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Abstract

Adenosine (A) to inosine (I) RNA editing is the most prevalent RNA editing mechanism in

humans and plays critical roles in tumorigenesis. However, the effects of radiation on RNA

editing were poorly understood, and a deeper understanding of the radiation-induced cancer

is imperative. Here, we analyzed BEP2D (a human bronchial epithelial cell line) and radia-

tion-induced malignantly transformed cell lines with next generation sequencing. By per-

forming an integrated analysis of A-to-I RNA editing, we found that single-nucleotide

variants (SNVs) might induce the downregulation of ADAR2 enzymes, and further caused

the abnormal occurrence of RNA editing in malignantly transformed cell lines. These editing

events were significantly enriched in differentially expressed genes between normal cell line

and malignantly transformed cell lines. In addition, oncogenes CTNNB1 and FN1 were

highly edited and significantly overexpressed in malignantly transformed cell lines, thus may

be responsible for the lung cancer progression. Our work provides a systematic analysis of

RNA editing from cell lines derived from human bronchial epithelial cells with high-through-

put RNA sequencing and DNA sequencing. Moreover, these results provide further evi-

dence for RNA editing as an important tumorigenesis mechanism.

Introduction

Lung cancer is the most frequent cancer and the leading cause of cancer death among males

[1], and radon exposure is the second most common cause of lung cancer after smoking [2–7].

However, the molecular mechanisms of radon-induced lung cancer remain unclear.

RNA editing is a post-transcriptional modification process, the deamination of adenosines

(A) to inosines (I) is the prominent RNA editing event in humans, where ADAR enzymes con-

vert A to I and destabilize double-stranded without affecting the DNA sequence identity [8].

Intriguingly, RNA editing plays an important role in tumorigenesis, such as recoding RNA

editing of AZIN1 predisposes to hepatocellular carcinoma[9], RNA editing in RHOQ pro-

motes invasion potential in colorectal cancer [10], and GABRA3 editing suppresses breast
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cancer metastasis [11]. Recent study has shown that, in non-small cell lung cancer samples, as

a result of ADAR gene amplification, the RNA editing of DNA repair enzyme NEIL1 (K242R)

was increased recoding [12]. However, there are limited studies to date in further exploring

the characteristics of RNA editing in lung cancer. What’s more, there are few reports about the

effect of radiation on RNA editing.

Here, we investigated A-to-I RNA editing in human bronchial epithelial cell line (BEP2D)

and malignantly transformed cell lines (BERP35T1 and BERP35T4), which were important

models to characterize the radiation-mediated carcinogenesis of lung [13, 14]. By performing

high-throughput RNA sequencing, we identified A-to-I editing sites with three robust bioin-

formatics methods. We then systemically compared editing events in normal line and malig-

nantly transformed cell lines. Further, by performing genome-wide DNA sequencing, we

revealed that the genomic variants in ADAR2 gene were correlated with the abnormal editing

events in malignantly transformed cell lines. Finally, we reported two potential edited genes,

CTNNB1 and FN1, in malignantly transformed cell lines.

Results

Identification of A-to-I RNA editing

The prevalence and importance of A-to-I RNA editing have been illuminated in recent years

largely owing to the rapid adoption of high-throughput sequencing technologies [15, 16]. To

analyze A-to-I RNA editing in BEP2D cell line and malignantly transformed cell lines, we per-

formed high-throughput RNA sequencing (RNA-Seq) on BEP2D cell line and transformed

BEP2D cell lines, which were irradiated with 1.5Gy dose of α-particles emitted by 238PuO2.

Two transformed cell lines, BERP35T1 and BERP35T4, were investigated (Fig 1A). Three bio-

logical replicates were sequenced and analyzed for each cell line. We then calculated gene

expression level with Cufflinks program [17], for each cell line, biological replicates of RNA-

seq revealed highly reproducible gene expression (Fig 1B). Thus, our sequencing data were of

high quality for RNA editing identification and gene expression analysis.

Recent studies have reported that the most challenging part of identifying RNA editing is

the discrimination of RNA editing sites from genome-encoded single-nucleotide polymor-

phisms (SNPs) and technical artifacts caused by sequencing or read-mapping errors [18–20].

To accurately identify RNA editing sites, we performed three widely-used methods including

GIREMI [21], RNAEditor [22] and Separate method from Jin Billy Li [18] (See Methods). The

GIREMI method combines statistical inference of mutual information (MI) between pairs of

single-nucleotide variants (SNVs) in RNA-seq reads with machine learning to predict RNA

editing sites. RNAEditor calls RNA editing by detecting ‘editing islands’. Separate method

from Jin Billy Li identifies RNA editing sites by strict filtering processes. For each sample, we

only used RNA editing sites that can be detected in all three methods. For each cell line, we

combined RNA editing sites from three biological replicates. As the most prevalent editing

type in humans is adenosine-to-inosine (A-to-I) editing and most noncanonical editing are

false positives [23], we only analyzed A-to-I RNA editing in this study. Final, 5659, 3820 and

2446 A-to-I RNA editing sites were identified in BEP2D cell line and transformed cell lines

BERP35T1 and BERP35T4, respectively (Table 1 and S1 Table).

A-to-I RNA editing and associated genes in BEP2D cell line and

malignantly transformed cell lines

We next investigated the difference of A-to-I RNA editing between BEP2D cell line and malig-

nantly transformed cell lines. First, 3,683~4,217 editing events in BEP2D cell line were not

RNA editing events in the malignantly transformed cell lines
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detected in malignantly transformed cell lines, and 1,004~1,844 new editing events occurred

from normal BEP2D cell to malignantly transformed cells, indicating dramatic changes of

RNA editing when BEP2D cell line was irradiated (Fig 2A), gene expression changes induced

by radiation may cause this change. Generally, A-to-I editing is pervasive in Alu repeats

BERP35T1

BERP35T4

BEP2D

B

A

BEP2D BERP35T1 BERP35T4

Normalized gene expression (log2(FPKM+1))

Fig 1. Cell culture and RNA sequencing. A. Photomicrographs of BEP2D (Left), BERP35T1 (Middle) and BERP35T4 (Right) showing the cellular

atypia of the malignant transformed cell lines (100×). B. Scatter plots showing the consistency of normalized gene expression between biological

replicates for each cell line.

https://doi.org/10.1371/journal.pone.0213047.g001
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because of the double-stranded RNA structures formed by inverted Alu repeats in many genes

[24, 25]. We found that although RNA editing was quite different in BEP2D and malignantly

transformed cell lines, editing sites were still conserved in Alu repeats (Fig 2B) and ~60% of

RNA editing events occurred in intergenic regions (Fig 2C). Thus, the proportions of A-to-I

RNA editing located in Alu and intergenic were not change after radiation.

Next, we examined genes targeted by A-to-I RNA editing sites (edited genes for short). In

general, 484, 426 and 305 genes were edited in BEP2D, BERP35T1 and BERP35T4 cell lines

(Fig 2D and S2 Table). We found that, in BEP2D cell line, 88% of edited genes contained

BEP2D-specific editing sites, but in BERP35T1 and BERP35T4 cell lines, only 70% and 53% of

edited genes contained cell-specific editing sites (Fig 2E and Fig 2F). This result suggested that

the editing rate of genes decreased when cell was irradiated and malignantly transformed. In

addition, we performed gene ontology (GO) analysis to reveal the biological function of edit-

ing genes. We found that editing genes were enriched in different biological processes. For

BEP2D cell line, editing genes were enriched in protein processes and translation process, for

BERP3T1 cell line, nervous system development and hemophilic cell adhesion process were

highlighted and editing genes were enriched in DNA replication in BERP35T4 cell line (Fig

2G).

To examine whether RNA editing affects transcription activity, we identified differentially

expressed genes (DEGs) by performing Cuffdiff program [17] (S3 Table). We found that

DEGs between normal BEP2D cell line and malignantly transformed cell lines were signifi-

cantly enriched in genes with RNA editing events (p value< 1E-3, hypergeometric test, Fig

2H). This observation revealed that there was a significant correlation between RNA editing

events and gene dysregulation.

ADAR2 down-regulation by genome SNVs

We next investigated the mechanism responsible for the differences observed in RNA editing

between normal BEP2D cell line and malignantly transformed cell lines. In human, A-to-I

editing is performed by the ADAR family, which contains 3 genes: ADAR1, ADAR2 and

ADAR3 [26–28]. We thus examined the transcript levels of ADAR genes. The expression level

of ADAR1 in BEP2D cell line was comparable to that in BERP35T1 and BERP35T4 cell lines

and ADAR3 was silence in both BEP2D cell line and malignantly transformed cell lines (Fig

3A). However, ADAR2 expression level significantly reduced in BERP35T1 and BERP35T4

cell lines (Fig 3B). Previous studies have confirmed that ADAR2 is lowly expressed in cancer

e.g. glioblastoma [29], gastric cancer[30]. Thus, the tumor progression of BEP2D seems to

mainly be induced by ADAR2 downregulation.

Table 1. Summary of A-to-I RNA editing.

Sample GIREMI JinBilly Editor All methods RNA editing

BEP2D REP1 3721 13139 20585 2822 5659

BEP2D REP2 3712 13776 20322 2892

BEP2D REP3 3982 15356 22106 3078

BERP35T1 REP1 1929 7693 10877 1429 3820

BERP35T1 REP2 3355 13258 18762 2496

BERP35T1 REP3 1990 9081 12728 1500

BERP35T4 REP1 1746 7587 10895 1302 2446

BERP35T4 REP2 1537 7088 9948 1122

BERP35T4 REP3 1603 6597 9317 1202

https://doi.org/10.1371/journal.pone.0213047.t001
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Fig 2. Identification and characterization of A-to-I RNA editing. A. Venn plot showing the overlaps of RNA editing sites in BEP2D, BERP35T1 and

BERP35T4 cell lines. B, C. Bar plots showing the proportion of A-to-I RNA editing in Alu/non-Alu regions (B) and Genebody/Intergenic regions (C).

D. Venn plot showing the overlaps of edited genes in BEP2D, BERP35T1 and BERP35T4 cell lines. E. Bar plot showing the proportion of tissue-specific

editing genes in each cell line. F. Venn plot showing the overlaps of edited genes contained cell line-specific editing sites in BEP2D, BERP35T1 and

BERP35T4 cell lines. G. GO enrichment for editing genes in each cell line, value was negative log10 of p-value. H. We compared the proportion of DEGs in

total genes (blue bar) and DEGs in editing genes (red bar), p-value was calculated by hypergeometric test.

https://doi.org/10.1371/journal.pone.0213047.g002
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We further explored the possible mechanism of ADAR2 downregulation in malignantly

transformed cell linea. Radiation induced DNA alterations change gene expression and further

increase cancer risk [31, 32]. We next performed DNA sequencing (DNA-seq) on BEP2D cell

line and malignantly transformed cell lines. We identified single-nucleotide variants (SNVs)

using GATK pipeline [33] (See Methods). Surprisingly, nearly 2-fold SNVs in ADAR2 gene

were detected in malignantly transformed cell lines compared to normal BEP2D (Fig 3C and

S4 Table) and more SNVs in ADAR2 exon were observed (Fig 3D). For example, known muta-

tion rs11701974, a genetic variant of HLA-DQB1 associated with human longevity [34], was

detected in 3’ UTR of ADAR2 and specific in BERP35T1 cell line and BERP35T4 cell line (Fig

3E). Moreover, we identified 32 and 24 novel mutations in BERP35T1 cell line and BERP35T4

cell line, respectively (S4 Table). For example, chr21:46643782 was altered in malignantly

Fig 3. Down-regulation of ADAR2 induce RNA editing. A, B. Bar plots showing the normalized gene expression of ADAR1, ADAR2
and ADAR3 in each cell line. C, D. Bar plots showing the number of genomic variants in ADAR2 (C) and exons of ADAR2 (D). E, F.

IGV plots showing the sequencing reads information of mutation rs11701974 and novel mutation chr21:46643782.

https://doi.org/10.1371/journal.pone.0213047.g003
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transformed cell lines (Fig 3F). These results indicate that radiation leads to SNVs, and this

may further relate to the dysregulation of ADAR2, which needs to be examined in the future.

Oncogene CTNNB1 and FN1 are highly edited and significantly

overexpressed in malignantly transformed cell line

To gain insights into the biological relevance of RNA editing in malignantly transformed cell

lines, we investigated 285 oncogenes from previous studies [35] (S5 Table). We found that

oncogenes CTNNB1, PABPC1 and VHL were edited in BERP35T1 cell line. Notably, the

expression level of CTNNB1 in BERP35T1 cell line was significantly higher than that in

BEP2D cell line (p-value = 0.00185, Fig 4A). Previous studies reported that activating muta-

tions in CTNNB1 have oncogenic activity resulting in tumor development and somatic muta-

tions are found in various tumor types [36–39]. We found two A-to-I editing events

(chr3:41262966 and chr3:41262974) occurred in BERP35T1 cell line and CTNNB1 was

Fig 4. Oncogene CTNNB1 and FN1 are highly edited and significantly overexpressed in malignantly transformed cell line. A, C.

Bar plots showing the normalized gene expression of oncogenes CTNNB1 and FN1 in BEP2D cell line and BERP35T1 and BERP35T4

cell lines, respectively. B, D. IGV plots showing the editing events in oncogenes CTNNB1 and FN1.

https://doi.org/10.1371/journal.pone.0213047.g004
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overexpression in BERP35T1 cell line (Fig 4B). Similarly, we found three oncogenes FN1,

METTL14 and VHL were edited in BERP35T4 cell line. Notably, the expression level of FN1 in

BERP35T4 was significantly higher than that in BEP2D cell line (p-value = 5E-5, Fig 4C). Pre-

vious studies have reported that transcriptional activation of FN1 and gene fusions of FN1 pro-

mote the malignant behavior of multiple cancers [40–42]. A strong A-to-I editing event

(chr2:216236508) and a weak A-to-I editing event (chr2:216236482) were observed in

BERP35T4 and FN1 was overexpression in BERP35T4 cell line (Fig 4D). These results suggest

that RNA editing is associated with oncogene overexpression and may further induce cancer

progression.

Discussion

Radon is a recognized cause of lung cancer, however, the cellular and molecular mechanisms

of radon-induced lung cancer remains unknown. To facilitate the study of this question, in

our previous work, we established a model system of α-particle transformed human cell lines

[43]. Then, we found a number of alterations in these cell models, including cytogenetics [44,

45], gene expression [46], DNA repair [14], and genomic instability [47]. However, a genome-

wide systematic analysis of this model based on next generation of sequencing is absent. In

this work, we performed high-throughput RNA sequencing and genome-wide DNA sequenc-

ing to this model and discovered a new mechanism probably for tumorigenesis.

While the oncogenic effect of DNA damage induced by radiation has been illuminated, the

effects of radiation on RNA editing are unclear in tumorigenesis. In this work, we provided

genome-wide identification and analysis of A-to-I RNA editing events in the malignantly

transformed cell lines induced by α-particles radiation, the results show that RNA editing sites

change greatly and the total amount decreased after radiation.

RNA editing plays an important role in post-translational modification which can affect

mRNA’s structure and stability [46, 48], but little is known about how RNA editing operates in

cancer [49]. Our work supposes that, in these cell models, SNVs may cause the downregulation

of ADAR2 enzymes, and further caused the abnormal occurrence of RNA editing in malig-

nantly transformed cell lines. This hypothesis needs to be confirmed in the future. Then, the

abnormal occurrence of RNA editing led to abnormal expression of oncogenes, such as,

CTNNB1 and FN1, thus may be responsible for the lung cancer progression. These results

demonstrate further evidence for RNA editing as an important tumorigenesis mechanism, and

RNA editing sites might represent a new class of therapeutic targets.

Materials and methods

Cell culture

The BEP2D cell line is a human papilloma-virus (HPV18)-immortalized human bronchial epi-

thelial cell line and was established by Dr Curtis C. Harris (National Cancer Institute, MD,

USA) [50]. These cells are anchorage dependent and non-tumorigenic in late passages. We got

the authorization for research use only from Dr Curtis C. Harris and the Passage 20 of the

BEP2D cell line was kindly provided by Tom K Hei (Center for Radiological Research, College

of Physician and Surgeons, Columbia University, New York, USA) in the summer of 1993.

The authentication of BEP2D cell line was tested by using short tandem repeats (STRs) analysis

in June 2018. Although the information of BEP2D cell line was not found in DSMZ and

ATCC, our STRs results did match BBM cell line (ATCC Cell No. CRL-9482), BZR cell line

(ATCC Cell No. CRL-9483) and BEAS-2B cell line (ATCC Cell No. CRL-9609), which are

three tranformants derived from human bronchial epithelial cell (S1 File). The BERP35T1 and

BERP35T4 malignant transformant cell lines were derived from BEP2D cell line irradiated

RNA editing events in the malignantly transformed cell lines
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with 1.5 Gy of α-particle emitted from 238Pu source and were described in detail in a previous

paper[14]. The cells were cultured in serum-free LHC-8 medium (Gibco, USA) at 37˚C under

a 95% air/5% CO2 atmosphere.

RNA sequencing

Total RNAs were extracted from cells with RNAiso Reagent (TaKaRa, Dalian, China) follow-

ing the manufacturer’s instruction. RNA degradation and contamination were monitored on

1% agarose gels. RNA purity was checked using the NanoPhotometer spectrophotometer

(IMPLEN, CA, USA). RNA concentration was measured using Qubit RNA Assay Kit in Qubit

2.0 Flurometer (Life Technologies, CA, USA). RNA integrity was assessed using the RNA

Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A total

amount of 1 μg RNA per sample was used as input material for the RNA sample preparations.

Sequencing libraries were generated using NEBNext UltraTM RNA Library Prep Kit for Illu-

mina (NEB, USA) following manufacturer’s recommendations and index codes were added to

attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T

oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under

elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand

cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase

(RNase H-). Second strand cDNA synthesis was subsequently performed using DNA Polymer-

ase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/

polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext Adaptor with

hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA frag-

ments of preferentially 150~200 bp in length, the library fragments were purified with AMPure

XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used

with size-selected, adaptor-ligated cDNA at 37˚C for 15 min followed by 5 min at 95˚C before

PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR

primers and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and

library quality was assessed on the Agilent Bioanalyzer 2100 system.

The clustering of the index-coded samples was performed on a cBot Cluster Generation

System using TruSeq PE Cluster Kit v3-cBot-HS (Illumia) according to the manufacturer’s

instructions. After cluster generation, the library preparations were sequenced on an Illumina

Hiseq platform and 150 bp paired-end reads were generated.

DNA sequencing

Total DNAs were extracted from cells with DNAiso Reagent (TaKaRa, Dalian, China) follow-

ing the manufacturer’s instruction. The quality of isolated genomic DNA was verified by using

these two methods in combination: (1) DNA degradation and contamination were monitored

on 1% agarose gels. (2) DNA concentration was measured by Qubit DNA Assay Kit in Qubit

2.0 Flurometer(Life Technologies, CA, USA). A total amount of 1μg DNA per sample was

used as input material for the DNA library preparations. Sequencing library was generated

using Truseq Nano DNA HT Sample Prep Kit (Illumina, USA) following manufacturer’s rec-

ommendations and index codes were added to each sample. Briefly, genomic DNA sample

was fragmented by sonication to a size of 350 bp. Then DNA fragments were endpolished, A-

tailed, and ligated with the full-length adapter for Illumina sequencing, followed by further

PCR amplification. After PCR products were purified (AMPure XP system), libraries were

analyzed for size distribution by Agilent 2100 Bioanalyzer and quantified by real-time PCR

(3nM).

RNA editing events in the malignantly transformed cell lines
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The clustering of the index-coded samples was performed on a cBot Cluster Generation

System using Hiseq PE Cluster Kit (Illumina) according to the manufacturer’s instructions.

After cluster generation, the DNA libraries were sequenced on Illumina Hiseq platform and

150 bp paired-end reads were generated.

RNA editing identification

We adopted three previously published methods to accurately identify A-to-I RNA editing

sites.

For Jinbilly’s method [18], we used the Burrows-Wheeler algorithm (BWA)[51] to align

RNA-seq reads to a combination of the reference genome (hg19) and exonic sequences sur-

rounding known splice junctions from available gene models. We chose the length of the splice

junction regions to be slightly shorter than the RNA-seq reads to prevent redundant hits.

Picard (http://picard.sourceforge.net/) was then used to remove identical reads (PCR dupli-

cates) that mapped to the same location. GATK tools were used to perform local realignment

around insertion and/or deletion polymorphisms and to recalibrate base quality scores. Vari-

ant calling was performed using GATK UnifiedGenotyper tool with options stand_call_conf

of 0 and stand_emit_conf of 0. Further filtering were performed as described [52].

For GIREMI method [21], RNA-seq mapping and preprocessing was same as Jinbilly’s

method. For each mismatch position, a total read coverage of ≧5 was required and the variant

allele was required to be present in at least three reads. We then the following types of mis-

matches: those located in simple repeats regions or homopolymer runs of ≧5 nt, those associ-

ated with reads substantially biased toward one strand, those with extreme variant allele

frequencies (>95% or <10%) and those located within 4 nt of a known spliced junction.

Finally, we perform GIREMI tool to call RNA editing.

For RNAEditor [22], fastq format files from RNA-seq data were directly used as input for

RNAEditor tools to call RNA editing sites.

SNV identification

We used the Bowtie2 [53] to align DNA-seq reads to reference genome hg19, Picard (http://

picard.sourceforge.net/) was then used to remove identical reads (PCR duplicates) that

mapped to the same location. GATK tools were used to perform local realignment around

insertion and/or deletion polymorphisms and to recalibrate base quality scores. Variant calling

was performed using GATK UnifiedGenotyper tool.

Statistical analysis

Gene expression was calculated using Cufflinks program default parameters. Differentially

expressed genes (DEGs) were identified by Cuffdiff program, three biological replicates for

each cell line were combined as the input of Cuffdiff and a p-value was reported to show the

significance of DEGs.

RNA editing targeted genes were assigned with ‘bedops’ program. GO analysis were per-

formed by using DAVID [54].

Accession numbers

The sequencing data have been deposited with the Gene Expression Omnibus under the acces-

sion ID GSE126723.
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