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Recognition of moyamoya disease and its hemorrhagic 
risk using deep learning algorithms: sourced from 
retrospective studies
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Abstract  
Although intracranial hemorrhage in moyamoya disease can occur repeatedly, predicting the disease is difficult. Deep learning algorithms 
developed in recent years provide a new angle for identifying hidden risk factors, evaluating the weight of different factors, and quantitatively 
evaluating the risk of intracranial hemorrhage in moyamoya disease. To investigate whether convolutional neural network algorithms can be 
used to recognize moyamoya disease and predict hemorrhagic episodes, we retrospectively selected 460 adult unilateral hemispheres with 
moyamoya vasculopathy as positive samples for diagnosis modeling, including 418 hemispheres with moyamoya disease and 42 hemispheres 
with moyamoya syndromes. Another 500 hemispheres with normal vessel appearance were selected as negative samples. We used deep 
residual neural network (ResNet-152) algorithms to extract features from raw data obtained from digital subtraction angiography of the 
internal carotid artery, then trained and validated the model. The accuracy, sensitivity, and specificity of the model in identifying unilateral 
moyamoya vasculopathy were 97.64 ± 0.87%, 96.55 ± 3.44%, and 98.29 ± 0.98%, respectively. The area under the receiver operating 
characteristic curve was 0.990. We used a combined multi-view conventional neural network algorithm to integrate age, sex, and hemorrhagic 
factors with features of the digital subtraction angiography. The accuracy of the model in predicting unilateral hemorrhagic risk was 90.69 
± 1.58% and the sensitivity and specificity were 94.12 ± 2.75% and 89.86 ± 3.64%, respectively. The deep learning algorithms we proposed 
were valuable and might assist in the automatic diagnosis of moyamoya disease and timely recognition of the risk for re-hemorrhage. This 
study was approved by the Institutional Review Board of Huashan Hospital, Fudan University, China (approved No. 2014-278) on January 12, 
2015.
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Introduction 
Moyamoya disease (MMD) is a chronic cerebrovascular 
disease that is characterized by progressive stenosis and 
occlusion of the supraclinoid internal carotid artery (ICA) 
and its proximal branches and abnormal collateral vessels 
at the base of the brain, both with unknown etiologies 
(Suzuki and Kodama, 1983; Su et al., 2019). The pathological 

angioarchitecture of MMD involves bilateral ICA, whereas 
patients with unilateral moyamoya vasculopathy are generally 
categorized as quasi-MMD or moyamoya syndrome (Research 
Committee on the Pathology and Treatment of Spontaneous 
Occlusion of the Circle of Willis and Health Labour Sciences 
Research Grant for Research on Measures for Infractable 
Diseases, 2012). Nevertheless, the disease and syndrome are 
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often investigated together because of their common clinical 
presentations and surgical strategies (Scott and Smith, 2009). 
Intracranial hemorrhage is a major clinical manifestation of 
moyamoya among adults, and several morphological changes 
such as fragile moyamoya vessels and saccular aneurysms 
in the circle of Willis are thought to be the main causes 
(Kuroda and Houkin, 2008). Published studies indicate that 
untreated hemorrhagic MMD presents with high rebleeding 
rates (Kobayashi et al., 2000; Kang et al., 2019). Therefore, risk 
factors of hemorrhage remain after the initial bleeding and 
recognition of these features is crucial for predicting future 
rebleeding events.

Recently, machine learning has been widely recognized as a 
powerful tool for discovering hidden information that may 
not be expressed explicitly. Commonly used algorithms in 
neuroscience include the support vector machine, Bayesian 
algorithm, and artificial neural network (Lo et al., 2013; 
Fukuda et al., 2014; Wang, 2014). Models that incorporate 
these algorithms often need a manually labeled dataset based 
on human experience and recognition. Thus, some crucial 
but unknown information may be omitted. The convolutional 
neural network (CNN) is a deep learning algorithm inspired 
by biological neuronal responses and is designed to extract 
information automatically (Cireşan et al., 2013). The 
application of CNNs in image recognition and facial recognition 
is considered a landmark because the efficiency of object 
classification and detection is very high (Ciregan et al., 2012; 
Krizhevsky et al., 2017). Additionally, CNNs have achieved 
state-of-the-art accuracies in joint prediction from multi-view 
images of three-dimensional shapes (Su et al., 2015).

In the present study, we first applied a pre-trained deep 
residual neural network (ResNet) to detect hemispheric 
moyamoya vasculopathy after learning the relevant features 
of the ICA as seen on digital subtraction angiography (DSA) (He 
et al., 2016). Next, to detect hemorrhagic risk in moyamoya, 
we applied a combined multi-view CNN (MV-CNN-C) algorithm 
that integrated individual clinical characteristics and DSA 
features of all intracranial vessels on the side of the brain with 
a history of hemorrhage. The models were finally assessed 
through cross-validation.
 
Participants and Methods
Participants
The inclusion criteria were as follows: (1) Aged between 
18 and 68 years; (2) Diagnosis confirmed by DSA and in 
accordance with published guidelines (Research Committee 
on the Pathology and Treatment of Spontaneous Occlusion of 
the Circle of Willis and Health Labour Sciences Research Grant 
for Research on Measures for Infractable Diseases, 2012); 
(3) No evidence of other cerebrovascular diseases, brain 
tumor, brain trauma, or any medical history of neurosurgery. 
From January 2017 to September 2019, 460 eligible adult 
patients with moyamoya (418 MMD and 42 moyamoya 
syndrome) were retrospectively identified using data from the 
Department of Neurosurgery, Huashan Hospital located at 
Fudan University in China. The bilateral intracranial vessels in 
cases of MMD and the unilateral intracranial vessels in cases 
of moyamoya syndrome with vasculopathy were collected as 
positive samples.

Additionally, 500 adult patients with unruptured unilateral 
intracranial aneurysms were selected from the hospital’s 
database and their contralateral intracranial vessels were 
used as negative samples. The above 500 patients were 

involved after being screened through the following exclusion 
criteria: (1) Those aged over 68 years; (2) Those with 
aneurysms located in either the anterior communicating 
artery or posterior circulation which may interfere with 
feature recognition; (3) Those with evidence of any obvious 
abnormalities in the hemisphere contralateral to the 
aneurysms.

All patients in our database were diagnosed independently 
by two senior neurosurgeons as routine procedures. If a 
consensus was not reached, the whole treatment team 
discussed the case together and came to a final consensus. 
This study was conducted in accordance with the Declaration 
of Helsinki after approval by the Institutional Review Board of 
Huashan Hospital, Fudan University (approval No. 2014-278). 
All participants or their legal guardians provided informed 
consent.

Diagnosis modeling
Referring to the definition and diagnostic criteria (Research 
Committee on the Pathology and Treatment of Spontaneous 
Occlusion of the Circle of Willis and Health Labour Sciences 
Research Grant for Research on Measures for Infractable 
Diseases, 2012), we examined unilateral ICA angiography for 
moyamoya vasculopathy. Thus, dynamic raw DSA data from 
the unilateral ICA were defined as a sample. Considering the 
usual clinical practice and algorithm simplification, only images 
in the anteroposterior position view were used. In total, we 
collected 878 positive samples (bilateral hemispheres from 
the 418 patients with MMD and unilateral hemispheres from 
the 42 patients with moyamoya syndrome) and 500 negative 
samples. 

First, all right hemisphere samples were flipped horizontally 
to align with the left hemisphere samples. Then, randomized 
crops and rotations were applied to the input images to 
improve the robustness of the small displacements and 
orientations. The brightness, contrast, saturation, and 
hue of the images were adjusted, with adjustment factors 
being randomly selected from within the interval [0.9, 1.1]. 
Transformation procedures were applied before each epoch 
of model training.

A deep ResNet-152 model (CVPR 2016, Las Vegas, NV, USA) 
was initiated by ImageNet (CVPR 2009, Miami, FL, USA) 
with pre-trained weights. This model was fine-tuned using 
30 epochs and a minibatch size of 32. The learning rate was 
0.001 with an exponential decay factor of 0.1 for every seven 
epochs. A five-fold cross-validation strategy was applied to 
avoid sampling bias. Thus, the samples were divided into five 
sets with equal positive/negative sample ratios, and four sets 
were used for training, and the remaining set was used for 
validation. Then, the whole procedure was repeated five times 
until all sets had been used once for validation. The final result 
was the mean of the five individual validations. Afterward, 
the model was evaluated by calculating the sensitivity and 
specificity, as well as the area under the receiver operating 
characteristic (ROC) curve.

Hemorrhagic-risk modeling
Dataset construction
The natural history of hemorrhagic MMD indicates that 
rebleeding episodes frequently occur in the original 
hemisphere at different sites (Houkin et al., 1996; Saeki 
et al., 1997; Ryan et al., 2012; Kang et al., 2019). Thus, 
hemispheres with bleeding remain at high risk for future 
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bleeding, which might not be attributed to a single feature. 
Thus, the features of these hemorrhagic hemispheres should 
be learned. In total, we obtained 126 positive samples with 
prior bleeding episodes (ipsilateral hemispheres from 118 
cases of MMD and 8 cases of moyamoya syndrome) and 634 
negative samples without any history of intracranial bleeding 
(bilateral hemispheres from 300 MMD cases and 34 ipsilateral 
hemispheres from cases of moyamoya syndrome). The 
contralateral hemispheres from cases of hemorrhagic MMD 
were excluded considering their unclear involvement in some 
intraventricular hemorrhage episodes and obscure basis for 
grouping.

For each sample, demographic characteristics (age, gender, 
and risk factors of hypertension, smoking, and drinking) were 
collected for modeling, as well as dynamic DSA raw data of 
the ICA, external carotid artery, and vertebra-basilar artery in 
both anteroposterior and lateral position views. Afterward, all 
temporal DSA images of the same artery and position were 
integrated into one combined image, and all combined images 
of the same hemisphere were stored together.

Development of the CNN algorithms 
We proposed the MV-CNN to extract image features, and its 
architecture can be seen in Figure 1. Feature maps of the 
input images were extracted by two feed-forward densely 
connected convolutional blocks (Huang et al., 2017). The 
dense block comprised five convolutional layers, all of 
which were forwardly connected with each other to reduce 
information loss and gradient vanishing. Each input image 
generated 256 feature maps, the aggregation of which was 
learnable (Su et al., 2015). Instead of direct max-pooling, all 
feature maps were jointly reweighted by the corresponding 
adaptive importance vector, which was learned from feature 
maps by a two-layer squeeze and excitation block (Hu et 
al., 2018). The reweighted feature maps were encoded by 
two shared dense blocks to generate the final image feature 
vector X ∈ R4416×1. The feature vector X was followed by a fully 
connected layer with Softmax activation, which outputted 
a prediction of risks R = σ(βTX), where β ∈ R4416×2 was the 
weights vector of the fully connected layer and σ was the 
Softmax activation function. To provide a loss function for 
backpropagation, the risks were inputted to a cross-entropy 
layer for calculating the negative log likelihood: (β , X, Y) =  
–Σ αt yi log(σ(βTxi)), where xi and yi were the image feature 
vector and its corresponding risk annotation. Specifically, we 
introduced a weighted factor αt as the inverse class frequency, 
which was 634/(126 + 634) for positive samples and 126/(126 
+ 634) for negative samples. Thus, the positive and negative 
samples contributed equally to the total loss. A stochastic 
gradient descent with momentum was used to minimize the 
negative log likelihood via backpropagation that optimized 
model weights and biases. The momentum was set to 0.9 and 
the initial learning rate was set to 0.01, which was applied 
with an exponential decay factor of 0.1. The feature extraction 
layers for each input image were initialized by the ImageNet 
pre-trained weights, whereas the dense blocks that followed 
were initialized (Glorot and Bengio, 2010; Lo et al., 2013). 
Models were trained for 200 epochs in which the size of the 
minibatch was four. Batch normalization and dropout were 
used to mitigate overfitting (Ciregan et al., 2012; Ioffe and 
Szegedy, 2015).

Afterward, the gradient-boosting decision-tree method 
was used to integrate images with clinical features and 
development of the MV-CNN-C algorithm (“C” for combined; 

Figure 1). As a multivariant tree-boosting method, the 
gradient-boosting decision tree is often used to integrate 
and analyze multiple factors. It produces the prediction 
from the linear ensemble of multiple decision trees by 
iteratively reducing the training residuals, which enables the 
quick capture of the differentiated feature combinations. To 
normalize the features, the aggregation feature vectors were 
Z-normalized and the major components of both the clinical 
and image features were extracted via the singular value 
decomposition.

We compared performance of the MV-CNN-C with the MV-
CNN to evaluate the significance of clinical features. Two other 
basic CNN models (vanilla CNN and MV-CNN-NA) were also 
constructed and compared. The vanilla CNN architecture is 
similar to that of DenseNet, except that the number of nodes 
in the last fully connected layer is changed to three, whereas 
the input is the concatenate of all the input images along the 
width axis (Huang et al., 2017). The MV-CNN-NA architecture 
is similar to that of the MV-CNN in that the separate feature 
vectors from each input image are combined directly by 
concatenation instead of by the squeeze-and-excitation block.

Model training and validation
Samples were randomly assigned to nonoverlapping training 
(80%) and validation (20%) sets. For MMD with bilateral 
samples, they were simultaneously assigned to the same 
training or validation set. This ensures that no data from any 
patient were represented in both training and validation 
sets at the same time, and avoids overfitting and optimistic 
estimates of generalization accuracy. The randomized 
assignment was repeated five times until all sets had been 
used for validation. Afterward, the final validation result was 
generated as the mean of the five individual validations.

Statistical analysis
The models were trained using PyTorch 0.4.0 (https://pytorch.
org/previous-versions/) under python 3.5 (https://www.
python.org/downloads/release/python-350/) on servers 
equipped with Intel(R) Core (TM) i7-6800K CPU @ 3.40 GHz 
CPUs, 64 GB RAM, and dual NVIDIA GTX 1080Ti graphic 
cards. DSA data were obtained from the Philips and GE X-ray 

A B

C

Figure 1 ｜ Methodological process of DSA features extraction (A, B) and 
the architecture of a combined deep multi-view convolutional neural 
network (C).
Image feature maps of the input images were extracted by two feed-forward 
densely connected convolutional blocks. The dense block was composed of 
five convolutional layers, and all the layers were forwardly connected with 
each other to reduce the information loss and gradient vanish. A two-layer 
Squeeze and Excitation block was used to learn from feature maps. A gradient 
boosting decision tree method was finally proposed to integrate image with 
clinical features of demographic and vascular risk factors. AP: Anteroposterior 
position; DSA: digital subtraction angiography; ECA: external carotid artery; 
GBDT: gradient boosting decision tree; ICA: internal carotid artery; LAT: lateral 
position; S.E.: Squeeze and Excitation block; VA: vertebra-basilar artery.
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Table 1 ｜ Clinical and image characteristics of the participants

Moyamoya 
disease 
(n = 418)

Moyamoya 
syndrome 
(n = 42)

Intracranial 
aneurysm 
(n = 500) P-value

Age (yr) 44.5±9.6 44.2±12.9 45.7±7.6 0.169
Male 197 (47.1) 22 (52.4) 205 (41.0) 0.097
History of risk 
factors

Hypertension 66 (15.8) 8 (19.0) 189 (37.8) < 0.001
Current smoking 78 (18.7) 7 (16.7) 109 (21.8) 0.42
Current drinking 81 (19.4) 9 (21.4) 130 (26.0) 0.058
Hemorrhagic type 118 (28.2) 8 (19.0) – 0.203

Unilateral Suzuki 
stage

I 0 0 – –
II 63 (7.5) 3 (7.1) – 1
III 379 (45.3) 17 (40.5) – 0.634
IV 221 (26.4) 14 (33.3) – 0.371
V 172 (20.6) 8 (19.0) – 1
VI 1 (0.1) 0 – 1

Age is expressed as the mean ± SD, and other data are expressed as number 
(percentage).

intensifiers in Huashan Hospital, Fudan University (Philips 
UNIQ Clarity FD20/20, Philips, Amsterdam, Netherlands; GE 
Innova IGS 630; GE, Boston, MA, USA).

Results
Diagnosis modeling of MMD
The clinical and image characteristics of all participants in 
this study are summarized in Table 1. Patients with MMD, 
moyamoya syndrome, and intracranial aneurysm did not 
show significant differences in age, gender, or current 
smoking or drinking status (P > 0.05). Significant differences 
were found for hypertension (P < 0.001). Most patients with 
MMD exhibited a Suzuki stage of III or IV, which was similar 
in patients with moyamoya syndrome (P > 0.05). Additionally, 
hemorrhage rates did not differ significantly between MMD 
and moyamoya syndrome (P > 0.05).

DSA image features extracted through the ResNet-152 model 
for one sample is shown in Figure 2. After repeating training 
and validation five times, the average accuracy of the proposed 
method was 97.64 ± 0.87%, with sensitivity and specificity of 
96.55 ± 3.44% and 98.29 ± 0.98%, respectively. The quality of 
the model was also evaluated by a ROC, and the area under 
the ROC curve reached 0.990 (Figure 3).

Hemorrhagic risk modeling of MMD
The baseline characteristics of adult moyamoya with an 
episode of prior bleeding are shown in Table 2. To determine 
whether the model that we constructed had any advantages, 
we compared the performance of the MV-CNN-C algorithm 
with that of the MV-CNN, vanilla CNN, and MV-CNN-NA (Figure 
4). The results indicated that the MV-CNN-C reached the 
highest mean classification accuracy and precision, implying 
that the gradient boosting decision-tree algorithm (vs. the 
MV-CNN), the SE block (vs. the MV-CNN-NA), and the two-
way input structure (vs. the vanilla CNN) all contributed to the 
improved performance of the MV-CNN-C.

As an example, deep features extracted from the fully 
connected layer of the MV-CNN-C for 16 positive and 16 
negative samples were converted to 64 × 69 matrices, which 
revealed an obvious difference in features between samples 
(Figure 5). After repeating training and validation five times, 
the mean accuracy of the proposed method was 90.69 ± 
1.58%, and the sensitivity and specificity were 94.12 ± 2.75% 
and 89.86 ± 3.64%, respectively.

Discussion
Here, we proposed a series of deep MV-CNN algorithms as a 
reliable, automatic, and objective tool for detecting cases of 
moyamoya disease/syndrome and for evaluating the clinical 
risk of hemorrhage. We developed a ResNet-152 model to 
extract image features related to moyamoya, resulting in 
improved diagnostic efficacy and automation, and laying a 
solid foundation for the detection of hemorrhagic risk. An MV-
CNN-C model was then proposed to integrate both clinical and 
image features and generate a hemorrhagic risks classifier. 
Finally, the classifier was evaluated using a cross-validation 
strategy.

Referring to the natural history of hemorrhagic MMD, Kang et 
al. (2019) reported that rebleeding events occurred in 36.7% 
of patients who received conservative treatment. Additionally, 
Morioka et al. (2003b) revealed a rebleeding rate of 61.1% in 
another hemorrhagic MMD cohort. Therefore, hemorrhagic 

risk remains high after an initial bleeding episode and should 
be recognized and prevented. Furthermore, the sites of 
rebleeding have been reported to vary from the initial site, 
but are often in the same side (Houkin et al., 1996; Saeki et 
al., 1997; Kuroda and Houkin, 2008; Kang et al., 2019). Thus, 
we conclude that the hemisphere in which bleeding initially 
occurs in moyamoya remains at high risk of future rebleeding, 
and this might not be attributed to a single risk factor.

Of all the clinical characteristics reported in studies of 
hemorrhagic MMD, smoking is the only one that has been 
related to rebleeding, while hypertension has been proved 
irrelevant (Yoshida et al., 1999; Morioka et al., 2003a; Kang 
et al., 2019). Nevertheless, here we included all these clinical 
factors to avoid missing any relevant features. Previous 
studies have provided several morphological features via 
angiography, including fragile moyamoya vessels (Kuroda and 
Houkin, 2008), brand extension of anterior choroidal artery-
posterior communicating artery (Morioka et al., 2003a; 
Jiang et al., 2014), and cerebral aneurysms developed from 
shift circulation (Kawaguchi et al., 1996). Although these 
features are deemed to be important references for clinicians, 
their use is limited and controversial. For example, fragile 
moyamoya vessels and some circulation-related aneurysms 

Table 2 ｜ Baseline characteristics of adult moyamoya with prior bleeding 
episodes

Moyamoya disease 
(n = 118) 

Moyamoya syndrome 
(n = 8)

Age (yr) 43.2±9.1 49.4±6.0
Male 49 (41.5) 4 (50.0)
History of risk factors

Hypertension 13 (11.0) 1 (12.5)
Current smoking 23 (19.5) 1 (12.5)
Current drinking 21 (17.8) 2 (25.0)

Type of bleeding
IVH 65 (55.1) 5 (62.5)
ICH 15 (12.7) 0
ICH & IVH 38 (32.2) 3 (37.5)

Age is expressed as the mean ± SD, and other data are expressed as number 
(percentage). ICH: Intracranial hemorrhage; IVH: intraventricular hemorrhage.
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may vanish gradually as the disease progresses to high 
Suzuki stages. Thus, we are not sure whether hemorrhagic 
risks increase as the disease worsens. For brand extension 
of the anterior choroidal artery-posterior communicating 
artery, the diameters of the vessels should be calculated and 
correlated with hemorrhagic risks. Additionally, most of the 
aforementioned studies focused on univariant analysis of a 
single factor and generated a paradoxical result that is difficult 
to refer to in clinical practice. Thus, all these features should 
be considered simultaneously, quantified, and weighted to 
generate a practical risk recognition model. However, this is 
difficult based on the present clinical experience.

Compared with other intelligent models, the CNN-based deep 
learning model has several advantages. First, the CNN learning 
paradigm differs from the feature engineering paradigm 
in that the predictive features are adaptively transformed 
from the input images instead of manually designed and 
extracted, thus relieving clinicians of the burden of manual 
input and saving time. Second, the network is composed of 
non-linear transformations and learnable filter kernels that 
summarize the high-level semantic features from the low-
level morphological textures. It does not use prior knowledge, 
which may include some hidden errors, but instead generates 
knowledge directly derived from the medical image data. 
Finally, elements of the structure, such as the number 
and size of filters, type of convolutional layers and blocks, 
loss functions, hyper-parameters, and even numbers of 
input pathways can be customized to be suitable for any 
classification, detection, segmentation, or other artificial 
intelligence tasks. This makes the CNN model much more 
flexible than the traditional models.

In the first stage, the ResNet model we proposed has a novel 
network structure called the residual unit, which consists of a 
primary path of several convolution layers and an alternative 

path that short-circuits the input to the output of the residual 
unit. This structure of the residual unit helps to counter the 
problem of vanishing and exploding gradients and results in 
many more layers and better performance than other deep 
learning networks (Deng et al., 2009). In the second stage, the 
MV-CNN-C model we developed can simultaneously extract 
a large amount of information from different dimensions, 
making it suitable for this application.

This study had several limitations. First, because developing 
and stabilizing deep learning models requires large amounts 
of data, the model in this study still needs to be improved by 
including a larger training set. Second, an independent testing 
set may provide a more convincing result. Third, features 
extracted from the deep learning algorithm are difficult to 
explain in terms of medical significance, and relevant clinical 
work of deep learning is needed in cooperation with clinicians 
and engineers.

In summary, the deep learning algorithms we proposed have 
been shown to be valuable and could assist in automatic 
diagnosis of MMD and timely recognition of the risk for 
rebleeding. We are establishing a national database to help 
build a better deep learning model through an ongoing multi-
center study of MMD (A Multi-Center Registry Study of 
Chinese Adult Moyamoya Disease).
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Figure 2 ｜ Example of image feature extraction from the digital 
subtraction angiography.
(A, F) The anteroposterior position view of the left internal carotid artery in 
randomly selected negative (A) and positive samples (F). (B–E, G–J) Based 
on this view of moyamoya, intensive features have been color-coded to be 
bright. 
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Figure 3 ｜ The ROC for diagnosis modeling of moyamoya disease which 
was constructed by the ResNet-152 algorithm.
The orange curve shows that value increases quickly to nearly 1.0, which 
shows that algorithm performance was good and the area under receiver 
operating characteristic curve was high. ResNet: Residual neural network; 
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Figure 4 ｜ Classification accuracy (A) and precision (B) among the 
MV-CNN, MV-CNN-C, MV-CNN-NA, and vanilla CNN models.
CNN: Convolutional neural network; MV-CNN: multi-view convolutional neural 
network; MV-CNN-C: combined multi-view convolutional neural network; MV-
CNN-NA: multi-view convolutional neural network with squeeze and excitation 
block inapplicable.
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Figure 5 ｜ The 64 × 69 matrices of 16 randomly selected positive samples 
with prior bleeding episodes (A) and 16 negative samples without prior 
bleeding episodes (B).
The matrices were converted from features that were extracted from the 
fully connected layer of the MV-CNN-C model. The values ranged from 0 to 
1, and darker colors indicate larger values. MV-CNN-C: Combined multi-view 
convolutional neural network.
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