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Abstract: Sensor fault detection and isolation (SFDI) is a fundamental topic in unmanned aerial
vehicle (UAV) development, where attitude estimation plays a key role in flight control systems and
its accuracy is crucial for UAV reliability. In commercial drones with low maximum take-off weights,
typical redundant architectures, based on triplex, can represent a strong limitation in UAV payload
capabilities. This paper proposes an FDI algorithm for low-cost multi-rotor drones equipped with
duplex sensor architecture. Here, attitude estimation involves two 9-DoF inertial measurement units
(IMUs) including 3-axis accelerometers, gyroscopes and magnetometers. The SFDI algorithm is based
on a particle filter approach to promptly detect and isolate IMU faulted sensors. The algorithm has
been implemented on a low-cost embedded platform based on a Raspberry Pi board. Its effectiveness
and robustness were proved through experimental tests involving realistic faults on a real tri-rotor
aircraft. A sensitivity analysis was carried out on the main algorithm parameters in order to find a
trade-off between performance, computational burden and reliability.

Keywords: fault detection and isolation; particle filter; UAV fault detection; FDI; fault tolerant
attitude estimation; duplex attitude estimation architecture; analytical redundancy

1. Introduction

In recent years the use of unmanned aircraft has significantly increased, making the
mitigation of risks due to on-board avionics malfunctions essential, in view of sustainable
and safe aviation.

Several applications have been exploited with military and civil objectives [1,2], in-
cluding search and rescue missions in hostile environments [3], surveillance and security
patrols [4], home security [5], precision agriculture [4] and network coverage [6], fields of
application where UAVs play a key role in terms of reduction in operations and support
costs [4].

The flight control system (FCS) is a key component of a generic UAV. It can include
inertial sensors, air data systems, avionics, control surfaces/servos, servo-actuators, on-
board software and other relevant subsystems contributing to UAV stability and control.
A fault in such a system could be critical in the assessment of UAV reliability. It is worth
noting that faults on FCSs account for 25% of U.S. military UAV incidents [7].

An FDI system must be able to detect and properly isolate faults in order to mitigate
the effects on UAV system performance and integrity. Four key features should be present
in an FDI system:

• fast detection of abnormal situations;
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• isolation of faults;
• robustness to noise and uncertainties;
• low false alarm rate.

For a modern aircraft, three kinds of fault can be considered:

• sensor faults: a malfunction of the measurement subsystem;
• actuator faults: a malfunction of actuators acting on system dynamics;
• process faults: a strong change in system dynamics due to structural problems.

The most sophisticated UAVs are often equipped with technology solutions for au-
tomatically detecting and isolating faults on sensors, collectively labeled as fault detection
and isolation (FDI) systems [8–12]. The presence of an FDI system increases the capability
of UAVs to fulfill prescribed tasks even in the presence of faults. Quick detection and
proper isolation of faults represents the first step of a reconfiguration strategy, required to
minimize fault impact upon UAV performance [9,13]. In the literature, significant research
efforts have been spent in terms of FDI solutions for UAVs. In [14], FDI on UAV Pitot tubes
and control surfaces is carried out by using statistical change detection, while in [15], a
state machine-based solution is proposed. Ref. [16] shows a sensor fusion-approach for
FDI on air data sensors and [17] exploits self-tuning residual generators for fault detection
on control surfaces. Finally, a cooperative FDI scheme for UAVs is proposed in [18,19] deals
with the faults in UAV FDI systems.

In order to control UAV orientation with respect to an inertial reference system, one
of the FCS tasks is attitude estimation. Usually, this consists of sensor fusion algorithms
that use measurements coming from accelerometers, gyroscopes and magnetometers [20].
Being an essential task, the problem of UAV attitude estimation on the basis of sensor
measurements can be non-trivial [21], and sensor fault detection must be considered to
minimize risks due to loss of control.

In aerospace and several industrial applications, hardware redundancy-based tech-
niques are the most common solutions to tackle faults on sensors. Such solutions require
a set of redundant sensors to validate measurement data [22]. A typical approach in
commercial and military aircraft is based on triple or more hardware redundancies to
enhance safety and reliability [23]. Although hardware redundancy techniques are con-
venient solutions from the point of view of implementation and management, they bring
several drawbacks such as weight, power consumption and costs, which are all relevant in
small-size UAV applications.

In the literature, some effort has been spent trying to replace hardware redundancy-
based techniques with analytical redundancy-based ones [23–32]. In [25] a Kalman filtering
approach is implemented in order to reveal oscillatory failures of redundant aircraft sensors,
used for flight control law calculation. An FDI method that exploits set-valued observers is
proposed in [26] for uncertain linear parameter-varying systems. This method uses a bank
of filters and it does not need thresholds to state a fault, in contrast with residual-based
architectures. A fault-tolerant scheme for the sensors of a large civil aircraft is proposed
in [28,29] using Kalman filters and sliding mode observers. Further nonlinear and robust
techniques, such as H∞ filtering, can reinforce robustness to faults of physically redundant
schemes [32,33].

In recent years, some FDI solutions based on particle filters (PFs) are also proposed. A
PF is a sequential Monte Carlo method (SMC)[34] aimed at estimating the state of a dynam-
ical system subject to random perturbations, via noisy output observations. A particle filter
solution represents an attractive choice for UAV attitude estimation problems [20,35–39]
outperforming classical Kalman filter (KF)-based approaches [40] at the price of significant
computational complexity growth [20]. A PF-based fault detection scheme is proposed
by [41], while [42] highlights PF advantages in tackling FDI for non-linear systems and [43]
also discusses PF drawbacks. In [44] a particle filter deals with the FDI problem for the
autonomous integrity monitoring of a GPS receiver. Ref. [45] proposes two different
PF-based FDI architectures, which are compared with more classical KF-based approaches.
In [46] a particle filter solution is used to deal with both known and unknown faults for a
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complex system, focusing on a wheeled mobile robot, and in [47] a PF replaces principal
component analysis in driving a Gaussian Mixture Model for process monitoring FDI.
In [48] a general PF-based FDI scheme is proposed. Similarly [49] is focused upon tackling
some of the most well-known PF problems.

In commercial unmanned aviation, costs are a key objective to ensure that UAVs
become widespread and, in specific operations, risk assessment needs proof that the flight
risk can be acceptable.

In such direction, this paper is focused on the implementation of a sensor fault
detection and isolation technique on low-cost hardware, typical of commercial micro- and
mini-UAVs. The scope of the proposed procedure is to detect and isolate faults on inertial
measurement units used to estimate UAV attitude. The considered hardware is based
on a duplex architecture with two inertial measurement units (IMUs) including 3-axis
gyroscopes, accelerometers and magnetometers. The estimation problem is dealt with by
the design of a particle-filter-based sensor fusion algorithm. From a theoretical point of view,
a PF could be a realistic option when statistical performance is considered [50–52], because
it is able to deal with non-linear motion models and non-Gaussian noise distributions.

Although the use of a PF approach [20] can increase the computational burden, the
paper shows promising results by using an SFDI procedure based on two parallel PFs.

The effectiveness of the proposed procedure to detect and isolate IMU sensor faults is
proved by means of numerical simulations conducted on a Raspberry Pi board using real
data gathered during the flight of a tri-rotor aircraft. Furthermore, this work proposes a
sensitivity analysis involving main algorithm parameter variations to estimate effects in
terms of SFDI performance. The computation time on a low-cost and low-power embedded
platform is assessed in order to prove the algorithm’s applicability in a real-world scenario.

The paper is organized as follows:

• in Section 2, the proposed hardware and software architecture are described;
• in Section 3, the attitude estimation model is defined, using quaternion-based relations;
• in Section 4, the particle filter algorithm is introduced;
• in Section 5, the SFDI algorithm is shown with details on the implementation;
• the effectiveness of the algorithm is shown by means of realistic simulations in

Section 6, where an analysis against tunable parameters is discussed.

2. System Description

The proposed hardware architecture is composed of the following components:

• two commercially available boards based on the STM32F103VCT CPU by ST, typically
used on low-cost multi-rotors as flight controllers; such boards, called IMU-1 and
IMU-2, weighing 17 grams, have a power consumption average below 1W and include
the following inertial sensors:

– an MPU6050-based MEMS triaxial accelerometer and gyroscope (see specifica-
tions in Table 1);

– an HMC5883L-based MEMS magnetometer (see specifications in Table 1);

• a Raspberry Pi 3B platform, a single-board computer based on the Broadcom BCM2837
64bit CPU, with wireless LAN, USB and GPIO connectivity. It weighs 42 grams and in
our test had a power consumption of less than 2.5W.

IMU-1 and IMU-2 are linked to the Raspberry Pi platform by USB ports through an
on-board serial to USB chip. This configuration simplified the prototyping while ensuring a
high bandwidth for data transmission.

Figure 1 summarizes the structure of the experimental setup.
IMUs act as data collectors. The on-board software acquires signals from sensors on

the I2C port at a frequency of 100 Hz and sends them through a serial connection.
The SFDI algorithm, together with particle filtering, was implemented on the Rasp-

berry Pi 3B platform as a real-time task over a Debian-based operating system with a fully
preemptive GNU/Linux 4.14 kernel. It was coded using MATLAB R2019b by Mathworks
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and was made executable on the embedded hardware by using code generation. The
produced C code was properly modified to customize peripherals access and recompiled
on the board. During our tests, the SFDI executable had the highest execution priority to
minimize any jitter due to the operating system.

The goal of the SFDI algorithm is to monitor the health of each IMU and to supervise
the overall system by providing reliable data to the flight control system. In standard
conditions, the output of the SFDI algorithm is the average attitude estimated using
both IMUs, while, when a fault is detected, the procedure provides as outputs only the
orientation computed by the operational IMU.

DATA LOGGING

USBUSB

I²C

Cortex M4 
CPU

HMC5883LMPU6050

Flip32

I²C

Cortex M4 
CPU

HMC5883LMPU6050

Flip32

Figure 1. Architecture of the proposed duplex IMU. On top, the Raspberry Pi 3B platform, running the
SFDI algorithm and data logging. Below, Flip32-based IMU boards, with MPU6050 and HMC5883L
MEMS sensors.

Table 1. MEMS sensor characteristics from datasheets.

Name MPU6050 Acc. MPU6050 Gyro HMC5883l Mag.

Dynamic range ±4 g ±500 deg s−1 ±2.5 Gs
Digital resolution 0.122 mg 0.015 deg s−1 2.095 mGs
Total RMS noise n.d. 0.05 deg s−1 n.d
Noise density 400 µgHz−2 0.005 deg s−1 Hz−2 n.d.
Noise floor n.d. n.d. 0.002 mGs

3. UAV Attitude Estimation Problem

Vehicle attitude is defined as its orientation with respect to a reference frame and its
accurate estimation is an important topic in the robotics and aerospace fields. UAV attitude is
obtained by using a sensor fusion algorithm, together with data provided by IMU sensors.

The attitude obtained by integrating gyro measurements in terms of angular velocities
is affected by non-negligible issues, due to bias and random-walk errors. On the other hand,
accelerometers and magnetometers provide a good estimate only in static or quasi-static
conditions, in the absence of any constant acceleration and magnetic field changes. In order
to mitigate such problems, different sensor data fusion algorithms can be implemented
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on-board [53,54]. Most UAV attitude estimation algorithms are based on an extended
Kalman filter [20,55–57], unscented Kalman filter [58,59], particle filtering [36,51,60], quater-
nion estimation (QUEST) algorithms [61,62], complementary filter [63,64] and Madgwick
filter [65].

To describe the attitude estimation problem, two reference systems must be defined:

• a north-east-down (NED) reference frame, parallel to the Earth’s surface, with the XE-
axis pointed toward north, the YE-axis pointed toward east and the ZE-axis oriented
downwards;

• the body frame, centered in the UAV’s center of gravity (CG), with the XB-axis pointed
toward the UAV nose, the ZB-axis downward and the YB-axis oriented to complete a
right-handed system.

Since UAV navigation is done in a bounded space, the NED frame can be centered in
the UAV departing point and assumed as an inertial reference system.

Transition from the inertial to the body frame is obtained with a sequence of three
ordered rotations, denoted as 3− 2− 1 [66] (see Figure 2):

• the first rotation around the ZE axis by the yaw angle ψ, from OXEYEZE to OX′Y′Z′;
• the second rotation around the Y′ axis by the pitch angle θ from OX′Y′Z′ to OX′′Y′′Z′′;
• the third rotation around the X′′ axis by the roll angle φ from OX′′Y′′Z′′ to OXBYBZB.

The angles ψ, θ and φ are called Euler angles and describe the aircraft’s attitude, i.e.,
the orientation of the body frame with respect to the inertial NED frame.

Alternatively, to define the relative rotation of the body frame with respect to the
inertial frame, a quaternion-based representation can be used [67]. From Euler’s theorem,
any rotation sequence is equivalent to a single rotation by a given angle α about a fixed axis
passing through the origin. This rotation can be described by the unit quaternion vector
q̃ = [q̃0, q̃1, q̃2, q̃3]

T , whose components define the axis vector ζ = [ζx, ζy, ζz]T and the angle
α (see Figure 3):

q̃1 = ζx, q̃2 = ζy, q̃3 = ζz, q̃0 = cos α

|q̃| =
√

q̃0
2 + q̃1

2 + q̃2
2 + q̃3

2

Let us call q = [q0, q1, q2, q3]
T the unit quaternion vector associated to RBE(q) from

the NED reference frame to the body frame:

RBE(q) =

 q2
1 − q2

2 − q2
3 + q2

0 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) −q2

1 + q2
2 − q2

3 − q2
0 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) −q2
1 − q2

2 + q2
3 + q2

0

 (1)

Euler angle-based representation and quaternion-based representation are equivalent;
therefore, a one-to-one correspondence between Euler angles and the quaternion vector
exists:

q =


q0
q1
q2
q3

 =


cos φ

2 cos θ
2 cos ψ

2 + sin φ
2 sin θ

2 sin ψ
2

sin φ
2 cos θ

2 cos ψ
2 − cos φ

2 sin θ
2 sin ψ

2
cos φ

2 sin θ
2 cos ψ

2 − sin φ
2 cos θ

2 sin ψ
2

cos φ
2 cos θ

2 sin ψ
2 − sin φ

2 sin θ
2 cos ψ

2

 (2)

The Euler angles are computed as follows [66]:
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φ = arctan

(
2q0q1 + 2q2q3

1− 2q2
1 − 2q2

2

)
(3)

θ = arcsin (2q0q2 − 2q3q1) (4)

ψ = arctan

(
2q0q3 + 2q1q2)

1− 2q2
2 − 2q2

3

)
(5)

𝑌ா

ா

ா

ᇱᇱ
஻

஻
஻

Figure 2. Inertial (E) and body-fixed (B) reference frames. Transition from the NED frame to the body
frame is obtained with a sequence of three ordered rotations around the ZE axis, the Y′ axis and the
X′′ axis of angles ψ, θ and φ, respectively.

ଶ

ଵ

ଷ

Figure 3. Geometrical meaning of quaternion: a rotation around the ζ axis by a given angle α is
defined by the unit quaternion q̃ = [q̃0, q̃1, q̃2, q̃3]

T , whose components are q̃1 = ζx, q̃2 = ζy, q̃3 = ζz

and q̃0 = cos α.
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In the absence of noise and uncertainties in IMU measurements, the UAV attitude
estimation could be carried out by integrating the angular speed vector ω = [p, q, r]T from a
known initial attitude. Consequently, the quaternion vector exhibits the
following dynamics:

q̇(t) =
1
2

Q(ω(t)) · q(t) (6)

where the matrix Q(ω(t)) is

Q(ω(t)) =


0 −p(t) −q(t) −r(t)

p(t) 0 r(t) −q(t)
q(t) −r(t) 0 p(t)
r(t) q(t) −p(t) 0

 (7)

However, the gyroscope output is an angular velocity affected by white noise. In static
conditions, in the absence of rotations, the gyroscope output is not zero as expected, but it
is a white noise with a zero mean and a given standard deviation. On a finite time horizon,
the integration will lead to a drifting of the angle estimation [68,69].

The sensed rotational velocities ωS(t) can be assumed different from ω due to the
presence of bias and stochastic noise:

ωs(t) =

ps(t)
qs(t)
rs(t)

 = ω(t) + b(t) + d(t) (8)

b(t) = [bp(t), bq(t), br(t)]T and d(t) = [dp(t), dq(t), dr(t)]T represent the vectors of biases
and unknown zero-mean noise affecting gyroscopes, respectively.

In steady-state and slowly varying conditions, a good solution is to involve accelerom-
eters and magnetometers, being dependent on the UAV orientation. The relationship
between UAV orientation and accelerometer and magnetometer output vectors aB and MB

is defined as follows:

aB = RBE(q) · aE (9)

MB = RBE(q) ·ME (10)

where gE =
[
0 0 g

]T is the gravity vector with g = 9.801 m/s2 and ME is the Earth’s
magnetic field, both defined in the Earth frame.

However, although an optimization-based procedure can be used to solve
Equations (9) and (10), the last approach is not reliable [67,70], due to the presence of
non-negligible noise in measurements.

In order to exploit (9) and (10), consider the sensed accelerations and field
magnetic measurements:

aS(t) =

ax,S(t)
ay,S(t)
az,S(t)

 = aB(t) + va(t) (11)

MS(t) =

Mx,S(t)
My,S(t)
Mz,S(t)

 = MB(t) + vM(t) (12)

with va(t) and vM(t) vectors of sensor noise affecting triaxial accelerometers and magne-
tometers at the time instant t, respectively.
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The attitude estimation can be carried out by merging both approaches [20,71]. The
kinematic model (6) is usually extended with additional dynamics in order to take into
account the gyroscope biases [72]:

q̇(t) =
1
2

Q(ωS(t)− b(t)− d(t)) · q(t) (13)

ḃ(t) = − 1
τ

b(t) (14)

where τ is a time constant compliant with bias dynamics. To correct the previous estimation,
(15) and (16) can be used:

aS(t) = RBE(q(t)) · gE + va(t) (15)

MS(t) = RBE(q(t)) ·ME + vM(t) (16)

Equations (13)–(16) can be expressed in the following generic form:

ẋ(t) = γ(x(t), ωS(t), d(t)) (17)

y(t) = λ(x(t), v(t)) (18)

where x(t) =
[
q(t) T b(t) T]T is the state vector, y(t) =

[
aS(t) T MS(t) T]T is the output

vector and v(t) =
[
va(t)T vM(t)T]T is the noise vector.

In such representation, accelerometers and magnetometers provide output sensor
measurements according to (18), whereas gyroscopes represent an external input acting
on (17).

The attitude estimation problem can be reformulated as the estimation of the state
vector x from (17) based on output measurements (18). Corrective actions can then be
designed and implemented, feeding back the error between measured and estimated
outputs. Optimal estimation has the role of reducing sensitivity to noise and forcing the
additional state vector components b to compensate for gyro biases or other low-frequency
uncertain contributions.

4. Particle Filter Algorithm

Let us assume the following generic discrete time representation:

x(k) = f(x(k− 1), ωS(k− 1), d(k− 1)) (19)

y(k) = h(x(k)) + v(k) (20)

being x ∈ Rnx , y ∈ Rny , ωs ∈ Rnω , v ∈ Rnv and d ∈ Rnd . It can be obtained by applying
Euler’s discretization to (17) and (18) where x(k) = x(tk), y(k) = y(tk), ωS(k) = ωS(tk),
d(k) = d(tk) and v(k) = v(tk) and tk the k−th sampling time instant

tk =
k−1

∑
i=0

TS ∀k ≥ 1, t0 = 0 (21)

with TS > 0 the constant sampling time.
Equations (19) and (20) represent a partially observed Markov process, where the

output vector y(·) is observable, while the state x(·) is unobservable. A Markov process is
a stochastic process whose state vector x(k) depends only on x(k− 1), being independent
of x(k− l), with l > 1.

A particle filter is used to estimate x(k) in (19), fulfilling (20) under the hypothesis
that the process d(k− 1) and the measurement noise v(k) are unknown.

The particle filter is a numeric implementation of a Bayesian estimator [73]. The
Bayesian approaches are based on Bayes’ rule. Their goal is to estimate the conditional
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probability density function (PDF) of the current state x(k), given the whole set of acquired
measurements at time k, denoted by Y(k) = {y(0), y(1), . . . , y(k)}. The conditional PDF is
denoted as p(x(k)|Y(k)).

The Bayesian estimator can be formulated in a recursive way, in order to update the
PDF when a new measurement is acquired [74].

At the first time step k = 0, since no measurements are available, e.g., the set Y(0) = ∅,
the estimator is initialized as follows:

p((x)(0)|Y(0)) = p(x(0)) (22)

where p(x(0)) is the known initial PDF of state.
At each time step k, the a priori PDF denoted by p(x(k)|Y(k− 1)) is computed using

the Chapman–Kolmogorov formula [73]:

p(x(k)|Y(k− 1)) =
∫

p(x(k)|x(k− 1)) · p(x(k− 1)|Y(k− 1)) · dx(k− 1) (23)

In the a posteriori phase, the conditional PDF is computed by using Bayes’ rule
as follows:

p(x(k)|Y(k)) = p(y(k)|x(k)) · p(x(k)|Y(k− 1))
p(y(k)|Y(k− 1))

(24)

where p(y(k)|x(k)) is available thanks to measurement equations and the PDF of the
measurement noise v(k).

The PDF p(y(k)|Y(k− 1)) depends on the a priori PDF p(x(k)|Y(k− 1))
and p(y(k)|x(k)):

p(y(k)|Y(k− 1)) =
∫

p(x(k)|x(k− 1)) · p(x(k− 1)|Y(k− 1)) · dx(k− 1) (25)

Equations (23)–(25) involve intractable multidimensional integrals [34]. The particle
filtering approach offers a numerical solution to this problem [75].

In PF algorithms, PDF p(x(k)|y(k)) can be approximated by a set of random samples
named particles. According to [76], the convergence rate of the particle-approximated

cumulative function is O
(

1√
∆

)
, with ∆ a constant tunable parameter indicating the

number of particles.
An important feature that characterizes particle filter algorithms is the method used

to obtain new samples. A widely used class of resampling techniques is sequence importance
resampling (SIR) [77].

Let us assume discrete-time model (19) and (20). A particle filter is used to estimate
the x(k) value knowing the vector y(k) of accelerometer and magnetometer measurements
and the vector ωS(k− 1) of the rotational speed sensed by the gyroscopes.

Assuming that the PDF of the initial state p(x(0)) is known, the PF algorithm is
initialized randomly generating ∆ particles x̂(0), on the basis of PDF p(x(0)). Then, at each
time step k, the procedure involves the following steps:

(i) the set of a priori particles X(k|k − 1) at the k-th sampling step is obtained by
propagating the set X(k− 1|k− 1) with the state Equation (19), considering the
process noise d(k) equal to zero. Therefore, the generic particle xδ(k) ∈ X(k|k− 1)
is computed as follows:

xδ(k) = f(x̂δ(k− 1), ωS(k− 1), 0) (26)

being x̂δ(k− 1) ∈ X(k− 1|k− 1) with δ = 1, . . . , ∆.
(ii) We compute the relative likelihood w̃δ(k) of each particle xδ(k) conditioned on the

measurement y(k)., i.e., evaluate the PDF p(y(k)|xδ(k)) on the basis of the nonlin-
ear measurement equation and the PDF of the measurement noise v(k). Under the
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assumption of additive measurement noise, the weight w̃δ(k) can be computed
as follows:

w̃δ(k) = P[y(k)|xδ(k))] = P[v(k) = (y(k)− yδ(k))] (27)

where P(·) denotes the probability and yδ is obtained according to the output
equation, neglecting the measurement noise v(k):

yδ(k) = h(xδ(k)) (28)

(iii) The weights w̃δ(k) are normalized according to the following equation:

wδ(k) =
w̃δ(k)

∑∆
δ=1 w̃δ(k)

(29)

(iv) A set of particles taking into account a posteriori knowledge X̃(k|k) is obtained by
randomly drawing ∆ samples from X(k|k− 1)

X̃(k|k) =

xδ(k) ∈ X(k|k− 1), x1(k), . . . , x1(k)︸ ︷︷ ︸
m1

, . . . ,

xδ(k), . . . , xδ(k)︸ ︷︷ ︸
mδ

, . . . , x∆(k), . . . , x∆(k)︸ ︷︷ ︸
m∆


(30)

therefore, each particle xδ ∈ X(k|k− 1) is chosen mδ times. The integer number mδ

must satisfy the following conditions:

• mδ is a non-negative integer;
• ∑∆

δ=1 mδ = ∆;
• lim∆→∞ mδ = wδ(k) · ∆.

To compute the parameter mδ the following sub-procedure is applied:

(a) define a series of ∆ + 1 thresholds σδ as:

σδ =
δ

∑
1

wδ, with σ0 = 0 (31)

(b) initialize mδ values to zero;
(c) draw ∆ uniformly distributed random numbers ri from the interval [0, 1],

P = {ri ∈ [0, 1], with i = 1, ..., ∆};
(d) for each ri ∈ P , find δ such that σδ−1 < ri ≤ σδ, then mδ = mδ + 1.

(v) In order to counteract the so-called particle degeneracy problem, which can weaken
algorithm convergence and robustness [78], the set of a posteriori particle X(k|k) is
obtained by randomly scattering each particle of set X̃(k|k) in a
given neighborhood.

(vi) The state estimate x̂(k) is evaluated as the algebraic mean of a posteriori particles
belonging to X(k|k):

x̂(k) =
1
∆

∆

∑
δ=1

x̂δ(k) (32)

In Section 6.2 a sensitivity analysis against introduced tunable parameters ∆ and ν
is proposed.
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5. SFDI Algorithm for a Duplex IMU

In the view of accomplishing navigation purposes, let us consider an onboard flight
controller based on a duplex sensor architecture including two IMUs, named IMU-1 and
IMU-2, with triaxial accelerometers, gyroscopes and magnetometers, whose output sensor
measurements y(1)(k) and y(2)(k) are defined as follows:

y(i)(k) =

[
a(i)S (k)

M(i)
S (k)

]
i = 1, 2 (33)

where a(i)S (k), M(i)
S (k) are the outputs of the i-th triaxial accelerometer and magnetometer

at the time instant k.
According to (8), the gyroscope measurements ω

(i)
S (k) are used as the input of the

kinematic model at the time instant k.
For each IMU i, the quaternion vector q(i)(k) and gyroscope biases b(i)(k) are esti-

mated by using a particle filter, named PFi, fed with ω
(i)
S (k) and y(i)(k).

A sensor reconfiguration logic has been implemented to achieve FDIR, formulated as
an event-driven state machine, based on the following sets of logical states:

χ(k) = [NA(k), AA(k), NG(k), AG(k), NM(k), AM(k), F1(k), F2(k), R1(k), R2(k)] (34)

where

• subscript A indicates accelerometers, subscript G is for gyroscopes and subscript M is
for magnetometers;

• NZ is the normal state for sensor Z ∈ {A, G, M};
• AZ is the alert state activated at the detection phase on the basis of a preliminary

comparison between IMUs;
• Fj is the fault state for the IMU unit j ∈ {1, 2}.

In Figure 4, the state transition graph is shown. The events driving the state transition
of the proposed state machine can be grouped into three algorithm steps:
Step 1—FAULT DETECTION. Under the assumption of a non-contemporary fault, at each
time step k, the transition from normal N(k− 1) to alert A(k) state (and vice versa from
A(k− 1) to N(k)) is achieved by comparing measurement accelerometer, magnetometer
and gyroscope measurements from IMUs.

EA1 ⇔ ∃l ∈ {1, 2, 3} : |a(1)l,S (k)− a(2)l,S (k)| ≥ τa (35)

EA2 ⇔ ∀l ∈ {1, 2, 3}, |a(1)l,S (k)− a(2)l,S (k)| < τa (36)

EM1 ⇔ ∃l ∈ {1, 2, 3} : |M(1)
l,S (k)−M(2)

l,S (k)| ≥ τm (37)

EM2 ⇔ ∀l ∈ {1, 2, 3}, |M(1)
l,S (k)−M(2)

l,S (k)| < τm (38)

EG1 ⇔ ∃l ∈ {1, 2, 3} : |ω(1)
l,S (k)−ω

(2)
l,S (k)| ≥ τg (39)

EG2 ⇔ ∀l ∈ {1, 2, 3}, |ω(1)
l,S (k)−ω

(2)
l,S (k)| < τg (40)

where al,s, Ml,s and ωl,s are the l-th components of accelerometer, magnetometer and
gyroscope measurements, respectively. τa, τm and τg are positive scalar thresholds for
accelerometers, magnetometers and gyroscopes, required to make the detection robust
against sensor noise and uncertainties.
Step 2—FAULT ISOLATION. Once the presence of a fault is detected, with k̃ the time
instant of fault detection, then

b(i)
0 = b(i)(k̃)

As for the transition from the alert to the faulted state, a fault on the i-th IMU is
declared if the following condition holds:
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E i
3 ⇔ ||Ω · (q(1)(k)− q(2)(k))||∞ > 1 (41)

where || · ||∞ denotes the infinity norm and Ω is a diagonal weighing matrix required to
take into account the effects of sensor noise. The faulted IMU ī can be isolated solving the
following problem:

ī = arg max
i=1,2

σ(i) (42)

The residual σ(i) represents the error between output estimation and measurements,
increased with the difference between the estimated biases at the current time and at the
detection time:

σ(i) =

∣∣∣∣∣
∣∣∣∣∣
[

y(i)(k)
b(i)

0

]
−
[

ŷ(i)(k)
b̂(i)(k)

]∣∣∣∣∣
∣∣∣∣∣
2

i = 1, 2 (43)

where || · ||2 indicates the Euclidean norm.
According to (42), a faulted sensor belongs to the IMU whose output is farther from

the relevant full particle filter forecast.
Step 3—FAULT RECOVERY. When the fault condition is no longer held (EZ2), the system
is able to recover the faulted IMU by checking the consistency between attitude estimations
from both PFs, through

E ī
4 ⇔ ||Ω · (q(1)(k)− q(2)(k))||∞ < 1 (44)

In Section 6.2 a sensitivity analysis against introduced tunable parameters τa, τm, τg
and Ω is proposed.
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Figure 4. State transition graph for SFDI. Normal state (green) N = NA ∩ NM ∩ NG, alert state

(yellow) A = AA ∩ AM ∩ AG, fault state (red) F =
(⋂2

i=1 Fi

)
∩
(⋂2

i=1 Ri

)
. Arrows denote event-

driven state transitions.

6. Numerical Simulations Based on Experimental Data

Experimental validation of the proposed approach was carried out with the aim of
proving its effectiveness along with its applicability to a low-cost small-UAV architecture.
For this purpose, the hardware platform presented in Section 2 was installed on a light
tri-rotor aircraft of less than 2 kg (see Figure 5), to gather in-flight sensor data.
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Raspberry Pi

IMU-1

IMU-2

Figure 5. A picture of the custom tri-rotor aircraft used in the flight test with the duplex hardware
platform on top.

The tri-rotor platform has an on-board flight controller [79], used to perform an indoor
flight, forcing the system to follow pre-assigned reference angles and altitudes.

Captured data from both IMUs is shown in Figure 6. The estimated attitude in the
absence of any fault is shown in Figure 6d. Three maneuvers were performed, sequentially
changing Euler angles:

• a backward movement, executed by applying a doublet (+/−) to the pitch angle;
• a lateral movement, with a doublet (+/−) applied to the roll angle;
• a doublet applied to the yaw angle.
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(d) Attitude estimates.

Figure 6. Data gathered from both IMUs during the flight test in the absence of faults. Black lines
indicate data gathered by IMU-1 while red lines are for IMU-2.
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6.1. Fault Scenario Analyses

Experimental data gathered during the flight were used as measurements in numerical
simulations, where realistic faults were injected to test the SFDI algorithm.

Typical fault scenarios [80–84] were considered:

• F1: intermittent abrupt bias—a step disturbance of 0.2 g is added to a(1)y,S(t) for
t ∈ [3, 13] s;

• F2: slow drift—a linearly increasing signal with a rate of 0.2 rad/s2 is added to the
measured yaw rate on IMU-2 starting from the time instant t = 3.5 s;

• F3: abrupt freezing—magnetometer data M(1)
x,S(t) stops being updated at t = 3 s;

• F4: oscillation—a sinusoidal signal with a frequency of 30 rad/s is added to the r(1)S (t)
measurement for t ∈ [3, 28] s;

• F5: random walk—Gaussian noise, whose amplitude is smaller than the relevant detec-
tion threshold, is integrated and added to accelerometer data ax,S(t) for
t ∈ [23, 33] s.

Table 2 resumes the values of the SFDI scheme design parameters, as introduced in
Sections 4 and 5.

Table 2. Parameters used in numerical results (I4×4 represents the identity matrix of size 4× 4).

Parameter Value

∆ 4096
v

[
0.0633 0.3291 0.5291 0.2658 0.2658 0.2658

]T

τa 0.2411
τg 0.2853
τm 0.0591
Ω 24.213 · I4×4

6.1.1. Scenario F1—Intermittent Abrupt Bias

The intermittent abrupt bias on a(1)y,S(t) is depicted in Figure 7a. As shown in Figure 7b,
the attitude estimated by IMU-1 is affected by an error that mostly affects the roll angle. In
Figure 7b, vertical dashed red lines indicate the range in which the fault is injected and
the gray area is used to highlight the time interval in which the SFDI algorithm is in the
fault state.

As expected, the considered fault is quickly (td = 0.27 s) detected and IMU-2 is
correctly labeled as the operational unit (see red line in Figure 7b). Furthermore, at
t = 13 s, the accelerometer returns to operational and after 6.96 s the SFDI algorithm
returns to the normal state, restoring estimated attitude based on IMU-1 measurements.
The time required to restore the estimated attitude based on IMU-1 depends on the design
parameters, see Section 6.2. However, it does not affect the performance of the estimated
attitude, given the presence of IMU-2.
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(a) y-axis accelerometer data.
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(b) Attitude estimates.

Figure 7. Scenario F1. Black lines denote measurements/estimates from IMU-1, red lines are for
measurements/estimates from IMU-2. Green lines are for SFDI output, gray areas highlight the time
interval in which the SFDI algorithm is in the fault state. Vertical red dashed lines denote the time
instants when the fault occurs and ends.

6.1.2. Scenario F2—Slow Drift

In Figure 8a, the slow drift injected at time t = 3.5 s, with a slope of 0.2 rad/s2, into
the z-axis gyroscope measurement r(2)S (t) of IMU-2 is shown.

As shown in Figure 8c, at time t = 4.61 s, the SFDI scheme isolates the gyroscope
fault and moves to the fault state. As IMU-2 does not return to an operational state, the
SFDI algorithm persists in the same condition until the end of simulation. A slow drift is
difficult to detect and isolate, due to the small slope, causing a delay between the beginning
of the fault and the isolation. However, the correction of the magnetometer and the use of
the average attitude (green line) in the normal state limit the error in the yaw estimation of
some degrees (<3 deg).

Figure 8b shows the norm of the estimated gyroscope biases for both IMUs. It is worth
noting that the bias estimated by IMU-2 is increasing over time due to the fault, while
IMU-1 is almost hidden by the x-axis.

6.1.3. Scenario F3—Abrupt Freezing

Figure 9a shows x-axis magnetometer data M(1)
x from IMU-1 subject to an abrupt

freezing over almost the whole simulation.
Results in Figure 9b show that the SFDI algorithm switches between normal and

fault states several times, when the broken value of M(1)
x is similar to the correct one and

estimated attitudes are in the predefined threshold. Furthermore, it is worth noting that
the fault was isolated with a significant delay. This behavior depends on magnetometer
signals M(1)

x and M(2)
x that, in the first phases of the flight, are almost the same. At the

take-off, M(2)
x is affected by a small change due to the magnetic field of the electric motors

that is altered by an increasing power request. Because the faulted IMU is frozen, only at
the take-off is the SFDI algorithm able to detect the fault. After that, at several times during
the flight, both errors on attitudes and magnetometer signals are below the predefined
threshold, causing the return to the normal state. However, the reliability of the overall
system is not compromised because, as shown in Figure 9b, a sensor fault does not affect
attitude estimation for a relevant time interval.
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(a) z-axis gyroscope data.
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Figure 8. Scenario F2. Black lines denote measurements/estimates from IMU-1, red lines are for
measurements/estimates from IMU-2. Green lines represent the output of the system, gray areas
highlight the time interval in which the SFDI algorithm is in the fault state. Vertical red dashed lines
denote the time instants when the fault occurs and ends.
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(a) x-axis magnetometer data.

0 10 20 30 40

{20

0

20

?
 (

de
g)

0 10 20 30 40

{20

0

20

3
 (

de
g)

0 10 20 30 40

Time (s)

{40

{20

0

20

40

60

A
 (

de
g)

(b) Attitude estimates.

Figure 9. Scenario F3. Black lines denote measurements/estimates from IMU-1, red lines are for
measurements/estimates from IMU-2. Green lines represent the output of the system, gray areas
highlight the time interval in which the SFDI algorithm is in the fault state. Vertical red dashed lines
denote the time instants when the fault occurs and ends.

6.1.4. Scenario F4—Oscillation

In Figure 10a, the considered fault on the z-axis gyroscope measurement r(1)S is shown.
In particular, a sinusoidal disturbance, with a frequency (∼10 Hz), compliant to tri-rotor
dynamics, is added to r(1)S in the time interval t ∈ [3, 28] s.

As shown in Figure 10c, although the attitude estimated by IMU-1 is only partially
affected by the fault, the SFDI algorithm is able to detect the problem after a very short
time, with the transition to the fault state from t = 3.02 s to t = 28.01 s denoting a fast
return to the normal state, once the signal on IMU-1 becomes operational.

In Figure 10b, the norm of the estimated gyro biases is shown, highlighting the
difference between IMUs.
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(a) z-axis gyroscope data.
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(c) Attitude estimates.

Figure 10. Scenario F4. Black lines denote measurements/estimates from IMU-1, red lines are for
measurements/estimates from IMU-2. Green lines represent the output of the system, gray areas
highlight the time interval in which the SFDI algorithm is in the fault state. Vertical red dashed lines
denote the time instants when the fault occurs and ends.

6.1.5. Scenario F5—Random Walk

In Figure 11a, the effects of the random walk disturbance on accelerometer data are
shown. This signal is created by integrating a Gaussian noise with a mean value of 0.07 g
and overlapped to the real signal in the time interval [23 s, 33 s]. In order to stress the
algorithm, the mean value of noise is lower than the relevant detection threshold.
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(a) z-axis gyroscope data.
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(b) Attitude estimates.

Figure 11. Scenario F5. Black lines denote measurements/estimates from IMU-1, red lines are for
measurements/estimates from IMU-2. Green lines represent the output of the system, gray areas
highlight the time interval in which the SFDI algorithm is in the fault state. Vertical red dashed lines
denote the time instants when the fault occurs and ends.

As shown in Figure 11b, the SFDI algorithm moves to the fault state at t = 28.16 s, with
a notable delay from the beginning of the injected fault. The reliability of the estimated
attitude is not affected and such delay depends on the tri-rotor attitude: without any
relevant maneuver affecting a change in the pitch angle, a small error on a(1)x,S(t) results
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in a small trace on the attitude (<1 deg in the simulation). After IMU-1 becomes newly
operational, the SFDI algorithm returns to the normal state (at t = 33.41 s).

6.2. Algorithm Parameter Sensitivity Analysis

Effects of parameters on the performance of the proposed algorithm are discussed by
means of a comparison between several choices. Scenario F1 is considered. We denote with
T0 = {300, 301, . . . , 1300} the discrete time set in which the fault is injected. Executing the
SFDI algorithm the fault is detected and isolated. With T f = {k : F1(k) = 1} being the set
of time instants in which IMU-1 is considered faulted, the following performance indices
were considered:

1. computation time—the time needed to execute the SFDI algorithm at each time instant
on the embedded platform Raspberry Pi 3B;

2. correct detection—the ratio between the correctly detected fault time interval and
the real fault duration, computed as CD = card(T f ∩ T0)/card(T0), where card(T )
denotes the cardinality of set T ;

3. wrong detection—the ratio between the badly detected fault time interval and the
real fault duration, computed as WD = card(T f ∩ T 0)/card(T0), where T 0 is the
complementary set of T0;

4. detection time—the delay between the beginning of the fault and the detection, com-
puted as DT = (min T f −min T0);

5. recovery time—the delay between the end of the fault and the fault recovery, computed
as RT = (max T f −max T0).

In Table 3, the computing time is shown considering several numbers of particles
∆. Results are taken from 30 executions of the algorithm for each ∆ value on the above
mentioned Raspberry Pi 3B platform.

Table 3. Raspberry Pi computing time for several numbers of particles (∆).

Number of Particles Computation Time (s)
Average Standard Deviation

1024 0.0138 0.0012
2048 0.0303 0.0022
4096 0.0682 0.0030
8192 0.1573 0.0050

16,384 0.3401 0.0071

In Table 4, the effects in terms of variation of 2–5 performance indices for varying
numbers of particles are shown. A growth in the number of particles decreases PF conver-
gence time thus leading to a quicker recovery from a fault. However, if the output of both
(operational and faulty) IMUs is close, an excessively short convergence speed may cause
the mislabeling of a faulty IMU as operational, reducing the correct detection ratio. For these
reasons increasing the ∆ value behind a certain threshold brings no advantages, while
increasing computational effort, see Table 3. In view of the sensitivity analysis results, the
chosen value of ∆ is boldfaced. It represents the number of particles, among the considered
values, showing the best correct detection ratio while guaranteeing real-time execution.

Table 4. Sensitivity analysis on ∆.

Number of Particles Correct Detection (%) Wrong Detection (%) Detection Time (s) Recovery Time (s)

1024 89.81 0.00 0.27 11.56
4096 99.50 0.00 0.27 6.96

16,384 92.81 0.30 0.27 4.07
32,768 92.81 0.00 0.27 4.04
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In Table 5 the effects of τa are evaluated. As expected, reducing the fault detection
threshold may increase the number of wrong detections, whereas high threshold values
may increase the number of missed detections. Detection time appears to be zero with
lower τa values because of false positives and the fact that recovery time may be affected by
false detections. The chosen value of τa is boldfaced and it represents the trade-off, among
the considered thresholds, which shows the best ratio between the correct detection index
and the wrong identification one.

Table 5. Sensitivity analysis for varying of τa.

α · τa Correct Detection (%) Wrong Detection (%) Detection Time (s) Recovery Time (s)

α = 0.25 99.40 24.36 0.00 18.67
α = 0.75 99.90 0.06 0.00 6.96

α = 1 99.50 0.00 0.27 6.96
α = 1.5 45.75 1.03 0.27 6.96

In Table 6 the influence of Ω is shown. A higher recovery threshold value leads to a
shorter recovery time, which eventually leads to exiting the fault condition too early; it
causes an increase in the number of missed alarms, reducing SFDI algorithm sensitivity.
The chosen value of Ω is boldfaced and it represents the best threshold value in terms of
acceptable recovery time.

Table 6. Sensitivity analysis for varying of Ω.

α · Ω Correct Detection (%) Wrong Detection (%) Detection Time (s) Recovery Time (s)

α = 0.25 97.30 0.00 0.27 10.28
α = 0.5 97.30 0.00 0.27 7.61
α = 0.75 97.30 0.00 0.27 7.44

α = 1 99.50 0.00 0.27 6.96
α = 4 35.26 0.84 0.27 0.00

Finally, in Table 7 the effect of the v parameter is evaluated. It affects PF convergence
time in two opposite ways. Larger v values may boost the convergence speed by enlarging
the region where the algorithm searches for the best state estimate, but it can also reduce
the correct match ratio in case of faults whose magnitude is close to the relevant detection
threshold. Neither the wrong identification ratio nor the detection time are influenced by
v value. The chosen value of v is boldfaced and it represents the trade-off in terms of the
ratio between the correct detection and the wrong identification indices.

Table 7. Sensitivity analysis for varying of v.

α · v Correct Detection (%) Wrong Detection (%) Detection Time (s) Recovery Time(s)

α = 0.25 88.11 0.00 0.27 32.45
α = 0.5 85.71 0.00 0.27 4.43
α = 0.75 43.36 0.00 0.27 0.00

α = 1 99.50 0.00 0.27 6.96
α = 4 94.31 0.00 0.27 4.08

7. Conclusions

In commercial unmanned aviation, an increase in the system reliability is needed in
order to make flight risks acceptable.

With this aim, in this paper, the implementation of a sensor fault detection and
isolation technique on low-cost hardware typical of commercial micro- and mini-UAVs was
performed. Given the crucial role of attitude estimation in flying platform stabilization,
the proposed procedure is aimed at detecting and isolating faults on inertial measurement
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units used to estimate UAV attitude. The hardware is based on a duplex architecture
with two inertial measurement units (IMUs) including 3-axis gyroscopes, accelerometers
and magnetometers. A particle filtering approach is proposed to deal with the attitude
estimation problem, being able to deal with non-linear motion models and non-Gaussian
noise distributions.

Results show the effectiveness of such an approach. Data gathered from a real flight
of a tri-rotor flying platform were useful to test the SFDI algorithm with real sensor
disturbances due to vibrations and changes to magnetic field. The proposed algorithm
correctly detected every injected fault, including for challenging scenarios such as freezing
faults and slow drifts.

The proposed architecture increases system reliability by doubling the number of
on-board sensors. This produces a reduction in weight, costs and power consumption, in
comparison to the gold standard of triplex architecture for avionics at the price of lower
speed and accuracy.

In the literature, few duplex IMU architectures have been proposed. In Table 8, the
authors compared the proposed SFDI algorithm with the SFDI logic presented in a previous
work [72], to highlight the pros and cons of the current solution by comparing platforms in
terms of detection time (td) and maximum attitude error (emax).

Table 8. Comparison between duplex architectures.

PF + SFDI Previous Work [72]

X td (s) emax (rad) td (s) emax (rad)

F1 0.270 0.018 (on φ angle) 0.094 0.073 (on φ angle)
F2 0.960 0.024 (on ψ angle) 2.075 0.026 (on ψ angle)

The implementation of the algorithm on a Raspberry Pi low-cost embedded platform
with two IMU boards has shown that, although a particle filter is considered a heavy
algorithm, the proposed procedure can be used on low-cost unmanned aircraft, with an
increase in system reliability and without a significant change in the overall cost.

To make the algorithm readily available and easily tunable, a sensitivity analy-
sis of algorithm parameters on the SFDI performance was conducted, highlighting the
chosen settings.

For the latest low-cost drones equipped with sonar, lidar and optical flow sensors, the
future applications of our procedure are currently under research, using more sensors and
also validating duplex heterogeneous architectures, where redundant sensor platforms can
contain different sensors.
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