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Abstract: Cancers arise as a result of stepwise accumulation of mutations which may occur at the nucleotide level and/or 

the gross chromosomal level. Many cancers particularly those of the colon display a form of genomic instability which 

may facilitate and speed up tumor initiation and development. In few instances, a “mutator mutation” has been clearly im-

plicated in driving the accumulation of other carcinogenic mutations. For example, the post-replicative DNA mismatch 

repair deficiency results in dramatic increase in insertion/deletion mutations giving rise to the microsatellite instability 

(MSI) phenotype and may predispose to a spectrum of tumours when it occurs in the germline. Although many sporadic 

cancers show multiple mutations suggesting unstable genome, the role of this instability in carcinogenesis, as opposed to 

the power of natural selection, has been a matter of controversy. This review gives an update of the latest data on these is-

sues particularly recent data from genome-wide, high throughput techniques as well as mathematical modelling. Through-

out this review, reference will be made to the relevance of genomic instability to the pathogenesis of colorectal carcinoma 

particularly its hereditary and familial subsets. 
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1. INTRODUCTION 

 The transformation of a normal cell to a malignant one 
involves the acquisition of alterations in various cellular phe-
notypes through the accumulation of multiple genetic 
changes; in other words, through the accumulation of multi-
ple mutations. A debate has been going on for more than a 
decade to answer the question how a cell might accumulate 
the number of mutations required for the carcinogenic proc-
ess? Two opposing theories were proposed: the “mutator 
phenotype” hypothesis vs. the “random mutations followed 
by waves of selection and clonal expansion” hypothesis. 
Recent data from high throughput techniques as well as 
mathematical modelling seem to favour the role of selection 
in carcinogenesis; as it has been the case in nature. However, 
there is strong evidence supporting a causative role of a mu-
tator phenotype in the pathogenesis of rare hereditary cancer 
syndromes such as Lynch syndrome (hereditary nonpoly-
posis colon cancer, HNPCC). Moreover, rare subsets of fa-
milial colon cancers, the predisposition to which is as yet 
unknown, could be related to, as yet unidentified, novel 
forms of genomic instability. 

2. EVIDENCE FOR MULTIPLE MUTATIONS IN 

HUMAN CANCERS 

 Common definitions of the word “mutation” includes: 
“changes in the nucleotide sequence of DNA”, “a relatively 
permanent change in hereditary material involving either a  
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physical change in chromosome relations or a biochemical 
change in the codons that makes up genes” and/or “a perma-
nent structural alteration in DNA.” In most cases, DNA 
changes either have no effect or cause harm, but occasionally 
a mutation can improve an organism's chance of surviving 
and passing the beneficial change on to its descendants. 
Commonly recognized forms of mutations include nucleo-
tide changes, chromosomal abnormalities both structural and 
numerical, and changes in the methylations and other DNA 
modifications collectively known as “epimutaions”. It is be-
coming clear that individual malignant cells contain lots of 
mutations. Multiple abnormal chromosomes are found in 
most solid tumors [1], tumors display amplification of seg-
ments of DNA at high frequencies [2, 3] and also exhibit loss 
of heterozygosity (LOH) resulting from deletions in one of 
the parental chromosomes [4]. The average number of nu-
cleotide mutations in breast and colorectal cancers was re-
cently estimated to be around 100 of which 20 might play a 
causal role [5]. A strong evidence for thousands of mutations 
in cancer cells has come from the observations of changes in 
the length of short repetitive nucleotide tracts (microsatel-
lites) in tumor DNA from patients with Lynch syndrome [6]. 

3. GENOMIC INSTABILITY 

 The term genomic (or genetic) instability was introduced 
to indicate the increased tendency of tumor cells to acquire 
new mutations with each cell division. This concept has be-
come clear after a study of one form of instability, chromo-
somal instability [7], and substantiated by the previously 
established “microsatellite instability” due to mismatch re-
pair deficiency. The simple observation of multiple muta-
tions in a tumor is a “state” while genomic instability is a  
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“rate” [8]. In most cases, however, these two features are 
observed simultaneously in the same tumor. The term “in-
stability” is used by many authors to indicate the “state” of 
multiple mutations in cancers as it is difficult and experi-
mentally demanding to prove the “rate” changes.  

 Genomic instability phenotypes are best characterized for 
colon cancer where variable forms of instability were origi-
nally discovered [8-11]. These include at least three forms: 
1- Chromosomal instability (CIN): occurs in the majority of 
colorectal cancers. It is worth noting that in many instances 
the cause of chromosomal instability is not clear. 2- Micro-
satellite instability (MSI): occurs in a minority of colorectal 
cancers including Lynch syndrome (HNPCC). MSI is due to 
mutation in a mismatch repair gene (i.e. MLH1, MSH2, 
MSH6 and PMS2) [12]. 3- The CpG island methylator phe-
notype (CIMP) usually overlaps with sporadic MSI and is 
found in most tumors with mutations in the BRAF oncogene 
[13, 14]. More recently, the Loeb laboratory suggested an-
other form of instability called “point mutation instability” 
(PIN) [15]. This was based on estimating the rate of acquir-
ing random point mutations, in tumor vs. normal cells. They 
reported that point mutations occur at a 200-fold higher rate 
in cancers than in normal cells [15]. Thus, MIN, CIN, CIMP 
and the recently proposed form PIN are examples of ge-
nomic instabilities. The intriguing question is why in some 
instances multiple forms of these instabilities coexist? 

 Different subtypes of CIN might exist in different tu-
mours. Our previous analysis of colon cancer cell lines using 
24-color FISH techniques, Spectral Karyotyping (SKY) and 
MFISH, has revealed interesting observations in this regard. 
Most cell lines showed numerical instability with tendency 
to acquire additional copies of chromosomes to reach a near 
triploid karyotype with multiple trisomies [16], few cell lines 
showed structural instability with a tendency to acquire non-
balanced chromosomal translocations, deletions and duplica-
tions of chromosomal parts with subtle numerical changes 
e.g. RKO cell line (unpublished data), and the most interest-
ing was the tendency to multiple reciprocal translocations 
with subtle numerical changes [16]. In another study, some 
cell lines showed specific tendency to mitotic recombination 
resulting in excessive LOH events with insignificant numeri-
cal chromosomal changes [3]. These varieties possibly re-
flect different repair defects or exposure to different types of 
DNA damage. 

 Tumors with no apparent form of genomic instability 
were also recorded by many groups [4, 17-19]. Interestingly 
these tumors were mostly associated with peculiar features 
including familial clustering, young age at onset, and/or lack 
of other common changes in colorectal carcinogenesis [4, 
18]. The importance of these observations is discussed be-
low. These findings suggest that an instability form is not 
required by all tumors or as yet unidentified form of instabil-
ity underlie the development of such tumor subsets. Most 
Hematological malignancies do not show clear genomic in-
stability, however. 

 The natural outcome of the instability phenotype is the 
generation of multiple tumor clones at higher rate than usual. 
This is reflected on the extent of the observed tumor hetero-
geneity. In our SKY analysis of the colon cancer cell lines, 
we have noted that some cell lines showed increased hetero-

geneity as evident by multiple karyotypic clones while others 
showed restricted inter-metaphase heterogeneity even in the 
presence of multiple chromosomal changes, e.g. the lines 
VACO4A, SW837 [16]. The same was reported for the het-
erogeneity at the nucleotide (DNA mutation) level [17, 20]. 
It is supposed that extensive heterogeneity of tumor genomes 
has important implications for cancer treatment through the 
generation of resistant clones [21]. 

4. THE MUTATOR PHENOTYPE 

 The observation of multiple mutations in many tumours 
and the existence of hereditary syndromes with distinct 
forms of instability such as, Xeroderma Pigmentosa and 
Lynch syndrome, has led some researchers to assume that 
normal mutation rates are insufficient to account for the mul-
tiple mutations observed in cancer cells, therefore, mutations 
that increase mutation rates would be essential to account for 
the large numbers of mutations observed in human tumours 
[10, 21-25]. The mutator phenotype hypothesis was origi-
nally postulated for mutations in genes that control the fidel-
ity of DNA replication and\or the efficacy of DNA repair. 
This hypothesis has evolved to encompass genes that govern 
processes such as chromosome segregation, damage surveil-
lance (e.g., checkpoint control), cellular responses (e.g., 
apoptosis), and maintenance of the epigenome [8, 9]. The 
mutator phenotype arising from mutations in genetic stability 
genes thus can have diverse manifestations, such as point 
mutations, microsatellite instability, and loss of heterozygos-
ity (LOH). The generalization of this idea led many groups 
to devote their efforts to search for the “mutator mutations” 
in different tumours. While these mutator mutations were 
identified in a few cases [26-28], unfortunately, this ap-
proach has been un-rewarding to many researchers. 

5. THE POWER OF NATURAL SELECTION 

 Almost a decade ago, Bodmer and Tomlinson drew atten-
tion to a potential flaw in the “mutator phenotype” hypothe-
sis [29, 30]. Their basic argument was that this hypothesis 
simply ignored the power of natural selection in tumour de-
velopment. A raised mutation rate does not itself cause a 
tumor to grow but it is rather the natural selection, they ar-
gued. A raised mutation rate may make carcinogenesis 
faster, but is not necessary for carcinogenesis. Bodmer and 
Tomlinson illustrated the relative powers of a selective ad-
vantage and an increased mutation rate by the fact that 
Lynch syndrome patients (with a mutator phenotype due to 
mismatch repair deficiency) develop about the same number 
of colorectal adenomas as the general population (although 
cancers will develop faster), whereas Familial Adenomatous 
Polyposis (FAP) patients (with germline APC mutations) 
usually develop thousands of colorectal tumours. The exis-
tence of clonal expansion, and the fact that the rate of cell 
turnover probably far exceeds the net rate of tumor growth 
increasing the number of cell divisions per unit time, could 
adequately explain carcinogenesis as well as the increased 
number of mutations observed in cancers without the need 
for a mutator phenotype [29, 31]. Furthermore, a raised mu-
tation rate in early tumours could be highly disadvantageous 
to a cell as a high mutational load might affect some house-
keeping genes with the unenviable induction of apoptosis. 
Additionally, only a limited range of repair mutations is 
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found in tumours (see above). In conclusion, the argument 
against a mutator phenotype states that “mutations that pro-
vide a selective advantage are essential for tumourigenesis; 
genomic instability is likely to be important in some situa-
tions and in some tumors, but it is neither a general driving 
force behind tumourigenesis nor essential for tumor growth” 
[30, 32]. 

6. ADDITIONAL EVIDENCE AGAINST THE MUTA-

TOR PHENOTYPE HYPOTHESIS 

 We have noted above that there are solid tumours with no 
apparent form of genomic instability and/or restricted het-
erogeneity and that most hematological malignancies do not 
show clear genomic instability. Recent evaluation of colorec-
tal adenomas, the precursor lesions of colorectal carcinomas, 
using the sensitive technique array-comparative genomic 
hybridization (aCGH), ruled out the significance of CIN in 
the development of these early lesions [33]. Array-CGH 
changes found frequently in colorectal carcinomas, such as 
deletions of chromosomes 4q and 18q, were very infrequent 
in the adenomas. Almost all copy number changes in ade-
nomas were of small magnitude and did not match those 
found in carcinomas. The authors concluded that CIN is not 
the norm in these lesions; it probably affects a minority of 
cases [33]. It is widely noted that there is marked karyorypic 
stability of most cell lines regardless of culturing for long 
time in different laboratories. These observations was moni-
tored and confirmed by us and others [27, 34, 35]. Similarly, 
at the DNA level, Losi et al. reported a reduction of the in-
tratumoral genetic heterogeneity for point mutations and a 
relative stability of the heterogeneity for allelic losses with 
tumor progression [36]. Collectively, these data combined 
with the fact that mutator mutations were not identified in 
common sporadic cancers, in spite of extensive research, cast 
doubt on the generalisation of the mutator phenotype hy-
pothesis in carcinogenesis. 

7. MATHEMATICAL MODELLING FAVOURS THE 

ROLE OF SELECTION 

 The availability of the human genome sequence has en-
abled researchers to identify genetic alterations in cancers in 
unprecedented detail [5]. Vogelstein, Kinzler and Velculescu 
groups have taken the initiative and analysed 13,023 genes in 
breast and colorectal cancers to reveal that individual tumors 
accumulated an average of 62 nonsynonymous mutations. 
Refinement of these data identified 189 genes (average of 11 
per tumor) with crucial roles in carcinogenesis as these were 
mutated at significant frequencies. Extrapolating to the entire 
genome, it was estimated that individual colorectal cancers 
contain about 100 nonsynonymous mutations and that as 
many as 20 of these might play a causal role in the neoplastic 
process [5]. These data inspired further analysis and mathe-
matical modeling for exploring the basic parameters of the 
carcinogenic process and derive an analytical approximation 
for the expected waiting time that a full blown cancer would 
need to develop [37]. Surprisingly, this analysis revealed that 
selection was highly important in carcinogenesis and its im-
portance clearly exceeded that of the mutation rate. The 
model predicts that the observed genetic diversity of cancer 
genomes can arise under a normal mutation rate if the aver-
age selective advantage per mutation is on the order of 1%. 

More surprisingly, this model showed that increased muta-
tion rates due to genetic instability would exert even smaller 
selective advantages during carcinogenesis. The authors 
agreed that cancer progression can be the result of multiple 
sequential mutations, each of which has a relatively small 
but positive effect on net cell growth [37]. The importance of 
these data is double-fold, since these come from some of the 
laboratories that have developed the concept of chromosomal 
and genomic instabilities in tumourigenesis.  

 It should be emphasized that the above analyses were 
based on sporadic cancers and that some forms of genomic 
instabilities, indeed, predisposes to cancers in rare hereditary 
syndromes which is the focus of the following discussion. 

8. LYNCH SYNDROME 

8.1. Clinicopathological Features 

 The average age of colorectal cancer diagnosis in Lynch 
syndrome is 44 years, compared with 64 years in the general 
population. Lynch syndrome-related colon cancers are most 
likely to develop in the right colon. Lynch syndrome colon 
tumours like microsatellite-unstable colon cancers usually 
have a favourable prognosis [38, 39] which might be related 
to the excessive mutation burden in these tumours. If this is 
true, it means that a mutator phenotype might be disadvanta-
geous at later stages of tumor progression. Whereas Lynch 
syndrome-associated colon cancer, in analogy to colon can-
cer in general, is believed to develop via a polyp precursor, 
most patients do not have an increased number of polyps. As 
mentioned above, this means that a mutator phenotype does 
not cause a tumor to grow by itself. Lynch syndrome patients 
can have synchronous and metachronous colorectal cancers 
as well as other primary extracolonic malignancies, the most 
common of which is endometrial adenocarcinoma, followed 
by carcinomas of the stomach, small intestine, liver and bil-
iary tract, pancreas, ovary, transitional cell carcinoma of the 
ureters and renal pelvis and brain tumours [40].  

 Pathological examination of the biopsy or resection 

specimens can help in identification of unsuspected cases of 

Lynch syndrome due to the characteristic morphological 

findings. Lynch syndrome-related colon cancers frequently 

show mucinous, signet-ring or poor differentiation, and have 

tumor infiltrating lymphocytes, Crohn’s-like lymphocytic 

reaction and medullary growth pattern [41]. Of these, the 

presence of intraepithelial lymphocytes (i.e., tumor infiltrat-

ing
 
lymphocytes) is the most sensitive

 
pathologic feature 

which can be assessed and
 
quantified with hematoxylin and 

eosin-stained sections [42, 43]. However, these features are 

common to colorectal cancers with high levels of microsatel-
lite instability both of hereditary and sporadic origin. 

8.2. Diagnostic Guidelines and Predictive Models 

 The first diagnostic guidelines, referred to as “Amster-

dam criteria I” and “Amsterdam criteria II”, were developed 

to provide uniformity in collaborative studies [38, 44]. To 
guide decisions whether individuals with cancer from fami-

lies that do not fulfil Amsterdam criteria should undergo 

genetic testing, the revised Bethesda guidelines are used 
which allows less stringent assessment [45]. The fulfilment 

of just one of the Bethesda guidelines is sufficient for MSI 
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testing to be performed. The details of these diagnostic crite-

ria and guidelines are available in specialised reviews [6, 

12]. Additionally, three independent predictive models for 
assessing risk of Lynch syndrome and germline carriage 

rates of mutations in the most common causative genes were 

published to help decide for whom germline DNA sequenc-
ing is most appropriate. This was prompted by the fact that 

MSI positivity is not specific for Lynch syndrome as 15% of 

sporadic colorectal cancers also exhibit MSI and loss of 
MLH1 protein expression, due to epigenetic silencing of this 

gene in the tumor. Furthermore, none of Amsterdam or Be-

thesda approaches were designed to determine the likelihood 
of carrying a genetic mutation for an individual patient. The 

first predictive algorithm has been proposed by Barnetson 

et al. [46] followed by Balmaña and colleagues [47] and 
Chen and colleagues [48]. One of these models, the 

PREMM1,2 [47] was recently validated and extended in a 

population-based cohort of colorectal cancer patients [49]. 
PREMM1,2 is a freely available web-based tool accessible 

at the Dana-Farber Cancer Institute web site (http://www.dfci.org/ 

premm). 

8.3. Predisposition Genes and Genotype-Phenotype  

Correlation 

 Heterozygous germline mutations in the DNA mismatch 
repair genes MSH2 and MLH1 are responsible for most 
Lynch syndrome families while PMS2 and MSH6 are less 
frequently involved (Table 1). MLH3 gene may also be mu-
tated in the germline

 
in some suspected Lynch syndrome 

families with a variable degree of MSI
 
in tumor tissue, but 

there is little evidence to support its role in predisposition to 
classical Lynch syndrome [50-52]. There is no convincing 
evidence to support a role for PMS1 in Lynch syndrome pre-
disposition at present [53]. Tumours arise as a result of so-
matic inactivation of the same mismatch repair gene that is 
mutated in the germline. The wide range of reported patho-
genic mutations is recorded in the Lynch syndrome mutation 
database at http://www.insight-group.org and a summary of 
their characteristics is provided in another review [53]. 

 

Table 1. Genes Causing Predisposition to Lynch Syndrome 

and Related Variants 

Syndrome  Mode of Inheritance  Gene/Locus 

Lynch syndrome  

(Hereditary  

Nonpolyposis  

Colorectal Cancer) 

AD MSH2, 2p21,  

MLH1, 3p21–23 

MSH6, 2p21 

PMS2, 7p22 

(MLH3, 14q24.3) 

Muir-Torre syndrome AD MSH2, MLH1 

Turcot’s syndrome (AD or AR) MLH1, MSH2,  

PMS2, MSH6 

Footnote to Table 1: AD, autosomal dominant; AR, autosomal recessive. 

 

 Some cases with germ-line methylation of the MLH1 
promoter, called epimutations, have been reported [54-58]. 
According to these reports, the phenomenon can lead to co-
lorectal cancer development resembling Lynch syndrome 
and hypothetically inherited in a non-Mendelian pattern. 
MLH1 epimutations appear unstable and can be reversed 
during gametogenesis [56]. However, some authors recom-
mend that an offspring from an individual who carries 
MLH1 epimutations has to be considered at risk for develop-
ing cancer until the presence of the affected methylated gene 
is discarded [59]. 

8.4. Genomic Instability in Lynch Syndrome 

 The primary
 
function of the mismatch repair system is to 

eliminate base–base mismatches
 
and insertion–deletion loops 

which arise during DNA replication. The former sort of re-
pair deficiency leads

 
to single base substitutions while inser-

tion–deletion
 
loops affect short repetitive DNA (microsatel-

lites) and involve gains or losses of nucleotide repeat units; a 
phenomenon referred to as MSI. Cells heterozygous for 
mismatch repair gene mutation repair DNA normally [60]. 
Mismatch repair genes behave like tumor suppressors in that 
somatic inactivation of the wild type allele is required for 
tumor development (second hit) which can occur by deletion 
(loss of heterozygosity) [61], mutation [62] or methylation of 
CpG islands in the MLH1 promoter [63, 64]. This explains 
why the role of instability phenotype is doubtful in sporadic 
tumours since it is a lengthy pathway to acquire two muta-
tions to inactivate the mutator gene and then acquire muta-
tions in the carcinogenic gene (in this case APC). The 
chances of inactivation of the APC before inactivation of the 
mismatch repair gene would be more likely. 

 Mutation rates in tumor cells with mismatch repair defi-
ciency are 100–1000-fold compared with normal cells. The 
accumulation of mutations accelerates tumor (adenoma to 
carcinoma) progression and might explain why a majority of 
Lynch syndrome patients develop colon cancer during their 
lifetime, compared to only 5% of the general population. The 
mutations driven by mismatch repair deficiency may affect 
important growth-regulatory

 
genes, especially those contain-

ing repeat sequences, and show considerable tissue specific-
ity. For example, frameshift mutations affecting repeat tracts 
within the TGFßRII, BAX and TCF4 genes [20, 65] are 
strongly selected in gastrointestinal

 
malignancies but not in 

endometrial cancer. Such tissue-specific selection may there-
fore provide one possible explanation for the Lynch syn-
drome tumor spectrum, the genetic basis of which is incom-
pletely understood. The frank increase in mutation rate asso-
ciated with mismatch repair deficiency has been taken as 
evidence to support the mutator phenotype (genomic insta-
bility) hypothesis [66, 67].  

9. FAMILIAL COLORECTAL CANCER TYPE X 

(FCC-X) 

9.1. Clinical Features 

 It was found that up to 50% of non-polypotic colorectal 
cancer families meeting the stringent Amsterdam I criteria 
have no detectable mutations in the “major” DNA mismatch 
repair genes and an even greater fraction (around 70%) of  
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families not meeting these criteria fails to show such muta-
tions [68, 69]. Further studies showed that around one-fourth 
of families clinically compatible with Lynch syndrome were 
not linked to mismatch repair gene defects [70]. Clinical 
studies of selected non-polypotic colorectal cancer families 
with and without molecular evidence of mismatch repair 
gene involvement have assigned distinct features to each 
group [70-72]. Lindor and colleagues [73] studied 161 famil-
ial clusters of colorectal cancer which met the Amsterdam 
criteria. The families in which MSI-H was present in the 
colorectal cancers (56%) had all the classic clinical features 
of Lynch syndrome, and the average age to develop cancer 
was 48.7 years. There was a 6-fold increase in risk for colo-
rectal cancer and significantly increased risks for other 
Lynch syndrome-related cancers. Families which met the 
Amsterdam criteria but did not have DNA mismatch repair 
abnormalities had an average age of 60.7 years of developing 
cancer, and a significant 2-fold increase in risk for colorectal 
cancer but not for any associated tumor. Lindor et al. pro-
posed the name "familial colorectal cancer type X" for the 
latter group as it is clearly different from Lynch syndrome. 
The authors advise a less stringent protocol including 
colonoscopy every 5 years, starting at a more advanced age. 

9.2. Molecular Criteria 

 We performed a comprehensive molecular and DNA 
copy number analysis on 22 familial colorectal tumors from 
18 families fulfilling the clinical criteria for Lynch syndrome 
but not linked to mismatch repair defects, and compared the 
characteristics of these tumours to those of classical Lynch 
syndrome tumours with mismatch repair gene mutations [4]. 
Collectively, our data divided the tumors with no mismatch 
repair defects into two subgroups. The majority showed a 
tendency to affect the right colon, younger age of onset 
(mean 53.7 years) and paucity of common molecular and 
chromosomal alterations characteristic of colorectal carcino-
genesis (membranous -catenin, stable microsatellites and 
chromosomes and infrequent TP53 mutations). A minority 
showed nuclear -catenin, predominant location in the left 
colon, later age of onset (mean 58.6) and molecular features 
similar to classical microsatellite stable/chromosomally un-
stable sporadic colorectal cancers [4]. A recent study has 
confirmed the data discussed above especially the low fre-
quency of nuclear -catenin staining in FCC-X cases [74]. 
The authors also reported that the mutation profile at the 
RAS/RAF/MAPK pathway mimics sporadic microsatellite 
stable colorectal cancer. They found an average age of diag-
nosis 10 years older in KRAS-mutated patients and that 
KRAS G > A transitions were actively selected by tumours 
[74].  

 Others have suggested a link between a subset of familial 

colorectal cancer and a potential origin in the serrated hyper-

plasic polyp/adenoma pathway, BRAF mutations and CpG 

island methylations phenotype (CIMP) [75, 76]. The pres-

ence of BRAF mutation may argue against Lynch syndrome 

[77]. Overall, the above findings provide new insights into 

the candidate carcinogenic pathways in cohorts not linked to 

mismatch repair gene defects although the nature of the pre-

disposing gene(s) remains totally unknown. 

10. CONCLUSIONS 

 Recent high throughput data and mathematical modelling 
suggest that carcinogenesis is an evolutionary process driven 
by selection. Given these data, increased mutation rates due 
to genome instability does not appear to be an absolute re-
quirement during carcinogenesis of sporadic cancers. How-
ever, in rare hereditary cancer syndromes, such as Lynch 
syndrome, microsatellite instability due to mismatch repair 
gene deficiency plays a predisposing role. In this syndrome, 
some areas remain only partially examined and need special 
attention. FCC-X together with the broader categories of 
familial and young age colorectal cancer encompass subsets 
of tumours that apparently lack any instability and even lack 
most of the common genetic changes in colorectal cancers. A 
remote possibility remains that this is related to as yet uni-
dentified novel forms of genomic instability. This is a major 
challenge and orchestrated efforts are needed to delineate the 
predisposition to these syndromes.  
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