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RNA structure-altering mutations underlying positive selection on Spike protein 
reveal novel putative signatures to trace crossing host-species barriers in 
Betacoronavirus
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ABSTRACT
Similar to other RNA viruses, the emergence of Betacoronavirus relies on cross-species viral transmission, 
which requires careful health surveillance monitoring of protein-coding information as well as genome- 
wide analysis. Although the evolutionary jump from natural reservoirs to humans may be mainly traced- 
back by studying the effect that hotspot mutations have on viral proteins, it is largely unexplored if 
other impacts might emerge on the structured RNA genome of Betacoronavirus. In this survey, the 
protein-coding and viral genome architecture were simultaneously studied to uncover novel insights 
into cross-species horizontal transmission events. We analysed 1,252,952 viral genomes of SARS-CoV, 
MERS-CoV, and SARS-CoV-2 distributed across the world in bats, intermediate animals, and humans to 
build a new landscape of changes in the RNA viral genome. Phylogenetic analyses suggest that bat 
viruses are the most closely related to the time of most recent common ancestor of Betacoronavirus, and 
missense mutations in viral proteins, mainly in the S protein S1 subunit: SARS-CoV (G > T; A577S); MERS- 
CoV (C > T; S746R and C > T; N762A); and SARS-CoV-2 (A > G; D614G) appear to have driven viral 
diversification. We also found that codon sites under positive selection on S protein overlap with non- 
compensatory mutations that disrupt secondary RNA structures in the RNA genome complement. These 
findings provide pivotal factors that might be underlying the eventual jumping the species barrier from 
bats to intermediate hosts. Lastly, we discovered that nearly half of the Betacoronavirus genomes carry 
highly conserved RNA structures, and more than 90% of these RNA structures show negative selection 
signals, suggesting essential functions in the biology of Betacoronavirus that have not been investigated 
to date. Further research is needed on negatively selected RNA structures to scan for emerging functions 
like the potential of coding virus-derived small RNAs and to develop new candidate antiviral therapeutic 
strategies.
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Introduction

Concerning a wide range of potential pathogens that are involved 
in cross-species transmissions, RNA viruses are a serious concern 
[1]. The sudden disease outbreak in 2019 (COVID-19), caused by 
the novel Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2), has recently emerged as a public health priority 
[2,3]. SARS-CoV-2, Severe Acute Respiratory Syndrome 
Coronavirus (SARS-CoV), and Middle East Respiratory 
Syndrome Coronavirus (MERS-CoV), are members of the 
Betacoronavirus (Beta-CoVs) genus [4]. They carry a large (~30 
kb) positive-sense, single-stranded RNA (+ ssRNA) genome 
capped at the 5′ end and poly-A tail. ORF1a and ORF1b are 
translated from genomic RNA, and the translation of ORF1b 
depends on ribosomal frameshifting element (FSE) at the end of 
ORF1a. In contrast, the remaining genome serves as a template to 
produce subgenomic RNAs (sgRNAs) from the 3′ end, which are 
subsequently capped and translated into structural and accessory 
proteins [5,6]. It has been proven that Beta-CoVs are prone to 

accumulate mutations, owing to poor fidelity of RNA polymerases, 
making these viral populations typically contain genetic variants 
that form a heterogeneous virus pool, named quasispecies [7,8]. 
This phenomenon is considered to drive cross-species transmis-
sion and contributes to a rapid adaptation over a wide range of 
diverse hosts.

Beta-CoVs are zoonotic pathogens originating from animals 
and may be transmitted to humans by direct contact. A growing 
body of phylogenetic analysis has identified bats as the evolution-
ary sources of SARS-CoV, MERS-CoV, and the recent SARS-CoV 
-2 [9–11]. In addition, the majority of these viruses depend on an 
intermediate animal host to invade human cells [12–14]. Although 
the molecular mechanisms enabling cross-species transmission 
are not well elucidated, it has been proven that essential proteins 
under selection tend to increase viral fitness, and repeated trans-
missions may hasten novel strain emergence [15,16]. A hallmark is 
traced back to the receptor-binding domain (RBD) of the spike (S) 
protein, where amino acid changes for SARS-CoV and SARS-CoV
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-2 mediate invasion of host cells by binding to angiotensin- 
converting enzyme 2 (ACE2) [17], whereas MERS-CoV exploits 
dipeptidyl peptidase-4 (DPP4) [18]. Therefore, it is suggested that 
this protein has been under intense evolutionary pressures, which 
might be implied on propagation of Beta-CoVs. However, there 
are many studies on this topic motivated by developing vaccines 
and therapeutic strategies to prevent further spillover, relying on 
molecular processes reflected on protein sequence [9,19,20]. Since 
Beta-CoVs have RNA genomes, it is interesting to explore how its 
genome is folded and to what extent a mutation might disturb its 
stability. Such insights would provide novel ideas for studying the 
evolution, adaptation, and cross-species barriers of Beta-CoVs.

RNA structures are broadly accepted as critical modulators 
in regulating transcription, translation, and replication in 
Beta-CoVs as well as other RNA viruses [21–24]. Despite 
their importance, only a handful of functionally conserved 
structural RNA elements have been identified across Beta- 
CoVs, mainly located in the 5′ and 3′ untranslated regions 
(UTR) and in the FSE [25,26]. Still, the majority of regions in 
the whole genome of Beta-CoVs have been largely unexplored 
[27,28]. Even though predicting conserved and non-conserved 
RNA structures in viral genomes is challenging, upon estima-
tion of structures, the apparent natural simplicity of an RNA 
secondary structure promises to be useful in describing selec-
tion pressures acting on the interactions of paired and 
unpaired bases [29]. A conserved structure implies compen-
satory substitutions (e.g. GC → CG or AU → UA), maintain-
ing the patterns of paired bases, which indicate negative 
selection. Conversely, substitution events that disrupt paired 
bases (e.g. GC → AU or CG → UA) lead to relaxed structure 
constraints, which represent a positive selection [29–31]. This 
selection concept is not different from synonymous and non- 
synonymous substitutions that occur on protein-coding 
sequence subsets (CDS). However, codons occur locally on 
sequence and the selection effect is observed downstream at 
protein stability level, while selection on RNA secondary 
structure is directly seen on the RNA viral genome itself 
[31]. This means that by exploiting positive and negative 
evolutionary information predicted on an RNA structure, we 
may be a step closer towards characterizing how structurally 
conserved RNAs have evolved in different hosts of Beta-CoVs.

Considering the extraordinary plasticity of Beta-CoVs that 
allows its adaptation to diverse host species prior to cross- 
barrier transmission to humans [32], recent efforts in genomic 
surveillance and therapeutical design are centred on a systematic 
approach to detect novel variants in human hosts. However, 
these approaches exclude domestic animals found closely in 
contact with wild reservoirs and humans. In this work, 
a detailed evolutionary framework to estimate selection pres-
sures on the genomic architecture of SARS-CoV, MERS-CoV 
and SARS-CoV-2 was used to develop a landscape of events 
tracing back to cross-species horizontal transmission spillovers 
from an exhaustive genome-wide analysis of Beta-CoVs circulat-
ing in different bat species, intermediate animals, and human 
hosts across the globe until May 2021. These analyses provide 
novel insights into molecular signatures applied to surveillance 
systems for detecting an eventual jump of these emerging viruses 
in advance.

Material and methods

Data collection

An exhaustive meta-search of Beta-CoVs genome sequences was 
performed using the following inclusion criteria: i) complete 
genomes; ii) high coverage level; and iii) unique sequences in 
the National Center for Biotechnology Information Virus 
(NCBI Virus) [33], Virus Pathogen Database and Analysis 
Resource (ViPR) [34] and ViruSurf [35]. As a supplement, the 
Global Initiative on Sharing All Influenza Data (GISAID) [36] 
to retrieve further information of SARS-CoV-2 was exploited 
(May 2021). Datasets were constructed from a variety of hosts 
for each Beta-CoV, labelling sequences into three groups as 
follows: i) Bat (natural host), all sequences reported in 
Chiroptera order; ii) Intermediate (intermediate host), all 
sequences defined in Mammalia class; and iii) Human (ampli-
fier host), which included Homo sapiens species.

Information preparation and curation

We conducted a meticulous preparation and curation of the 
data. This process involves several stages, namely: i) all viral 
sequences labelled as bat, intermediate and human host 
species were filtered out to detect any possible ambiguous 
characters (W, S, K, M, Y, R, V, H, D, B, N, -, =); ii) 
simultaneously to the previous process, it was compared 
sequence by sequence for each host across different sets of 
data retrieved from the databases, removing those with 
100% similarity and keeping the longest representative 
sequence; iii) then the resulting sequences were sorted and 
fitted to reference lengths of SARS-CoV (NC_004718), 
MERS-CoV (NC_019843), and SARS-CoV-2 (NC_045512), 
containing 29,751 bp, 30,119 bp, and 29,903 bp in length, 
respectively; and iv) finally, to confirm a non-redundant 
data set, the Cluster Database at High Identity with 
Tolerance (CD-HIT; v4.8.1) software was used [37]. Given 
the large number of SARS-CoV-2 sequences circulating in 
humans, a threshold >0.99 was used with CD-HIT. It is 
worth mentioning that this careful curation method is para-
mount to avoid any possible ambiguous character affecting 
the RNA structure analysis and prediction.

Alignments and retrieve metadata

The host’s full-length viral sequences were aligned with the 
default parameters using Clustal-Omega (v1.2.4) [38]. 
Multiple sequence alignments (MSA) were manually visua-
lized, analysed, annotated, and edited with Aliview (v1.27) 
[39]. Once the datasets were curated, we retrieved for each 
sequence of SARS-CoV and MERS-CoV: i) associated host 
scientific name, ii) GenBank accession number, iii) collection 
date, iv) region, v) country, vi) length, and vii) collection 
source. Further data for SARS-CoV-2 were retrieved as fol-
lows: viii) GISAID accession number, ix) PANGO lineage and 
x) corresponding clade. Information not reported in databases 
was sought it through literature review.
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Prediction of viral open reading frames

The characterization of putative Open Reading Frames 
(ORFs) was performed through a modification of Gene pre-
diction by Open reading Frame Identification using X motifs 
(GOFIX) program [40] using the MSA for each host. Then, 
ORFs were validated using BLASTN (v2.11.0) [41] from the 
referenced genomes of SARS-CoV, MERS-CoV, and SARS- 
CoV-2.

Single nucleotide variant identification

For all downstream analysis, each host group’s data was con-
catenated and re-aligned with Clustal-Omega (v1.2.4) [38], 
resulting into a unique dataset for SARS-CoV, MERS-CoV, 
and SARS-CoV-2. This analysis aimed to highlight naturally 
possible occurring variants in Beta-CoVs populations. To 
identify variations in viral sequences, we used the Microbial 
Genomics Mutation Tracker software package (MicroGMT; 
v1.4) [42]. This package mainly uses Minimap2 (v2.21) [43] 
and Bcftools (v1.13) [44] to map individual sequences against 
the reference of SARS-CoV (NC_004718), MERS-CoV 
(NC_019843), and SARS-CoV-2 (NC_045512) and provides 
the results in a Variant Call Format (VCF) table. In addition, 
the program uses the SnpEff (v5.0e) tool (http://pcingola. 
github.io/SnpEff/) [45] to characterize all mutations detected 
at both nucleotide and amino acid levels in the whole viral 
genome. The annotated data were imported, manipulated, 
and plotted using R (v4.1.0) [46]. Tidyverse package (v1.3.1) 
[47] was used to filter, summarize and annotate data, while 
ggplot2 package (v3.3.5) [48] was used to align the identified 
variants and visualize the types of mutations.

Time-scaled phylogenetic analysis

Full-length nucleotide sequences from each Beta-CoV data-
set were aligned based on codons and then translated into 
nucleotide alignments using a combination of Clustal- 
Omega (v1.2.4) [38] and TranslatorX [49]. Time-scaled phy-
logenies for whole viral genomes were analysed through 
Bayesian Inference (BI) with Markov chain Monte Carlo 
(MCMC) methods using Bayesian Evolutionary Analysis 
Sampling Trees (BEAST) (v1.10.4) [50] on the CIPRES 
Science Gateway (v3.3) server (https://www.phylo.org/) 
[51]. BEAGLE (v4.0) library to enhance the speed of prob-
ability computations was used [52]. The statistical selection 
for the best-fit model of nucleotide substitution was per-
formed with jModelTest (v2.1.10) [53] and Analysis of 
Phylogenetics and Evolution (APE) (v5.5) [54] implemented 
in R, considering the Bayesian information criterion (BIC). 
For each Beta-CoV dataset, we employed the tip-dating 
method under a General Time-Reverse model along with 
gamma distributed rates across invariable sites (GTR 
+Г + I). We ran Bayesian phylogenetic analyses using var-
ious clock model combinations (a strict clock and an uncor-
related relaxed clock with log-normal distribution (UCLN) 
[55]) and coalescent tree priors (constant size). The length of 
MCMC chain was run for 300 million steps, and the log 
parameter values were sampled at every 30,000 steps. 

Convergence of parameters was evaluated with Tracer 
(v1.7.132) [56], by inspecting the Effective Sample Sizes 
(ESS > 200), and the degree of uncertainty in each parameter 
estimate was provided by the 95% of Height Posterior 
Density (HPD) values. Trees were summarized as maxi-
mum-clade credibility (MCC) trees using Tree annotator 
(v1.10.0) after discarding 10% as burn-in and then visualized 
in FigTree (v1.4.4).

Inference of selective pressures on protein-coding

Selective pressure analysis was performed on the CDSs for 
SARS-CoV, MERS-CoV, and SARS-CoV-2 through 
Datamonkey Adaptive Evolution Server 2.0 (https://www. 
datamonkey.org/) [57]. For sites statistically significant 
showing a positive value of non-synonymous to synon-
ymous substitutions dN/dS >1, diversifying (positive) selec-
tion is inferred, whereas purifying (negative) selection is 
inferred when dN/dS <1 and neutrality as dN/dS = 1 [58]. 
These codon sites were analysed with a combination of four 
methods: i) Single-Likelihood Ancestor Counting (SLAC) 
[59]; ii) Fixed Effects Likelihood (FEL) [59]; iii) Fast, 
Unconstrained Bayesian AppRoximation (FUBAR) [60]; 
and iv) Mixed Effects Model of Evolution (MEME) [61]. 
SLAC, FEL, and FUBAR were used to identify sites that 
experienced both positive and negative selection, while 
MEME was used to detect sites that experienced positive 
selection [62]. We detect codon sites with positive selection 
signals if a specific site is overlapped by the four methods, 
while those with negative selection were selected from 
SLAC, FEL and FUBAR. Sites with a p-value <0.05 (SLAC, 
FEL and MEME) and a Bayesian posterior probability >0.95 
(FUBAR) were considered statistically significant.

Prediction of conserved RNA structures

To analyse the genomic architecture of Beta-CoVs, we 
employed the MSA from each host, which was screened in 
windows with a length of 120 nucleotides sliding by 40 
nucleotides using RNAz v2.1 [63]. The RNAz method uses 
the RNAfold algorithm via RNA Vienna package to calcu-
late secondary structures and Minimum Free Energy (MFE) 
for individual sequences. In addition, RNAz estimates three 
measures of structure conservation: i) the MFE z-score for 
each sequence, ii) the average MFE z-score across all 
sequences, and iii) the structure conservation index (SCI) 
of the entire alignment. Based on these criteria, RNAz 
determines a classification value designated as P class (P), 
indicating the probability for a particular region carrying 
a structure. We considered RNA structures with the follow-
ing parameters: i) – no-reference; ii) – both-strands (±); iii) 
P > 0.9; and iv) – no-shuffle. As a result, RNAz hits at loci 
corresponding to regions with RNA structures. Therefore, 
the most representative structures for each host were filtered 
using P > 0.98 and z < −3. Lastly, these structured regions of 
Beta-CoV genomes were exploited to assess relevant RNA 
structures which were common, shared, or unique across 
the three hosts throughout its evolutionary trajectory.
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Inference of selective pressures on RNA structure

Selective pressures on RNA structures were statistically eval-
uated using the SSS-test (v1.0) [31] with default parameters. 
Scores were retrieved, imported and manipulated with tidy-
verse package (v1.3.1), implemented in R (v4.1.0). The con-
straints on RNA structures were selected following the 
thresholds adopted by [31]: i) s ≤ 2.99: negative selection; ii) 
s ≤ 4.99: weak selection; iii) s ≤ 9.99: moderate selection; and 
iv) s ≥ 10.0: positive selection.

Statistics

To test whether synonymous and missense mutations 
detected in viruses collected from bats overperform to other 
host species, we carried out a two-way Analysis of Variance 
(ANOVA) followed by a Tukey–Kramer test using the 
R environment (v4.1.0) [46]. A p-value lower than 0.05 (p 
< 0.05) was considered as statistically significant.

Results

SARS-CoV-2 sequences from humans appear to have 
highly ambiguous bases

A total of 1,252,952 raw genomic sequences were retrieved. 
Among them, 253 were from SARS-CoV, followed by 1,526 
MERS-CoV and 1,251,173 SARS-CoV-2, which constituted 
0.02%, 0.12% and 99.8% of all data, respectively 
(Supplementary Table S1). Fig. 1 provides a flowchart illus-
trating the workflow followed to retrieve, filter, and construct 
datasets for downstream analyses. Clearly, we obtained 
a larger number of SARS-CoV-2 sequences owing to the 
impact of the extensive surveillance genomic monitoring 
volume. Nevertheless, upon the curation of these sequences 
and, particularly, those isolated from humans, we detected 
a vast number of sequences with highly ambiguous bases, 
which needed to be removed given requirements for RNA 
structure analysis.

ORF8 is a rapidly evolving region in SARS-CoV

Next, we predicted the ORFs for each viral genome, high-
lighting that non-structural (ORF1a, ORF1b) and structural 
proteins (S, E, M, N) are highly conserved in Beta-CoVs 
(Supplementary Fig. S1). SARS-CoV showed 15 potential 
ORFs bounded by start and stop codons. Interestingly, SARS- 
CoV sequences isolated from humans contained a 29 nucleo-
tide deletion in the middle of ORF8, resulting in the splitting 
of ORF8 into two smaller ORFs, namely ORF8a and ORF8b 
(Supplementary Fig. S1A). Annotation of the MERS-CoV 
genomes identified 11 ORFs (Supplementary Fig. S1B), 
whereas SARS-CoV-2, 14 ORFs in the three hosts to be con-
served (Supplementary Fig. S1C). Further information on 
each predicted ORF with the GOFIX method is provided in 
Supplementary Table S2.

Synonymous and missense mutations are predominant in 
bat viral genomes

A total of 28,670 mutations were detected in the full-length 
viral sequences of SARS-CoV (n = 48), MERS-CoV (n = 82) 
and SARS-CoV-2 (n = 149). From these mutations, 5,874 
(20%) were found in SARS-CoV (frameshift = 6; inter-
genic = 44; missense = 1,405; stop = 7; and synon-
ymous = 4,412). For MERS-CoV 17,883 (62%) 
(conservative = 6; frameshift = 44; intergenic = 591; mis-
sense = 5,365; stop = 23; and synonymous = 11,854), and 
for SARS-CoV-2 4,913 (17%) (conservative = 1; disruptive = 5; 
intergenic = 250; missense = 1,691; stop = 12; and synon-
ymous = 2,954) (Fig. 2). In terms of host, an ANOVA was 
conducted and determined that synonymous and missense 
mutations of bat viruses were statistically different compared 
to representative viruses infecting intermediate and human 
species for each Beta-CoV (Fig. 2). Tukey’s test showed that 
SARS-CoV sampled from bats had a significantly higher 
number of synonymous and missense mutations in compar-
ison of those circulating in intermediate animals and humans, 
showing both mutations a p < 0.00001 (Fig. 2A). For MERS- 
CoV and SARS-CoV-2, statistical analysis also showed that 
viruses hosting in bats have significantly greater synonymous 
and missense mutations than those infecting animals and 
humans (p < 0.00001) (Fig. 2B and Fig. 2C).

Hotspot mutations within the S protein S1 subunit are 
pivotal to cross-species transmission

To better understand the spread dynamics and the jumping of 
species barrier, a comparative analysis of hotspot mutations 
across the three hosts was performed for each viral genome. 
Even though different tracings were observed during the 
evolutionary trajectory of SARS-CoV, only two missense 
mutations appear to be shared between viruses found in 
intermediate animals and humans. These hotspot mutations 
were detected at positions 23,220 (G > T; A577S) and 25,298 
(A > G; R11G), corresponding to S protein S1 subunit and 
ORF3a, respectively (Fig. 3). Regarding MERS-CoV, two mis-
sense mutations were also detected at positions 23,756 (C > T; 
S746R) and 23,804 (C > T; N762A) within S protein S1 
subunit in viruses sampled from animals and humans 
(Fig. 4). Interestingly, SARS-CoV-2 showed important hot-
spot mutations that were reported by different hosts, namely: 
i) among the three host, a synonymous mutation was detected 
at position 3,037 (C > T; F924F) of ORF1a and ii) for viral 
genomes associated with intermediate and human hosts, we 
observed an intergenic mutation located mainly at position 
241 (C > T) within 5’-UTR, and two missense mutations at 
positions 14,408 (C > T; P4715L) and 23,403 (A > G; D614G) 
within ORF1b and S protein S1 subunit, respectively (Fig. 5).

Bats as the most plausible evolutionary sources of 
Beta-CoVs

Next, we sought to trace-back the phylogenetic and epidemio-
logical characteristics of the SARS-CoV, MERS-CoV, and
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Figure 1. Flowchart showing approach to data collection, curation process and range of sequence lengths for the three Beta-CoVs analysed. First, raw viral sequences 
are retrieved from NCBI Virus, ViPR, ViruSurf (SARS-CoV and MERS-CoV), and further GISAID (SARS-CoV-2). Afterwards, data are labelled by host and, upon careful 
filtering and curation methods, the most representative viral sequences comprising each non-redundant host dataset.
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Figure 2. Prevalence and distribution of types of mutations found in Beta-CoVs circulating in diverse host species across the world. Synonymous and missense 
mutations occurred predominantly in bat-associated viruses. (a) A total of 5,874 mutations are detected in SARS-CoV, most of them affecting viruses found in bats, 
with a mean of 509 synonymous and 88.75 nonsense mutations; (b) Regarding MERS-CoV, 17,883 mutations are identified, where a mean of 2,702 are synonymous 
and 1,096 are missense mutations impacting the viruses collected from bats; (c) Lastly, SARS-CoV-2 registers the lowest number of mutations with 4,913, showing for 
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SARS-CoV-2 outbreaks with time-scaled phylogenetic analy-
sis. The best trees were inferred using the tip-dating method 
with UCLN. Fig. 6A reveals the possible evolutionary history 
of SARS-CoV with an estimated TMRCA at 1950–02-23 (95% 
HPD interval = [1898–01-14, 2002–06-21]), supported by 
a posterior probability (PP) value greater than 0.9 (PP > 
0.9). At first glance, topology revealed that viruses circulating 
in bats were the earliest clade in the tree, and those infecting 
animals emerged as an early sister-clade of the human group 
with an estimated TMRCA at 1991–06-14 (95% HPD 
interval = [1967–04-12, 2015–19-03]).

Interestingly, MERS-CoV and SARS-CoV-2 showed 
a topology with slightly divergent traces compared to SARS- 
CoV, supported by (PP > 0.9) and (PP > 1), respectively. 
Although bat-associated MERS-CoV was the most closely 
related to TMRCA, estimated at 1962–05-17 (95% HPD 
interval = [1913–08-22, 2011–09-27]) (Fig. 7A), it was found 
that SARS-CoV-2 with a TMRCA at 1983–01-28 (95% HPD 
interval = [1961–07-13, 2005-12-09]) was a virus isolated from 
Manis javanica as the most basal in the tree (Fig. 8A). 
Additionally, it is worth mentioning that the phylogenetic 
relationships found among viruses circulating in intermediate 
and human hosts of MERS-CoV and SARS-CoV-2 were pretty 
closely related, showing an estimated TMRCA at 2008-10-27 
(95% HPD interval = [1995-12-28, 2018–07-19]) and 2019-10- 
04 (95% HPD interval = [2018-11-10, 2021-03-17]), 
respectively.

With regard to geographic distributions, the MERS-CoV 
map showed that viruses sampled from bats were located in 
Italy (Fig. 7B), whereas those belonging to SARS-CoV and 
SARS-CoV-2 were isolated from China (Fig. 6B and Fig. 8B). 
Furthermore, the majority of MERS-CoV intermediate and 
human hosts were from the United Arab Emirates and Saudi, 
rather than those associated with SARS-CoV and SARS-CoV 
-2 that had a more diverse geographic distribution across the 
globe. The tip-dating and full metadata for estimation of time- 
scaled phylogenies of SARS-CoV, MERS-CoV and SARS-CoV 
-2 are provided in Supplementary Table S3.

Codon sites in the S protein S1 subunit are positively 
selected in the MERS-CoV and SARS-CoV-2 genomes

A combination of diverse algorithms based on a phylogenetic 
codon framework was used to detect specific sites evolving under 
natural selection on Beta-CoVs CDSs. We found evidence of 
progressive synonymous mutation fixation (dN/dS < 1) (i.e. nega-
tive selection) in 30 codons located within five CDSs (S:24 
> ORF1a:2 > ORF1b:1 = ORF3a:1 = M:1 = N:1) of SARS-CoV. 
MERS-CoV registered 138 codons in seven CDSs 
(ORF1a:65 > S:31 > ORF1b:29 > N:7 
> ORF4b:2 = ORF5:2 = M:2); and SARS-CoV-2 obtained 86 
codons in the same CDSs as SARS-CoV (ORF1a:35 > S:20 
> ORF1b:15 > N:10 > M:4 > ORF3a:2) (Supplementary Table S4).

On the other hand, we detected sites that have a higher 
number of synonymous mutations accumulated (dN/dS 
> 1) (i.e. positive selection) in MER-CoV and SARS-CoV 
-2 genomes. In the case of MERS-CoV, 4 codons were 
detected in four CDSs (ORF1a:1 = ORF1b:1 = S:1 = N:1) 
(Fig. 9 and Table 1) and for SARS-CoV-2, 4 of the 5 
codons were also found in the same CDSs as MERS-CoV, 
along with the newly discovered CDS corresponding to 
ORF10 (ORF1a:1 = ORF1b:1 = S:1 = N:1 = ORF10:1) 
(Fig. 10 and Table 2). Regarding neutrality (dN/dS = 1), 
SARS-CoV registered the highest number of CDS under 
this selection (Supplementary Fig. S2), otherwise it was 
considerably variable among CDS for the three Beta-CoVs.

Nearly half of the Beta-CoVs genomes carry highly 
conserved RNA structures

The principal evidence for conserved RNA structures in Beta- 
CoVs genomes was derived from the detection of multiple loci 
with P > 0.98 and z < −3 in the whole genome. A total of 848 
conserved loci scattered across genomes for the three Beta- 
CoVs were predicted by the RNAz approach. Among these 
conserved RNA structures, SARS-CoV carried 353 (42%), 
followed by MERS-CoV 287 (34%), and SARS-CoV-2 208 
(24%) (Table 3). Additionally, we estimated the percentage 
of conserved RNA structures throughout the viral genome 
coverage by analysing the number of structured loci for each 
host. Following viral genome coverage, viruses belonging to 
intermediate and human groups were found to carry slightly 
more conserved loci compared to those from bats.

Conserved RNA structures of Beta-CoVs are unique for 
each host

To unravel to what extent RNA structure is conserved in the 
same region during the passage from bats to humans, we 
aligned the conserved loci across the three hosts based on 
their genome positions. At first glance, most conserved RNA 
structures in Beta-CoVs were unique for each host (Fig. 11). 
Indeed, the only virus that shared a higher number of con-
served RNA structures was MERS-CoV isolated from inter-
mediate and human hosts, which showed 68 regions. 
However, we focused on structured regions that were com-
mon across the three hosts. For instance, we detected four 
conserved RNA structures in SARS-CoV that have been com-
mon during the evolutionary trajectory: ORF1a (6,121–6,240 
bp); ORF3a (25,961–26,080 bp); E (26,041–26,160 bp); and 
M (26,361–26,480) (Fig. 11A). Similarity, for MERS-CoV, 
four conserved RNA structures were also found: ORF1a 
(3,361–3,480; 5,801–5,920); FSE (13,401–13,520 bp); and 
ORF5 (27,361–27,480) (Fig. 11B), whereas SARS-CoV-2, 
a common structure was found in ORF1b (19,401–19,520 
bp) (Fig. 11C). Regions in the genome of SARS-CoV, MERS- 
CoV and SARS-CoV-2 with conserved RNA structures which

viruses circulating in bats a mean of 618.6 and 92.3 are synonymous and missense mutations, respectively. Error dots denote standard errors of the mean (SEM). 
Statistical results represent the two-way ANOVA followed by Tukey-Kramer test. A single asterisk indicates p < 0.01 (*), a double asterisk p < 0.001 (**), a triple 
asterisk p < 0.0001 (***), and a fourth asterisk represents p < 0.00001 (****).
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Figure 3. Graphical representation of hotspot mutations found in SARS-CoV genomes. The main changes are shown as a triangle at the top and concern two 
missense mutations in viruses circulating in intermediate animals and humans at positions: 23,220 (G > T; A577S) and 25,298 (A > G; R11G) located in S protein S1 
subunit and ORF3a, respectively. Each substitution is coloured depending on mutation type (frameshift, intergenic, missense, stop, and synonymous). Viral sequences 
are clustered by host (human, intermediate, and bat), and genome structure is shown at the bottom.
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Figure 4. Graphical representation of hotspot mutations found in MERS-CoV genomes. While mutations show a smooth distribution, two missense mutations are 
highlighted with a triangle at the top corresponding to viruses found in intermediate animals and humans at positions: 23,756 (C > T; S746R) and 23,804 (C > T; 
N762A) within S protein S1 subunit. Each substitution is coloured depending on mutation type (conservative, frameshift, intergenic, missense, stop and, 
synonymous). Viral sequences are clustered by host (human, intermediate, and bat), and genome structure is shown at the bottom.
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Figure 5. Graphical representation of hotspot mutations found in SARS-CoV-2 genomes. Unlike the other viruses, there are mutations of great interest in SARS-CoV-2 that are 
shared in various hosts: i) among viruses belonging to all hosts, a synonymous mutation at position 3,037 (C > T; F924F) within ORF1a is striking; while ii) those found in 
intermediate animals and humans, an intergenic mutation 241 (C > T) in 5’-UTR region is detected as well two missense mutations 14,408 (C > T; P4715L) and 23,403 (A > G; 
D614G) located in ORF1b and S protein S1 subunit, respectively. Changes are highlighted as a triangle at the top. Each substitution is coloured depending on mutation type 
(conservative, disruptive, intergenic, missense, stop, and synonymous). Viral sequences are clustered by host (human, intermediate, and bat), and genome structure is shown at 
the bottom.
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were common, shared or unique across all three hosts are 
available in Supplementary Table S5.

RNA structures in the S protein S1 subunit are positively 
selected in the MERS-CoV and SARS-CoV-2 genomes

We retrieved the conserved loci for each Beta-CoV and assessed 
them for estimating natural selection with the SSS test. 
Surprisingly, a total of 31,076 of conserved RNA structures 
showed negative selection signals (s ≤ 2.99) throughout the 
three Beta-CoVs, which are crucial for the functionality of 
RNA molecules [29] (Fig. 12–14). Among conserved RNA struc-
tures under negative selection, 4,884 (96%) SARS-CoV were 
detected (Fig. 12), while MERS-CoV and SARS-CoV-2 carried 
a higher number, showing 9,563 (90%) (Fig. 13) and 16,629 
(96%) (Fig. 14), respectively. In contrast, conserved RNA struc-
tures showing positive selection signals (s ≥ 10.0) were relatively 
low, with a total of 719, of which 88 (1.7%) were evidenced for 
SARS-CoV (Fig. 12), 501 (4.7%) for MERS-CoV (Fig. 13) and 
130 (0.8%) for SARS-CoV-2 (Fig. 14).

Next, we asked how many of these conserved RNA struc-
tures have driven the evolution of positively selected RNA 
structures in the S region during jumping the species barrier. 
Whilst SARS-CoV revealed RNA structures with positive 
selection on ORF1a for all hosts (bat = 49, intermediate = 3, 

and human = 1) (Fig. 15), MERS-CoV (bat = 1, intermediate 
= 2, and human = 26), and SARS-CoV-2 (bat = 1, intermedi-
ate = 16, and human = 2) were shown in the S region (Fig. 16 
and Fig. 17), consistent with codon sites under positive selec-
tion in the S protein (Fig. 9 and Fig. 10).

Discussion

Novel variants of Beta-CoVs are rapidly emerging, and current 
surveillance systems are overwhelmed, reducing the effective-
ness of existing vaccines and test kits. Therefore, it is essential to 
scan these variations to identify where they will evolve, and 
which regions of the genome are most prone to mutation, useful 
for monitoring changes in transmissibility, virulence, and dis-
ease pathology. To cope with this, we retrieved 1,252,952 viral 
genomes of SARS-CoV, MERS-CoV and SARS-CoV-2 from 
bats and a large diversity of intermediate animals as well as 
from human hosts, publicly available in the most prominent 
virus databases, NCBI Virus [33], ViPR [34], ViruSurf [35] and 
GISAID [36] across the globe (May 2021). We used this infor-
mation to unravel novel insights into tracing cross-species hor-
izontal transmission in Beta-CoVs. First, to identify emerging 
variations on viral protein-coding, and second to detect if these 
hotspot mutations might impact the functionality of conserved

Figure 6. Time-scaled phylogenetic tree and spatial-dynamics of SARS-CoV. (a) Bayesian analyses was inferred from 48 SARS-CoV sequences using the tip-dating 
method with UCLN through BEAST. The estimated TMRCA date for SARS-CoV was at 1950-02-23 (95% HPD interval = [1898-01-14, 2002-06-21]), revealing that the 
most divergent are bat-associated viruses, followed by those within intermediate and human species. Each node is coded to indicate the posterior probability (PP) 
value. Branch lengths show divergence, and colour codes indicate host; (b) Map shows the spatial-dynamics of SARS-CoV and provides insight into the possible 
geographic origin for each host with sampling dates between 2003–01-01 and 2017–05-30, indicating a complex and interconnected network of viral genomes. Map 
was created using the data integration and visualization provided by Nexstrain using metadata related to SARS-CoV (Supplementary Table S3).
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structural RNA during the evolutionary process of jumping 
from bats to humans.

The ongoing COVID-19 pandemic was initially reported in 
Wuhan (China), in 2019 [64,65], though its pathogenic origin, 
SARS-CoV-2, remains unclear. The time-resolved tree based 
on UCLN points out an estimated TMRCA at 1983–01-28 
(95% HPD interval = [1961–07-13, 2005-12-09]), revealing 
that a virus isolated from M. javanica is the most closely 
related to TMRCA, rather than those circulating in bats as 
has been suggested in previous reports [66–68]. Pangolins 
have been listed in the Convention on International Trade 
in Endangered Species (CITES) of Wild Fauna and Flora since 
its inception in 1975 through diverse Chinese wet markets 
[69,70], a date very close to estimated SARS-CoV-2 TMRCA, 
in which people already consumed Asian pangolins, and 

probably became infected with an ancestral pangolin virus 
that evidently has not been traced since 2019, when viral 
sequencing was undertaken in an attempt to determine the 
SARS-CoV-2 origin. Despite this, tree topology showed that 
the majority of bat-associated SARS-CoV-2 are part of the 
basal tree (Fig. 8A), as has been suggested for SARS-CoV and 
MERS-CoV, where are closely related to their TMRCA, being 
at 1950–02-23 (95% HPD interval = [1898–01-14, 2002–06- 
21]), and 1962–05-17 (95% HPD interval = [1913–08-22, 
2011–09-27]), respectively (Fig. 6A and Fig. 7A) [71–73].

RaTG13 was initially considered as the closest ‘relative’ of 
SARS-CoV-2 [74]; a bat coronavirus detected in Rhinolophus 
affinis from Yunnan province (China) (Fig. 8B), which exhi-
bits 96.2% genome sequence similarity to SARS-CoV-2 [74]. 
The fact that viruses from M. javanica and some bat species

Figure 7. Time-scaled phylogenetic tree and spatial-dynamics of MERS-CoV. (a) Bayesian analyses was inferred from 82 MERS-CoV sequences using the tip-dating 
method with UCLN through BEAST. The estimated TMRCA date for MERS-CoV was at 1962–05-17 (95% HPD interval = [1913-08-22, 2011-09-27]), being the most 
closely related to bat viruses. Tree topology suggests that viruses isolated from intermediate and human hosts appear to be closely related. Each node is coded to 
indicate the posterior probability (PP) value. Branch lengths show divergence, and colour codes indicate host; (b) Map shows the spatial-dynamics of MERS-CoV and 
provides insight into the possible geographic origin for each host with sampling dates between 2012–06-13 and 2019–03-27, indicating a complex and 
interconnected network of viral genomes. Map was created using the data integration and visualization provided by Nexstrain using metadata related to MERS- 
CoV (Supplementary Table S3).
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Figure 8. Time-scaled phylogenetic tree and spatial-dynamics of SARS-CoV-2. (a) Bayesian analyses was inferred from 149 SARS-CoV-2 sequences using the tip-dating 
method with UCLN through BEAST. The estimated TMRCA date for SARS-CoV-2 was at 1983–01-28 (95% HPD interval = [1961–07-13, 2005-12-09]). Tree topology 
reveals that virus isolated from Manis javanica is the most closely related to TMRCA and represents part of the basal tree with bat-associated viruses. Similar to MERS- 
CoV, viruses found in intermediate animals and human are highly related. Each node is coded to indicate the posterior probability (PP) value. Branch lengths show 
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are highly related may suggest that SARS-CoV-2 is the result 
of recombination of the two viruses [16,68]. This assumption 
is recently gaining credibility, given a possible intermediate 
animal has not been identified for SARS-CoV-2 to date, as has 
been demonstrated for SARS-CoV and MERS-CoV, where 
viruses circulating in Paguma larvata and Camelus dromedar-
ius might interact with humans, respectively [71,75]. Our 
SARS-CoV-2 phylogeny also fails to point out viruses infect-
ing M. javanica as the primary animal acting an intermediate 
host for several reasons: i) phylogenetic relationships fail to 
cluster M. javanica with other animal species; ii) viruses 
isolated in M. javanica are different from SARS-CoV-2 and 
are, even more diverse than those found in bats, showing 
a closer relationship to TMRCA; iii) M. javanica and SARS- 
CoV-2 only share more than 99% sequence similarity with the 
RBD region [71,76]; iv) all viruses that are members of the 
intermediate group, including M. javanica possess the mis-
sense mutation (A > G; D614G), also located in the S protein 

S1 subunit; and v) recent evidence supports recognition of 
ACE2 receptors expressed in fish, amphibians, reptiles, birds 
and mammals [77]. More interestingly, our time-resolved 
trees coupled with single nucleotide variant analysis suggest 
that Beta-CoVs have been incubated for years inside bats, 
accumulating statistically a higher number of synonymous 
and missense mutations compared to representative viruses 
infecting intermediate and human species (p < 0.00001) 
(Fig. 2), leading to heterogeneous pooled viruses termed qua-
sispecies with fitness for jumping the species barrier [62,78]. 
Hence, genomic variability confers an advantage to the viral 
population, providing a rapid adaptation to a changing 
environment.

Recent studies have already showed that MERS-CoV and 
SARS-CoV-2 are possibly under strong positive selection 
[79,80]. Notably, it has been suggested that amino acid changes 
in the S protein may considerably alter viral function and pro-
vide a route for host switching from bats to intermediate animals

divergence, and colour codes indicate host; (b) Map analysis represents the propagation and evolution of SARS-CoV-2 genomes and provides insight into the possible 
geographic origin for each host with sampling dates between 2010–12-06 and 2021–04-02, indicating a complex and interconnected network of viral genomes. Map 
was created using the data integration and visualization provided by Nexstrain using metadata related to SARS-CoV-2 (Supplementary Table S3).

Figure 9. Estimation of positive and negative selection on MERS-CoV. General overview obtained by SLAC analysis, showing the evolutionary rate (dN-dS or dN/dS) at 
individual genes of MERS-CoV. Statistically significant codons with positive signals were inferred by overlapping of four evolutionary tests (SLAC, FEL, MEME, and 
FUBAR), whereas significant negative codons by (SLAC, FEL, and FUBAR). Red triangles represent codons with significant evidence for positive selection shown in 
Table 1.

Table 1. Codons evolving at positive diversifying selection in MERS-CoV using four evolutionary tests: SLAC, FEL, MEME (p-value <0.05) and FUBAR (posterior 
probability >0.95).

Gene

SLAC FEL MEME FUBAR Inferred substitution

Amino acid

Gene codon 
position

dN- 
dS

P[dN/dS 
< 1] dN/dS p-value

dN/Neutral 
evolution p-value

dN- 
dS

Prob[dS< 
dN] Bat Intermediate Human

ORF1a 4,390 6.73 0.043 Infinity 0.009 25.09 0.02 44.23 0.997 GTG GCA, GTA GCA, GTA V | A, V | A, V
ORF1b 1,503 7.01 0.021 37.05 0.028 96.1 0.0 41.70 0.992 GTC ATC, GTC ATC, GTC V | I, V | I, V
S 30 7.22 0.017 Infinity 0.028 30.27 0.04 31.37 0.989 ACT GTT, TTT GTT, CTT, ATT, 

TTT
T | V, F | V, L, 

I, F
N 3 5.54 0.034 25.68 0.046 15.65 0.045 37.67 0.995 ACT GCC, TCC, 

CCC
GCC, TCC T | A, S, P | A, 

S

The criterion for considering a site positively or negatively selected was based on its identification by the four tests. 
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and humans [14]. From this concept, missense mutations 
detected in the S protein S1 subunit were mainly highlighted: 
SARS-CoV (G > T; A577S) (Fig. 3); MERS-CoV (C > T; S746R 
and C > T; N762A) (Fig. 4); and SARS-CoV-2 (A > G; D614G) 
(Fig. 5). To the best of our knowledge, this study reports that 
these hotspot mutations have only been appreciated in viruses 
circulating in intermediate animals and humans for the three 
Beta-CoVs, making them a potential evolutionary pattern to 
trace cross-species horizontal transmission events. 
Additionally, for MERS-CoV and SARS-CoV-2, recurrent 
positive selection was detected at codon sites on the 
S protein (Fig. 9 and Fig. 10) [16,62,81,82], and more suppres-
sively, acting on the S RNA structures (Fig. 16 and Fig. 17). 
Our hypothesis suggests that since the S protein shows evi-
dence of increased fixation of non-synonymous mutations 
(dN/dS >1), these changes may possibly disrupt base pairs in 
its RNA structures, hinting at a relaxation of constraints, 
which means positive selection [29,31]. To date, most studies 
have only provided a static snapshot of RNA structures in 
Beta-CoVs genomes [21,24,27,83], failing to understand how 
natural selection might affect the functionally of conserved 
RNA structures across different host in highly interesting 
regions as S. Therefore, this plausible scenario includes that 
the S protein S1 subunit of MERS-CoV and SARS-CoV-2 is 
both on protein-coding and structural under positive selec-
tion, providing novel insights into how some pathogenic 
SARS-CoV-2 variants, such as (A > G; D614G), might enable 
a viral fitness advantage at the RNA structure level for 
increased viral load, and thus have the capability to evade 
immune system and jump to intermediate hosts [20,84]. 
Considering previous evolutionary events [85], certainly, the 
S protein is a probable candidate driver for viral genome 
evolution, and possibly contributes to jump from bat viruses 
to intermediate animals and humans, resulting in a high zoo-
notic potential.

Many viruses belonging to intermediate animals with the 
capability to infect humans are waiting for the chance to jump 
the species barrier. Based on our phylogenetic analyses and 
previous evidence, the earliest TMRCA between intermediate 
animal and human viruses in Beta-CoVs was SARS-CoV at 
1991–06-14 (95% HPD interval = [1967-04-12, 2015-19-03]), 
reporting an outbreak period between 2002 and 2005 [86–88] 
(Fig. 6A). After 17 years, the emerging TMRCA for MERS- 
CoV was at 2008-10-27 (95% HPD interval = [1995-12-28, 
2018–07-19]) with an outbreak period ranging from 2010 to 
2013 [89–92] (Fig. 7A), and the most recent SARS-CoV-2 in 
2019–10-04 (95% HPD interval = [2018-, 2021–03-17]), 
ongoing outbreak from 2020, consistent with a bulk of time- 
resolved phylogenetic studies [15,93–96] (Fig. 8A). It is sug-
gested that SARS-CoV passage from intermediate animals to 
humans involved a 29-nucleotide deletion in the middle of 
ORF8, leading to cleavage of ORF8 into two smaller ORFs 
found only in human viruses, namely ORF8a and ORF8b 
[88,97,98] (Fig. Supplementary S1A). Conversely, MERS- 
CoV and SARS-CoV-2 still remain unknown, but it has 
been supposed that hotspot mutations in the S protein lead 
to an increased affinity for DPP4 [99,100], and ACE2 [101– 
103] receptors, respectively. Considering the rapid evolution 
of Beta-CoVs, leading to changes in the sequence and struc-
ture of viral proteins, the existence of conserved RNA struc-
tures provides an opportunity to shed light on crossing from 
intermediate viruses to humans.

Interestingly, Fig. 11 shows that Beta-CoV genomes iso-
lated from intermediate animals and humans share the most 
conserved RNA structures in relation to those found in bats, 
preserving 11, 68 and 20 regions for SARS-CoV, MERS-CoV 
and SARS-CoV-2, respectively. This remarkable biological 
peculiarity might suggest that jumping from virus circulating 
in an intermediate animal to human cells is probably related 
to how its single-stranded RNA genome folds back on itself to

Figure 10. Estimation of positive and negative selection on SARS-CoV-2. General overview obtained by SLAC analysis, showing the evolutionary rate (dN-dS or dN/dS) 
at individual genes of SARS-CoV-2. Statistically significant codons with positive signals were inferred by overlapping of four evolutionary tests (SLAC, FEL, MEME, and 
FUBAR), whereas significant negative codons by (SLAC, FEL, and FUBAR). Red triangles represent codons with significant evidence for positive selection shown in 
Table 2.
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form intricate secondaries that have been proven essential for 
viral replication [23,104] and enhanced by the functionality of 
the S protein and its interaction with the ACE2 (SARS-CoV 
and SARS-CoV-2) and DPP4 (MERS-CoV) receptors. In 
addition, it is clearly important to account that a high- 
degree of evolutionary conservation of the RNA structure 
may represent a pivotal strategy to improve viral genome 

stability, given the important role of conserved RNA struc-
tures in virus life cycle, such as cis-acting RNA elements with 
structures in 5’ and 3’ UTRs and FSE [24,105,106]. Although 
these conserved RNA structures have been validated in vivo 
through click selective 2-hydroxyl acylation and profiling 
experiment (icSHAPE), nuclear magnetic resonance (NMR) 
and cryo–electron microscopy (cryo-EM) [26,107–110], none 

Table 3. Number of conserved loci predicted by RNAz for each host and proportion of virus genome coverage.

Virus Host
RNAz (p > 0.98)

Number of loci Genome coverage (%)a

SARS-CoV Bat 91 36.41
Intermediate 120 48.4
Human 142 57.3

MERS-CoV Bat 98 51.5
Intermediate 94 44.72
Human 95 44.85

SARS-CoV-2 Bat 44 22
Intermediate 83 42.04
Human 81 38.62

aGenome coverage percentage was calculated by multiplying the total number of nucleotides of all predicted loci by 100 and then 
dividing the viral genome length of a given host shown in Fig. 1. 

Figure 11. Graphical representation of regions carrying conserved RNA structures in the Beta-CoVs genomes. (a) The vast number of conserved RNA structures in 
SARS-CoV are unique across all hosts. Still, four conserved RNA structures have been common during time: ORF1a (6,121–6,240 bp); ORF3a (25,961–26,080 bp); 
E (26,041–26,160 bp); and M (26,361–26,480); (b) Whilst MERS-CoV circulating in bats have no shared RNA structures with those infecting intermediate animals and 
humans, four conserved RNA structures are found in common comprising: ORF1a (3,361–3,480; 5,801–5,920); FSE (13,401–13,520 bp); and ORF5 (27,361–27,480); and 
(c) SARS-CoV-2 presents a similar pattern to SARS-CoV, but exhibiting a common structure in ORF1b (19,401–19,520 bp). Venn diagrams show conserved RNA 
structures that are common, shared, and unique across the three hosts for each virus.
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Figure 12. Estimation of natural selection acting on SARS-CoV RNA structures. A total of 5,102 RNA structures under selection in SARS-CoV are detected, of which 4,884 (96%) 
show negative selection signals. (a) In terms of each host, human-associated viruses register 3,516 (98%) RNA structures with negative selection, (b-c) while for those circulating in 
intermediate animals and bats, 973 (95%), and 395 (77%), respectively. The dot graph shows score obtained for RNA structure at a given loci in the genome and the bar chart 
represents the number of RNA structures depending on the selective restriction for each host. Global frequency of negative selection of RNA structures was calculated by 
multiplying the total number of RNA structures with negative selection signals across all hosts by 100, and then dividing the total number of RNA structures corresponding to all 
types of restrictive selection.
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Figure 13. Estimation of natural selection acting on MERS-CoV RNA structures. For MERS-CoV, a total of 10,593 RNA structures under selection are identified, where 
9,563 (90%) of them correspond to RNA structures with negative selection. (a) On other hand, viruses found in humans show 3,863 (88%) RNA structures with 
negative signals and (b-c) regarding intermediate animals and bats are 5,384 (92%), and 316 (95%), respectively. The dot graph shows score obtained for RNA 
structure at a given loci in the genome and the bar chart represents the number of RNA structures depending on the selective restriction for each host. Global 
frequency of negative selection of RNA structures was calculated by multiplying the total number of RNA structures with negative selection signals across all hosts by 
100, and then dividing the total number of RNA structures corresponding to all types of restrictive selection.
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Figure 14. Estimation of natural selection acting on SARS-CoV-2 RNA structures. SARS-CoV-2 carries the highest number of RNA structures with natural selection 
17,265. Among them, 16,629 (96%) are RNA structures showing negative signals. (a) More concretely, for viruses belonging to humans, 11,149 (97%) RNA structures 
are identified under negative selection, (b-c) in contrast, those infecting intermediate animals and bats show 5,311 (94%), and 169 (92%), respectively. The dot graph 
shows score obtained for RNA structure at a given loci in the genome and the bar chart represents the number of RNA structures depending on the selective 
restriction for each host. Global frequency of negative selection of RNA structures was calculated by multiplying the total number of RNA structures with negative 
selection signals across all hosts by 100, and then dividing the total number of RNA structures corresponding to all types of restrictive selection.
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of the RNA structures we found in common across the viruses 
sampled from bats, intermediate animals and humans have 
been tested experimentally, except for the MERS-CoV FSE, 
which was the only common RNA structure predicted and 
validated for all three hosts (Fig. 11B). On the other hand, we 
discovered that nearly half of the Beta-CoV genomes carry 
highly conserved RNA structures (Table 3), and greater than 
90% of these RNA structures show negative selection signals 
(Fig. 12–14), making them potential candidates as a model for 
the prediction of virus-derived small RNAs hidden in viral 
genomes that might contribute to modulate the transcrip-
tional reprogramming of host upon infection.

Conclusions

In summary, we report a significant landscape of potential 
signatures associated with jumping the species barrier of rele-
vance for a molecular surveillance system using not only 
protein-coding information but also enriched by conserved 
RNA structures of Beta-CoVs circulating in bats, intermediate 
animals, and humans across the globe through a horizontal 
transmission approach. Our time-resolved phylogenies sug-
gest that bat viruses are the most closely related to Beta-CoVs 
TMRCA, which have incubated for years inside bats with 
a high mutation rate compared to those circulating in

Figure 15. Bar chart showing frequencies of selected RNA structures across the three hosts of SARS-CoV acting on each ORF. ORF1a carries RNA structures with 
positive selection signals that are being disrupted from viruses circulating in bats to humans. (ORF1a: bat = 49, intermediate = 3, and human = 1). Specific number of 
RNA structures is available in Supplementary Table S6.
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intermediate and human hosts. This event might trigger the 
emergence of quasispecies groups, driving the onset of pivotal 
missense mutations in the S protein S1 subunit of SARS-CoV 
(G > T; A577S), MERS-CoV (C > T; S746R and C > T; 
N762A), and SARS-CoV-2 (A > G; D614G). In addition, the 
S protein S1 subunit is both on protein-coding and structural 
under positive selection, suggesting that it might mediate the 
entry of bat viruses into intermediate animals. Although 
transmission of virus from wild animals to human cells 
remains unclear, the existence of conserved RNA structures 
in viral genomes is a step towards unravelling this puzzle. We 
found that viruses isolated from intermediate animals and 

humans share more conserved RNA structures than those 
from bats, and greater than 90% of these RNA structures 
show negative selection signals, which remain largely unex-
plored. We encourage future studies to scan for emerging 
functions of viral conserved structures as potential coding of 
small RNAs and as targets of antiviral therapeutic strategies.
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