainly relies
on the solvent. A study on the nucleation, aggregation, and growth of Au NPs in different
ethanol concentrations was conducted by Tilaki et al. [151]. The effects of different solvent
(i.e., polyvinylpyrrolidone [PVP]) concentrations in distilled water for Cu NPs produced
using PLA were investigated by Budiati et al. [152]. They observed that the most stabilised
NPs were formed at a PVP concentration of 5 mM. Similar work on PLAL to examine the
effects of the liquid environment is presented in Table 3.

Table 3. State of the art studies conducted to examine the influence of liquid media on nanoparticle
formation.

Reference Liquid Medium Study
Formed

Nanostructure,
Morphology

Research Outcome

Lee et al. [153] Methanol, DIW,
hexane, acetonitrile

Cavitation bubble
dynamics of Ni NPs

FCC/HCP,
Pure FCC and

spherical-shaped NPs

Bubble lifetime and
crystal structure

depends on
liquid media

Solati et al. [154] Distilled water,
acetone, CTAB

Effect of liquid
environment on the
properties of TiO2

Polycrystalline,
spherical-shaped NPs

Distilled water
produces smaller,

narrow size
distribution, better

adhesion than
other solvents

Moura et al. [155] DDW, acetone
and ethanol

Study characteristics of
Ag NPs Spherical NPs

Liquid media play a
major role in the mean

size and size
distribution. Acetone

and ethanol resulted in
low productivity but a

bigger NP size.

Lasemi et al. [156] Distilled water, ethanol,
butanol, iso-propanol

Study the development
of Ni, Fe and W NPs Not reported

Ni showed more
incubation than

other metals.

Ali et al. [157] DIW, propanol

Study the
characteristics,

mechanical and
structural surface
changes in Ti NPs

Nanocones, -globules
in DIW

Dendritic, globular in
propanol

Ablation mass and
nanostructure

formation and bubble
confinement are
dictated by the
liquid medium

Lee et al. [158] DIW, methanol, hexane,
acetonitrile

Study chemical
reactivity of Au,

Au-GC NPs in various
solvents

Spherical,
agglomerated chains
and polycrystalline

nanostructure

The enhanced catalytic
activity of Au NPs

Nikov et al. [159] Chloroform, toluene
and ethanol

Study on the effect of
optical properties and

size distribution in
different solvents for

Au NPs

Spherical and
spheroidal morphology,

elongated
nanostructures

Mean size distribution
influenced by the

liquid medium
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6. Effects of External Field-Assisted Pulsed Laser Ablation

Another fascinating area of research has emerged in PLAL, which involves the intro-
duction of an external environment, such as an electric, magnetic, or temperature field,
to examine the behaviour of NPs [160]. External fields have shown a dominant effect on
nanostructural formation.

6.1. Electric Field-Assisted PLAL

The electric field significantly affects the transport of charged particles produced in
the plasma to the electrodes. However, in electric field-assisted PLA, the target material
does not react with the electrodes (Figure 11). Spadaro et al. [161] examined the application
of electric fields to producing molybdenum oxide NPs in water. They observed a structural
reorganisation in the NPs due to this influence. Meanwhile, Ismail et al. [162] analysed
the effects of an electric field on the properties of Bi2O3 NPs immersed in water. They
observed that the particle size increased with the application of an electric field, and
complete oxidation was achieved. Lui et al. [163] synthesised GeO2 NPs prepared under
the influence of an electric field. They proposed the growth mechanism of nanostructures
by varying the electric field to form metastable structures and shapes.

Figure 11. Illustration of electric field-assisted pulsed laser ablation of solid metal targets in
liquid media.

Haddad et al. [164] conducted a study on the effects of a DC electric field on the
synthesis of Au NPs. At low voltages (0.5–1 V/cm), the NPs are spherical and 10–18 nm
in size. With an increase in voltage, various shapes (i.e., cubes, nanospindles, triangles,
and rhombuses) with larger concentrations were observed. The optical and structural
synthesis of Pt NPs under an applied electric field was performed by Moniri et al. [165].
They observed that the size of the NPs decreases (from 20 to 9 nm) with the formation of
various shapes (i.e., rectangular, hexagonal, and rhombic), applied at larger electric voltage
values. An approach for controlling the size of Sn NPs through PLAL in the electric field
was proposed by Sapkota et al. [166].

Mahdieh et al. [167], in their study on PLA of Al NPs under an electric field, con-
cluded that the initial charge on the target has a significant effect on the morphology of
the produced NPs. Liu et al. [168] presented a novel technique for generating varying
nanostructures (i.e., nanoflower, nanoplate, and nanosalt) of Ag NPs by varying the electric
current density and influence of the electrode plate (Figure 12).
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Figure 12. Scanning electron microscopy images of Ag films produced in Si wafer after varying the
current densities at (A) 2, (B) 10, and (C) 200 µAcm−2. Adapted with permission from Ref. [168].
Copyright 2011, RSC Pub.

6.2. Magnetic Field-Assisted PLAL

A magnetic flux is generated by placing magnetic plates at either end of the ablation
chamber (Figure 13). Studies have shown that the introduction of a magnetic field enhanced
the ablation rate and optical properties of NPs. Safa et al. [169] experimentally investigated
the effects of varying the transverse magnetic field on NiO NPs. The strength of the
magnetic field is controlled by varying the distance between the magnets. Due to this
effect, agglomeration with cyclotron motion of the particles is reduced. Meanwhile, Ghaem
et al. [170] examined the effects of a DC magnetic field on Co NPs in distilled water. They
observed that the particle size reduces significantly with an increase in the applied magnetic
field and the formation of crystalline nanostructures. Similarly, for Ag NPs, a study was
conducted by Abbas et al. [171], who observed that the average diameter of the produced
particles increased from 14 nm to 25 nm by applying a magnetic field. Similarly, Kim
et al. [172] observed in their study on Ag NPs that the plasma emission increases with the
magnetic field. Ismael et al. [173] conducted a study on the influence of a magnetic field
on synthesised iron oxide NPs immersed in dimethylformamide. Transmission electron
microscopy (TEM) images confirm that the particle size reduces under the application of a
magnetic field.

Figure 13. Illustration of magnetic field-assisted pulsed laser ablation of solid metal targets in
liquid media.

Serkov et al. [174] examined the effects of laser-induced plasma under a high-intensity
magnetic field for Au NPs. They observed that the plasma emission started earlier and
increased the plume luminosity, and further accelerated the fragmentation of Au NPs.
Nikov et al. [175] presented a method for fabricating micron size particles using PLA of
nickel in double distilled water and ethanol under an external magnetic field. Musaev
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et al. [176] observed a higher fraction of spherical and shorter nanowires during the
synthesis of Au NPs due to the presence of a magnetic field. This formation was because of
the magnetic confinement of the plasma plume during the expansion process. The optical
properties and structure of Pt NPs were examined under the application of an external
magnetic field by [177]. They observed that the absorption peak is more evident, indicating
an increase in the ablation efficiency due to the effect of the magnetic field and an increase
in size and concentration of NPs. Figure 14 shows the agglomeration of NPs under an
applied magnetic field investigated by Dahash et al. [177].

Figure 14. Transmission electron microscopy images of spherical-shaped Pt nanoparticles in (A) water
and (B) methanol under the influence of a magnetic field. Adapted with permission from Ref. [177].
Copyright 2016, Sphinx Knowledge House.

6.3. Temperature Field-Assisted PLAL

In this ablation technique, the liquid environment is heated up to a certain temperature
using a hot plate (Figure 15) and its effect on NPs is examined. Solati and Dorranian [178]
experimentally used this technique to investigate the characteristics of ZnO in distilled
water at various temperatures (0 ◦C–60 ◦C). They observed that the size of NPs decreased
while their bandgap energy increased with the rise in water temperature. Moreover, the
ablation rate and crystallinity depend on the temperature. This effect is because of the
dynamics of cavitation bubbles. They further estimated the lattice strain in the produced
NPs and concluded that the size distribution highly depends on the temperature of the
ablated environment [179]. Haram and Ahmed [180] examined the formation of Ag and Au
nanochains and superclusters in distilled water at 70 ◦C. They observed ring-like structures
and further concluded that the effect of temperature has a fusion effect on NPs, which
produces nanochains and nanoclusters.

Figure 15. Illustration of temperature field-assisted pulsed laser ablation of solid metal targets in
liquid media.
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Menendez et al. [181] examined the effects of water temperature on the hydrodynamic
diameter and physical properties of gold NPs. They concluded that due to a reduction in
the hydrodynamic particle diameter, few agglomerates are dispersed in the liquid, thereby
reducing the poly-dispersity index of Au NPs. Contrary to studying the effects of increased
temperature, Hong et al. [182] investigated the impact of a cooled liquid environment at
room temperature. After ablation, a strong chemical reaction at the surface of the substrate
occurred during rapid cooling at vaporisation temperature. Furthermore, the ablation rate
decreased as the temperature was increased because of the formation of Si(OH)x debris,
which blocked the laser from further ablation. Guillen et al. [114] examined the structure
and morphology of ablated Zn NPs by varying liquid temperatures (i.e., 50 ◦C, 70 ◦C, and
90 ◦C). Temperature variations led to the formation of ZnO and Zn(OH)2 NPs of various
sizes and morphologies (Figure 16).

Figure 16. Transmission electron microscopy images of Zn nanoparticles at varying water tempera-
tures and fluence ranges. Adapted with permission from Ref. [114]. Copyright 2015, Elsevier B.V.

7. Bi-Metallic NPs

Because previous studies [32–86] focused on generating metal or metal oxide NPs from
a pure bulk metal surface, a new research area in synthesising alloy NPs (bi-metallic, tri-
metallic, etc.) has emerged. In this process, bulk metal alloy targets or one metal is ablated
into colloidal NPs of other metals to create a hybrid combination of nanocomposites [183,184]
for new applications, such as bioimaging and solar cell materials [185].

Based on a previous study, alloy NPs have improved thermophysical properties
compared to single-metal NPs [186]. To the best of our knowledge, studies in this area
are limited. Al-Douri et al. [187] conducted a study by ablating GaN plates immersed in
distilled water with nanosecond pulses and synthesised GaN colloidal NPs with variance
in the fluence range from 380 to 1500 J/cm2. They observed that the mean size and
productivity of the NPs increase with laser fluence because a rise in the laser absorptivity
has a considerable effect on the particle size. A further increase in the fluence resulted in
the interaction of the laser with colloidal NPs, leading to fragmentation and agglomeration.
Figure 17 illustrates the effect of fluence variations on productivity and the mean size of
the colloidal NPs.

Furthermore, Wagener et al. [188] synthesised FeAu alloy NPs by PLA of alloy metal
targets in different types of solvents. They observed that in the presence of acetone, the
formation of Au shells overlaps a non-oxidised iron core, and in the water medium, an
Au core with a Fe3O4 shell is generated, highlighting the crucial role of solvents in the
formation of the nanostructure. Neumeister et al. [189] analysed nine combinations (molar
fraction) of Au-Ag alloy compositions using PLA of bulk alloy targets in liquid, leading to
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the formation of homogenous alloy NPs. The mixing of elements is caused by ablation in a
liquid environment and re-solidification in a monophasic solid solution state.

Figure 17. Transmission electron microscopy images corresponding to a histogram of GaN-based
colloidal nanoparticles in distilled water for fluence values of (a) 1500 J/cm2, (b) 1100 J/cm, and
(c) 380 J/cm2. Adapted with permission from Ref. [187]. Copyright 2019, Elsevier B.V.

Semiconductor quantum dots are extensively useful in fabricating photovoltaic devices.
Hence, the synthesis of semiconducting nanocrystals using the PLA technique is a good
approach. Sharifi et al. [190] synthesised GaAs nanocrystals using PLA of a GaAs wafer
in liquid. Using this method, pure nanocrystals are obtained with a bandgap larger
than the bulk composite itself. Similarly, Al alloy NPs useful in aerospace applications
were synthesised by Roston et al. [191]. Similarly, nanoparticles synthesized for other
applications have been reported [192–197].
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8. Conclusions

PLAL is a fast-emerging technique for nanoparticle synthesis reported over the last
years. Obtaining pure, stable, ligand-free NPs and eliminating harmful precursors makes
PLAL standalone. Thus, it is not only a green technology but also economically viable
over traditional chemical routes of synthesis. It is concluded that laser parameters, liq-
uid medium, and external fields significantly impact the ablation process, effecting the
morphology and size distribution of colloidal NPs. Previous works on PLAL suggest
that femtosecond or picosecond pulses were better for nanoparticle generation-alienating
thermal interactions compared to nanosecond pulses. Lastly, the PLAL process is agile, i.e.,
produces functionalized nanoparticles, which can be tailored to suit a particular application.

9. Prospects

Despite development in scientific research related to PLAL, several issues need to be
addressed in this technique:

(1) Laser parameters can be further optimised by considering the effect of material
properties that play a major role in the nanostructure formation.

(2) The physiochemical interactions occurring in the PLAL process can be further studied
by analysing the thermodynamic process and the chemical reactions between the
liquid environment and the ablated NPs.

(3) Further investigations in the effect of ablation angle could be performed because the
available literature has focused only on the perpendicular laser beam striking the
material target.

(4) Mitigating the toxic effects of colloidal NPs while retaining their most desirable
optical properties remains a challenge. Hence, achieving excellent biocompatibility is
a prerequisite for the widespread use of colloidal NPs.

(5) Instead of studying PLAL as a standalone technique, further integration with other
physical or chemical methods can be performed to help stabilise the colloidal NPs for
targeted applications. To the best of our knowledge, studies in this field are limited.

(6) From this review, we have observed that the liquid environment, material properties,
laser parameters, and external field have a combined effect on the size of the obtained
NPs and their distribution, morphology, and structure. However, deciding which
parameter plays a decisive role in the resultant formation of the desired NPs remains a
challenge. Furthermore, we found studies on PLAL [34,67,72,92,98–111] that focused
on single-parameter evaluation; however, the area of multiparametric analysis of laser
parameters on nanoparticle formation can be explored.
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Abbreviations

A absorbance
ε molar absorbance coefficient
c molar concentration
l0 optical path length
PLA pulse laser ablation
NPs nanoparticles
DT thermal diffusivity
α attenuation coefficient
f focal length of the lens
l thickness of the liquid layer
n refractive index of liquid
r radius of the laser beam before focus
Hv heat of vaporisation
ρ density
CQDS carbon quantum dots
PLAL pulsed laser ablation in liquid
λ wavelength
τL pulse duration
lα optical penetration
k thermal conductivity
CP specific heat capacity of the target material
τe electron cooling time
τp lattice heating time
Ce volumetric heat capacity of electron
Te electron temperature
C lattice volumetric heat capacity
ke electron thermal conductivity
γ electron lattice energy heat transfer coefficient
R reflectivity of the target material
I laser intensity
F laser fluence
Fth threshold fluence
V scanning speed
T pulse duration
S laser beam spot size
E pulse energy
PRR pulse repetition rate
ps picosecond
ns nanosecond
fs femtosecond
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