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Gastric adenocarcinoma (GAC) is the most common histological type of gastric cancer and imposes a considerable health burden
globally.-e purpose of this study was to identify significant genes and key pathways participated in the initiation and progression
of GAC. Four datasets (GSE13911, GSE19826, GSE54129, and GSE79973) including 171 GAC and 77 normal tissues from Gene
Expression Omnibus (GEO) database were collected and analyzed. -rough integrated bioinformatics analysis, we obtained 69
commonly differentially expressed genes (DEGs) among the four datasets, including 20 upregulated and 49 downregulated genes.
-e prime module in protein-protein interaction network of DEGs, including ADAMTS2, COL10A1, COL1A1, COL1A2,
COL8A1, BGN, and SPP1, was enriched in protein digestion and absorption, ECM-receptor interaction, focal adhesion, PI3K-Akt
signaling pathway, and amoebiasis. Furthermore, expression and survival analysis found that all seven hub genes were highly
expressed in GAC tissues and 6 of them (except for SPP1) were able to predict poor prognosis of GAC. Finally, we verified the 6
high-expressed hub genes in GAC tissues via immunohistochemistry, Western blot, and RNA quantification analysis. Altogether,
we identified six significantly upregulated DEGs as poor prognostic markers in GAC based on integrated bioinformatical
methods, which could be potential molecular markers and therapeutic targets for GAC patients.

1. Introduction

Gastric adenocarcinoma (GAC), the predominant histo-
logical type of gastric cancer, is the fifth most common
cancer ranked after lung, breast, colorectal, and prostate
cancers [1, 2]. GAC, also known as stomach adenocarcinoma
(STAD), has increased more than 1,000,000 new cases and
led to deaths of more than 768,000 people worldwide in 2020

[3]. Although improvements in endoscopic, surgical, and
systemic treatments have been made for decades, the
mortality rate of GAC is still high and the global 5-year
survival rates remain unsatisfactory [1, 4]. -us, GAC still
imposes a considerable health burden globally.

Although the global 5-year survival rates are relatively
low, the rates in Japan and South Korea are far more op-
timistic [5, 6], owing to early detection and screening efforts
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in these Asian countries [7]. Furthermore, it is reported that
the 5-year survival rate of early-stage T1 GAC (according to
the TNM classification of malignant tumors) is ∼95%, while
advanced-stage GAC (which cannot be surgically treated)
has a median survival of ∼9-10 months [8, 9], which further
emphasizes the critical importance of early detection and
diagnosis.

Molecular markers are vital for early detection of cancer
[10–12]. To date, several biomarkers have been used for the
diagnosis and determination of the clinical stage of GAC.
Among them, carcinoembryonic antigen (CEA), carbohy-
drate antigen 19-9 (CA19-9), and erb-b2 receptor tyrosine
kinase 2 (HER2) are the most frequently used biomarkers for
GAC in clinical setting [13, 14]. However, due to the in-
sufficient specificity and sensitivity of the current markers,
novel specific and sensitive molecular markers are still on
urgent demand, especially in the field of early diagnosis and
prognosis [13–15]. Bioinformatics analysis is a powerful and
comprehensive tool for analyzing gene expression data from
multiple datasets, which is perfect for excavating the po-
tential molecular markers laid in Gene Expression Omnibus
(GEO) and -e Cancer Genome Atlas (TCGA) datasets.
-erefore, in the current study, we mainly focused on ex-
ploring the commonly differential expressed genes among
different GEO datasets. Gene ontology (GO) and KEGG
enrichment analysis were further conducted to identify the
hub genes and key pathways enriched in the commonly
DEGs. Protein-protein interaction (PPI) network of the
DEGs was constructed, and core genes were determined via
the Cytoscape Molecular Complex Detection (MCODE). In
addition, DAVID, GEPIA, and Kaplan–Meier plotter were
applied to re-analyze the expression and survival informa-
tion of the core genes, respectively [16, 17]. Finally, im-
munohistochemistry, Western blot, and RNA quantification
analysis were performed to validate the expressions of the
identified genes in GAC tissue samples.

2. Materials and Methods

2.1. Microarray Data Information. NCBI-GEO is a free
public database and provides us with gene expression profile
of numerous cancers. -e following criteria were used to
screen the datasets and ensure relevant data were recorded:
(I) the sample includes gastric adenocarcinoma and normal
tissues; (II) the study type is expression profiling by array;
(III) the species is limited to Homo sapiens; (IV) access to
raw data is allowed. We obtained the gene expression
profiles of GSE13911, GSE19826, GSE54129, and GSE79973
in gastric adenocarcinoma and paired normal tissues.
Microarray data of GSE13911, GSE19826, GSE54129, and
GSE79973 were all on account of GPL570 platforms ([HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0
Array) which included a total of 171 GAC tissues and 77
normal tissues.

2.2. DEGs Identification. Background correction and nor-
malization were conducted through robust multi-array
average (RMA) and Microarray Suite (MAS) approach. -e

GEO2R online tools [18] were used to identify DEGs be-
tween the GAC specimen and normal specimen with |
log2FC|> 2 and an adjusted P value <0.05 [16–18]. -en, the
raw data were analyzed in Venn software online to identify
the commonly DEGs among the original four datasets. -e
DEGs with log2FC> 0 were considered as upregulated genes,
while the DEGs with log2FC＜ 0 were considered as
downregulated genes [16, 17].

2.3. GO and Pathway Enrichment Analysis. -e functions
and pathways enrichment of candidate DEGs were analyzed
using DAVID (the Database for Annotation, Visualization
and Integrated Discovery, https://david.ncifcrf.gov/) [19],
which is an online bioinformatic tool with the function of
integrating the GO and pathway enrichment analysis
[20, 21]. -rough DAVID, we identified the unique bio-
logical properties of the commonly DEGs and visualized the
DEGs enrichment of molecular function (MF), cellular
component (CC), biological process (BP), and Kyoto En-
cyclopedia of Gene and Genome (KEGG) pathways
(P< 0.05) [16, 17].

2.4. Integration of PPI Network and Modular Analysis.
STRING (Search Tool for the Retrieval of Interacting Genes,
https://cn.string-db.org/) online tool [22] was used to
evaluate the PPI information of DEGs. -en, the STRING
app in Cytoscape [23] was employed to examine the po-
tential correlation between these DEGs (maximum number
of interactors� 0 and confidence score ≥0.4). In addition, the
MCODE app in Cytoscape was used to identify the modules
and hub genes of the PPI network (degree cutoff� 2, max.
depth� 100, k-core� 2, and node score cutoff� 0.2) [16, 17].
PPI network properties, such as node degree and be-
tweenness centrality, were visualized by shape size and label
font size, respectively.

2.5. Survival and RNA Sequencing Expression Analysis.
Kaplan–Meier plotter is a common website tool (https://
kmplot.com/), which contains considerable information
among several cancers, including breast and gastric cancer
[24]. -e survival analysis was conducted by Kaplan–Meier
plotter, and the log rank P value and hazard ratio (HR) with
95% confidence intervals were computed and shown on the
plot. To validate these DEGs with significant expression
pattern, we applied the GEPIA (Gene Expression Profiling
Interactive Analysis, https://gepia.cancer-pku.cn/) website
to analyze the data of RNA sequencing expression based on
the GTEx projects and TCGA datasets [25].

2.6. Immunohistochemical (IHC) Staining. IHC staining was
performed to detect the protein level of certain genes in GAC
and normal human tissue samples and performed according
to the standard protocols using following antibodies: anti-
ADAMTS2 (bs-5858R, 1 : 500), anti-COL10A1 (BA2023, 1 :
400), anti-COL1A1 (BA0325, 1 : 400), anti-COL1A2
(BM4017, 1 :100), anti-COL8A1 (bs-7529R, 1 : 500), and
anti-BGN (bs-7552R, 1 : 500).
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2.7. Western Blot. GAC and adjacent normal tissue samples
were grinded and lysed with RIPA buffer supplemented with
protease inhibitor cocktail. Protein concentrations of the
extracts were measured with BCA assay. -e Western blot
analysis was performed according to the standard protocols
using the above antibodies.

2.8. RNA Quantification. Total RNA was extracted from
GAC and adjacent normal tissues with TRIzol reagent
(Invitrogen) and reverse-transcribed using PrimeScript™ RT
reagent kit (Takara). Quantitative real-time PCR analysis
was performed on LightCycler (Roche) with TB Green®Premix Ex Taq™ II (Takara). Data were normalized to
GAPDH expression. -e primers used for real-time PCR
were as follows: GAPDH (forward: 5′-GGA GCG AGA TCC
CTC CAA AAT-3′, reverse: 5′-GGC TGT TGT CAT ACT
TCT CAT GG-3′), ADAMTS2 (forward: 5′-GTG CAT GTG
GTGTATCGCC-3′, reverse: 5′-AGGACCTCGATGTTG
TAGTCA-3′), COL10A1 (forward: 5′-CATAAAAGGCCC
ACT ACC CAA C-3′, reverse: 5′-ACC TTG CTC TCC TCT
TAC TGC-3′), COL1A1 (forward: 5′-GAG GGC CAA GAC
GAA GAC ATC-3′, reverse: 5′-CAG ATC ACG TCA TCG
CAC AAC-3′), COL1A2 (forward: 5′-GGC CCT CAA GGT
TTC CAA GG-3′, reverse: 5′-CAC CCT GTG GTC CAA
CAA CTC-3′), COL8A1 (forward: 5′-GCT GCC ACC TCA
AAT TCC TC-3′, reverse: 5′-CTT TCT TGG GTA CGG
CTT CCT-3′), and BGN (forward: 5′-GAG ACC CTG AAT
GAA CTC CAC C-3′, reverse: 5′-CTC CCG TTC TCG ATC
ATC CTG-3′).

3. Results

3.1. Identification of DEGs in Gastric Adenocarcinoma.
GEO2R online tool was used to determine the DEGs from
GSE13911, GSE19826, GSE54129, and GSE79973, which
resulted in 484, 388, 971, and 524 DEGs, respectively
(Figure 1(a)) (|log2FC|＞ 2 and adjust P value＜0.05).-en,
the commonly DEGs among the above four datasets were
identified by Venn diagram software. Results showed that a
total of 69 commonly DEGs were identified, including 20
upregulated genes (log2FC＞ 2) and 49 downregulated
genes (log2FC＜−2) in GAC tissues (Figures 1(b) and 1(c)
and Table 1).

3.2. GO and KEGG Analysis of DEGs in Gastric
Adenocarcinoma. In order to examine the biological
properties of the 69 DEGs, DAVID software was applied to
conduct GO and KEGG analysis. Results of GO analysis
indicated that (1) for biological processes (BP), upregulated
DEGs were particularly enriched in endodermal cell dif-
ferentiation, collagen fibril organization, protein hetero-
trimerization, skin morphogenesis, and cell adhesion, and
downregulated DEGs in digestion, potassium ion import,
oxidation-reduction process, and bicarbonate transport
(Figure 2(a)); (2) for cell component (CC), upregulated
DEGs were significantly enriched in extracellular space,
collagen trimer, collagen type I trimer, and proteinaceous
extracellular matrix, and downregulated DEGs in

extracellular space, lysosome, apical plasma membrane,
integral component of plasma membrane, and integral
component of membrane (Figure 2(b)); (3) for molecular
function (MF), upregulated DEGs were enriched in extra-
cellular matrix structural constituent and heparin binding,
and downregulated DEGs in inward rectifier potassium
channel activity, hydrogen:potassium-exchanging ATPase
activity, and G-protein activated inward rectifier potassium
channel activity (Figure 2(c) and Table 2, P< 0.05).

Results of KEGG analysis showed that upregulated DEGs
were particularly enriched in ECM-receptor interaction,
focal adhesion, protein digestion and absorption, PI3K-Akt
signaling pathway, amoebiasis, and platelet activation
(Figure 3(a)), while downregulated DEGs in gastric acid
secretion, retinol metabolism, chemical carcinogenesis,
collecting duct acid secretion, glycolysis/gluconeogenesis,
drug metabolism-cytochrome P450, metabolism of xeno-
biotics by cytochrome P450, and metabolic pathways
(Figure 3(b) and Table 3, P< 0.05).

3.3. PPI Network and Modular Analysis of DEGs. -e DEGs
PPI network complex was constructed via Cytoscape soft-
ware. Results showed that 44 DEGs including 16 upregulated
and 28 downregulated genes were enrolled, and 75 edges
were formed (Figure 4(a)). -ere were 25 DEGs which were
not included into the DEGs PPI network. -en, we applied
CytoscapeMCODE to further analyze the primemodule and
ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, BGN,
and SPP1 were identified among the 44 nodes. Results also
showed that the above seven hub nodes were all upregulated
genes (Figure 4(b)).

3.4. Re-Analysis of Seven Hub Genes by KEGG Pathway
Enrichment. To further understand the possible enriched
pathways of the seven hub DEGs, KEGG pathway enrich-
ment was re-analyzed via DAVID. Results showed that seven
core genes were significantly enriched in several cancer-
related pathways. In detail, COL1A2, COL1A1, and
COL10A1 were enriched in protein digestion and absorp-
tion; COL1A2, COL1A1, and SPP1 were enriched in ECM-
receptor interaction, focal adhesion, and PI3K-Akt signaling
pathway; COL1A2 and COL1A1 were further enriched in
amoebiasis (Figure 5 and Table 4, P< 0.05).

3.5. Analysis of Hub Genes via the GEPIA and Kaplan–Meier
Plotter. To further validate the significance of the seven
central genes, GEPIA and Kaplan–Meier plotter online tools
were utilized to identify the expression data and survival
data, respectively. GEPIA expression data showed that all
seven hub genes were highly expressed in GAC tissues
compared to normal tissues (Figure 6 and Table 5, P< 0.05).
Kaplan–Meier plotter survival data showed that high ex-
pression of ADAMTS2, COL10A1, COL1A1, COL1A2,
COL8A1, and BGN had a significantly worse survival
probability, while high expression of SPP1 showed no effect
on patient survival (Figure 7 and Table 6, P< 0.05).
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Figure 1: Identification of 69 commonly differentially expressed genes (DEGs) among the four datasets (GSE13911, GSE19826, GSE54129,
and GSE79973) through Venn diagram software (available online: https://bioinformatics.psb.ugent.be/webtools/Venn/). (a) Volcano plot of
DEGs from the four datasets. (b) Twenty DEGs were upregulated among the four datasets (log2FC＞ 0). (c) Forty-nine DEGs were
downregulated among the four datasets (log2FC＜ 0). Different colors represented different datasets in B and C.
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3.6. Validation of the Expression Levels of Six Core Genes in
GAC Patients. Finally, we detected the expression levels of
the above six genes in GAC specimens and adjacent normal
specimens by immunohistochemistry (Figure 8(a)), Western
blot (Figure 8(b)), and RNA quantification (Figure 8(c))
analysis. Results showed that ADAMTS2, COL10A1,
COL1A1, COL1A2, COL8A1, and BGN were highly
expressed in GAC tissues compared to adjacent normal
tissues (Figure 8), consistent with the GEPIA expression
data.

4. Discussion

Gastric adenocarcinoma is a lethal malignance cancer. In
this study, we applied bioinformatical methods on the basis
of four gene expression profile datasets to identify more
useful prognostic molecular markers in GAC. A total of 171
GAC specimens and 77 normal specimens were enrolled.
First, we revealed a total of 69 commonly DEGs via GEO2R
and Venn software (|log2FC|＞ 2 and adjust P value＜0.05),
including 20 upregulated and 49 downregulated DEGs.
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Figure 2: Gene ontology analysis of commonly DEGs in gastric adenocarcinoma. DAVID software was applied to conduct gene ontology.
Biological processes (BP) (a), cell component (CC) (b), and molecular function (MF) (c) of the up/downregulated DEGs were shown
(P< 0.05).

Table 1: All 69 commonly differentially expressed genes (DEGs) were identified from four profile datasets, including 20 upregulated genes
and 49 downregulated genes in the gastric adenocarcinoma tissues compared to normal tissues.

DEGs Genes name

Upregulated IGF2BP3 SULF1 FAP RARRES1 INHBA SPP1 COL1A1 COL10A1 FNDC1 COL11A1 CEMIP CTHRC1 THBS2 BGN
COL1A2 CST1 MFAP2 ADAMTS2 WISP1 COL8A1

Downregulated

CNTN3 LIPF TRIM74///TRIM73 CAPN13 FBP2 AKR1B10 B4GALNT3 CYP2C18 ALDH3A1 ATP4A UGT2B15
KIAA1324 GKN1 ADGRG2 RDH12 GIF CA2 GATA5 ATP4BMAL CAPN9 SLC26A9 ESRRG ADTRP VSTM2A SSTR1
ACER2 MFSD4A DPCR1 ADH7 VSIG1 PGC KCNE2 SOSTDC1 TPCN2 CA9 MUC5AC VSIG2 SPINK7 TMED6

SCNN1B LINC00982 HPGD PSAPL1 CWH43 KCNJ16 KCNJ15 GKN2 CXCL17
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Table 2: Gene ontology analysis of differentially expressed genes in gastric adenocarcinoma.

Expression Category Term Count % P-value FDR

Upregulated

GOTERM_BP_DIRECT GO:0035987∼endodermal cell differentiation 3 15.0 2.41E− 04 0.277424
GOTERM_BP_DIRECT GO:0030199∼collagen fibril organization 3 15.0 3.59E− 04 0.413041
GOTERM_BP_DIRECT GO:0070208∼protein heterotrimerization 2 10.0 0.007132 7.921921
GOTERM_BP_DIRECT GO:0043589∼skin morphogenesis 2 10.0 0.007132 7.921921
GOTERM_BP_DIRECT GO:0007155∼cell adhesion 3 15.0 0.008542 9.418433
GOTERM_CC_DIRECT GO:0005615∼extracellular space 8 40.0 4.61E− 05 0.038561
GOTERM_CC_DIRECT GO:0005581∼collagen trimer 3 15.0 0.001285 1.069804
GOTERM_CC_DIRECT GO:0005584∼collagen type I trimer 2 10.0 0.002491 2.064654
GOTERM_CC_DIRECT GO:0005578∼proteinaceous extracellular matrix 3 15.0 0.014327 11.37209
GOTERM_MF_DIRECT GO:0005201∼extracellular matrix structural constituent 3 15.0 5.25E− 04 0.415248
GOTERM_MF_DIRECT GO:0008201∼heparin binding 2 10.0 0.087398 51.56318

Downregulated

GOTERM_BP_DIRECT GO:0007586∼digestion 5 10.2 1.81E− 05 0.023045
GOTERM_BP_DIRECT GO:0010107∼potassium ion import 4 8.2 4.56E− 05 0.058116
GOTERM_BP_DIRECT GO:0055114∼oxidation-reduction process 7 14.3 0.003333 4.16404
GOTERM_BP_DIRECT GO:0015701∼bicarbonate transport 3 6.1 0.005406 6.671731
GOTERM_CC_DIRECT GO:0005615∼extracellular space 11 22.4 0.001646 1.61346
GOTERM_CC_DIRECT GO:0005764∼lysosome 5 10.2 0.002499 2.44067
GOTERM_CC_DIRECT GO:0016324∼apical plasma membrane 5 10.2 0.006137 5.897225
GOTERM_CC_DIRECT GO:0005887∼integral component of plasma membrane 10 20.4 0.008007 7.631398
GOTERM_CC_DIRECT GO:0016021∼integral component of membrane 22 44.9 0.009103 8.634041
GOTERM_MF_DIRECT GO:0005242∼inward rectifier potassium channel activity 3 6.1 7.31E− 04 0.820368

GOTERM_MF_DIRECT GO:0008900∼hydrogen:potassium-exchanging ATPase
activity 2 4.1 0.00603 6.584128

GOTERM_MF_DIRECT GO:0015467∼G-protein activated inward rectifier
potassium channel activity 2 4.1 0.019965 20.31405
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Figure 3: KEGG analysis of commonly DEGs in gastric adenocarcinoma. KEGG analysis of upregulated DEGs (a) and downregulated DEGs
(b) was shown (P< 0.05).

Table 3: KEGG pathway analysis of differentially expressed genes in gastric adenocarcinoma.

Expression Term Count % P-value Genes

Upregulated

ptr04512:ECM-receptor interaction 5 25.0 8.56E− 07 COL1A2, COL1A1, THBS2, COL11A1, SPP1
ptr04510:focal adhesion 5 25.0 2.60E− 05 COL1A2, COL1A1, THBS2, COL11A1, SPP1

ptr04974:protein digestion and absorption 4 20.0 5.98E− 05 COL1A2, COL1A1, COL11A1, COL10A1
ptr04151:PI3K-Akt signaling pathway 5 25.0 1.78E− 04 COL1A2, COL1A1, THBS2, COL11A1, SPP1

ptr05146:amoebiasis 3 15.0 0.004694 COL1A2, COL1A1, COL11A1
ptr04611:platelet activation 3 15.0 0.00728 COL1A2, COL1A1, COL11A1

Downregulated

hsa04971:gastric acid secretion 6 12.2 2.68E− 06 KCNJ16, KCNJ15, ATP4A, ATP4B, KCNE2, CA2
hsa00830:retinol metabolism 4 8.2 0.001043 RDH12, CYP2C18, ADH7, UGT2B15

hsa05204:chemical carcinogenesis 4 8.2 0.001989 CYP2C18, ADH7, UGT2B15, ALDH3A1
hsa04966:collecting duct acid secretion 3 6.1 0.003265 ATP4A, ATP4B, CA2
hsa00010:glycolysis/gluconeogenesis 3 6.1 0.019041 ADH7, FBP2, ALDH3A1

hsa00982:drug metabolism—cytochrome
P450 3 6.1 0.019581 ADH7, UGT2B15, ALDH3A1

hsa00980:metabolism of xenobiotics by
cytochrome P450 3 6.1 0.022951 ADH7, UGT2B15, ALDH3A1

hsa01100:metabolic pathways 9 18.4 0.029288 RDH12, CYP2C18, ACER2, AKR1B10, ADH7,
FBP2, UGT2B15, ALDH3A1, LIPF
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Second, GO and KEGG pathway enrichment analysis
showed that 20 upregulated genes enriched in endodermal
cell differentiation, protein heterotrimerization, ECM-re-
ceptor interaction, focal adhesion, protein digestion and
absorption, PI3K-Akt signaling pathway, amoebiasis, and
platelet activation, while 49 downregulated genes enriched
in digestion, potassium ion import, oxidation-reduction
process, bicarbonate transport, inward rectifier potassium
channel activity, hydrogen:potassium-exchanging ATPase
activity, gastric acid secretion, retinol metabolism, and

metabolic pathways (P< 0.05). -ird, DEGs PPI network
complex of 44 nodes and 75 edges was constructed via
Cytoscape software and prime module analysis identified 7
hub genes (ADAMTS2, COL10A1, COL1A1, COL1A2,
COL8A1, BGN, and SPP1), which were all upregulated genes
and were significantly enriched in several cancer-related
pathways. Furthermore, GEPIA analysis showed that all the
seven hub genes were highly expressed in GAC tissues
(P< 0.05). In addition, Kaplan–Meier plotter analysis
showed that high expression of ADAMTS2, COL10A1,
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COL1A2

COL1A1

ADAMTS2

COL8A1

(b)

Figure 4: DEGs PPI network was constructed by Cytoscape software. (a) -ere were a total of 44 nodes and 75 edges in the DEGs PPI
network complex. -e nodes meant proteins; the edges meant the interaction between proteins; red circles meant upregulated DEGs; and
green circles meant downregulated DEGs. (b) Modular analysis via Cytoscape software (degree cutoff� 2, max. depth� 100, k-core� 2, and
node score cutoff� 0.2). Seven central nodes were screened. Circle size represents node degree, and label font size represents betweenness
centrality.
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Figure 5: KEGG re-analysis of the seven hub genes.

Table 4: Re-analysis of seven selected genes via KEGG pathway enrichment.

Pathway ID Name Count % P-value Genes
cfa04974 Protein digestion and absorption 3 42.9 4.55E− 04 COL1A2, COL1A1, COL10A1
cfa04512 ECM-receptor interaction 3 42.9 4.89E− 04 COL1A2, COL1A1, SPP1
cfa04510 Focal adhesion 3 42.9 0.002751 COL1A2, COL1A1, SPP1
cfa04151 PI3K-Akt signaling pathway 3 42.9 0.00721 COL1A2, COL1A1, SPP1
cfa05146 Amoebiasis 2 28.6 0.046382 COL1A2, COL1A1
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COL1A1, COL1A2, COL8A1, and BGN had a significantly
worse survival probability (P < 0.05), while SPP1 had no
significance (P> 0.05). Finally, the 6 highly expressed core
genes were validated via immunohistochemistry, Western
blot, and RNA quantification analysis in tissue samples.
Altogether, we identified six significant upregulated genes as
poor prognosis markers in gastric adenocarcinoma via
bioinformatical analysis, which could be potential new
molecular markers and effective targets for early detection
and further research.

-e hub genes in the main module of the PPI network of
the commonly DEGs are mainly associated with protein
digestion and absorption, ECM-receptor interaction, focal
adhesion, PI3K-Akt signaling pathway, and amoebiasis. -e
family of collagen genes (CLO10A1, COL1A1, COL1A2,

etc.) is tightly clustered and participates in the above cancer-
related pathways. Furthermore, studies have demonstrated
the close relation between collagen genes and gastric ade-
nocarcinoma, including COL10A1, COL1A1, COL1A2, and
COL8A1. What’s more, it is well known that PI3K-Akt
signaling pathway (COL1A2, COL1A1, etc.) plays a vital role
in the cell cycle and is activated in various cancers, including
GAC [26]. For ADAMTS2, a member of the ADAMTS
family is a procollagen N-proteinase [27]. Researches have
shown that ADAMTS2 participated in major biological
pathways and human disorders [28], but the relation be-
tween ADAMTS2 and GAC has rarely been studied [27].
Furthermore, BGN, a key member of the small leucine-rich
proteoglycan family, has been shown to participate in many
cancers and is associated with poor prognosis in cancer
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Figure 6: Expression level of the seven hub genes in gastric adenocarcinoma patients compared to healthy people. To further validate the
expression level between GAC patients and normal people, seven genes were analyzed via GEPIA website. All seven genes were significantly
highly expressed in GAC specimen compared to normal specimen (∗P< 0.05). Red color meant GAC tissues (n� 408), and grey color meant
normal tissues (n� 211).

Table 5: Validation of seven hub genes via GEPIA.

Category Genes
Genes with high expression in GAC (P< 0.05) ADAMTS2 COL10A1 COL1A1 COL1A2 COL8A1 BGN SPP1
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Figure 7: Prognostic information of the seven hub genes. Kaplan–Meier plotter online tools were used to analyze the prognostic in-
formation of the seven hub genes. High expression of ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, and BGN had a significantly
worse survival rate (P< 0.05).

Table 6: -e prognostic information of the seven key candidate genes.

Category Genes
Genes with significantly worse survival (P< 0.05) ADAMTS2 COL10A1 COL1A1 COL1A2 COL8A1 BGN
Genes without significantly survival (P> 0.05) SPP1
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patients, including gastric adenocarcinoma [29]. -e results
and related studies have provided solid evidence to prove the
relation between the hub genes along with the enriched
pathways and GAC.

Expression and survival analysis have demonstrated that
ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, and
BGN are all highly expressed in GAC and their high ex-
pression has a significantly worse survival. Previous studies
have also showed that the abnormal expression level of the
six hub genes could be indicators of the initiation, pro-
gression, and clinical outcome of GAC. Till now, little is
known about the exact mechanism of the six genes in GAC
initiation and progression. In our study, we have provided
more helpful information and direction for the future study
of GAC via integrated bioinformatical methods, which
would be new perspective and clues for early detection and
diagnosis of GAC.

5. Conclusion

Altogether, our bioinformatics analysis study identified six
upregulated DEGs (ADAMTS2, COL10A1, COL1A1,
COL1A2, COL8A1, and BGN) between gastric adenocar-
cinoma and normal tissues based on four different micro-
array datasets. Results showed that these six genes were poor

prognostic markers, which may play key roles in the initi-
ation and progression of GAC. -ese data presented in this
study may provide new perspectives and clues into the early
detection and therapeutic targets of GAC. However, more
experiments and details are needed to verify the prediction
and underlying mechanisms in the near future.
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Figure 8: Validation of expression levels of ADAMTS2, COL10A1, COL1A1, COL1A2, COL8A1, and BGN in GAC patients. To further
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PCR (c) analysis. Representative images of IHC staining were shown. Scale bar, 200 μm. Real-time PCR data were normalized to GAPDH
expression. All six genes were highly expressed in GAC tissue compared to adjacent normal tissue.
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