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Abstract
In this paper, bidirectional-coupled neurons through an asymmetric electrical synapse are investigated. These coupled

neurons involve 2D Hindmarsh–Rose (HR) and 2D FitzHugh–Nagumo (FN) neurons. The equilibria of the coupled

neurons model are investigated, and their stabilities have revealed that, for some values of the electrical synaptic weight,

the model under consideration can display either self-excited or hidden firing patterns. In addition, the hidden coexistence

of chaotic bursting with periodic spiking, chaotic spiking with period spiking, chaotic bursting with a resting pattern, and

the coexistence of chaotic spiking with a resting pattern are also found for some sets of electrical synaptic coupling. For all

the investigated phenomena, the Hamiltonian energy of the model is computed. It enables the estimation of the amount of

energy released during the transition between the various electrical activities. Pspice simulations are carried out based on

the analog circuit of the coupled neurons to support our numerical results. Finally, an STM32F407ZE microcontroller

development board is exploited for the digital implementation of the proposed coupled neurons model.

Keywords Hindmarsh-Rose neuron � FitzHugh-Nagumo neuron � Asymmetric electrical synapse � Hamilton energy �
Coexistence of hidden firing patterns � Pspice/Microcontroller implementation

Introduction

The human brain is an organ that can exhibit extremely

complex nonlinear behavior (Natarajan et al. 2004). It is

constituted of a huge number of interconnected neurons.

Neurons can be viewed as the elementary, structural, and

functional elements of the central nervous system (Tsou

et al. 1998). Neurons play an important role in the pro-

cesses of recording, selection, storage, and data transfer in

the brain’s activities (Leuthardt et al. 2004). To ease the

understanding of the dynamics of electrical activities in the

brain, several mathematical models of neurons have been

proposed and investigated in the literature, among which

the Hodgkin–Huxley neuron (Hodgkin and Huxley 1952),

Izhikevich neuron (Izhikevich 2003a), Morris–Lecar neu-

ron (Tsumoto et al. 2006), 2-D and 3-D Hindmarsh–Rose

(HR) model (Hindmarsh and Rose 1982, 1984), FitzHugh–

Nagumo (FN) model (Izhikevich and FitzHugh 2006),

Hopfield neural network model (Njitacke et al.

2020a, 2020b; Doubla Isaac et al. 2020; Tabekoueng

& Zeric Tabekoueng Njitacke

zerictabekoueng@yahoo.fr

1 Department of Electrical and Electronic Engineering, College

of Technology (COT), University of Buea,

P.O. Box 63, Buea, Cameroon

2 Research Unit of Automation and Applied Computer

(URAIA), Electrical Engineering Department of IUT-FV,

University of Dschang, P.O. Box 134, Bandjoun, Cameroon

3 Department of Automation, Biomechanics and Mechatronics,

Lodz University of Technology, Lodz, Poland

4 Research Unit of Condensed Matter, Department of Physics,

Faculty of Sciences, Electronics and Signal Processing (UR-

MACETS), University of Dschang, P.O. Box 67, Dschang,

Cameroon

5 Center for Nonlinear Systems, Chennai Institute of

Technology, Chennai, Tamil Nadu, India

6 Department of Electrical Engineering, École de Technologie
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Njitacke et al. 2020) and Chay model (Chay 1985) just to

name few. These various neurons have been intensively

studied separately as well as coupled. Concerning the

investigation of the single neuron, (Zhang et al. 2021)

introduced a novel free-equilibrium HR model using

memristive electromagnetic induction. During their inves-

tigations, the authors found that the proposed model of the

neuron is capable of unusual and rare phenomena of hidden

homogeneous extreme multistability, defined by the coex-

istence of an infinite number of firing activities with the

same shape but at different positions. It is good to mention

that such types of nonlinear behaviors involving multista-

bility, hidden dynamics previously found in neurons were

also able to occur in circuits and systems, such as the ex-

tended Lu system(Lai et al. 2018a), a unified chaotic sys-

tem (Lai 2021), a two-memristor-based chaotic system

(Lai et al. 2020a) as well as a non-equilibrium chaotic

system (Lai et al. 2020b). In (Ngouonkadi et al. 2016), the

authors studied in an extended model of a 4D HR neuron

model the phenomenon of coexistence of firing patterns.

The investigations revealed that the model is able to exhibit

several types of complex phenomena, including symmetry

breaking, period doubling, reverse period-doubling, and

crisis scenarios. Hou et al. (Hou et al. 2021) have estimated

the electrical activity in a neuron under a depolarization

field. During their investigation, they found that there was a

peak in the firing interval of neurons with the increase of

stimulation current intensity. In the presence of an electric

field, the firing pattern of the neuron was transformed from

single bursting to intermittent multimodal bursting with the

increase in frequency and amplitude of the electric

field. Kafraj et al. (Kafraj et al. 2020) have introduced and

investigated a three-variable memristive Izhikevich model

to describe the behavior of neurons under electromagnetic

induction and noise. Their model represented the effect of

internal and external magnetic fields on neurons. The

improved model without the external magnetic field was

able to exhibit firing patterns such as regular spiking, res-

onator, chattering, fast-spiking, chaotic spiking, and chao-

tic bursts. The presence of the external magnetic field was

able to change the firing pattern of the neuron, for example,

shifting from chaotic firings to periodic ones or vice versa.

It was also observed that the external field effect stimulated

the neuron to fire, while in the absence of the external field,

it was at rest.

Besides the above-mentioned advances, investigation of

the coupled neurons has also attracted a lot of attention. For

example, Pisarchik et al. (Pisarchik et al. 2018) explored

the dynamics of two identical 3D HR coupled models

through an asymmetric electrical coupling. The result

indicated that the 6D neuronal oscillator obtained was able

to exhibit the phenomenon of multistability with up to six

firing activities. In a real brain, it is very difficult to have a

connection between two identical neurons with identical

parameters. Henceforth, Njitacke et al. (Tabekoueng Nji-

tacke et al. 2020) have considered the dynamics of two

coupled 2D HR neurons with a small discrepancy of their

parameters. From their investigations, the authors found

that their proposed simple 4D neural oscillator was able to

exhibit traditional brain firing activities including bursting,

spiking oscillations as well as the phenomenon of bista-

bility under the variation of the symmetric coupling weight

and the external stimulus. In (Wang et al. 2016) the authors

coupled the neurons through various chemical synapses,

namely: rapid excitatory and inhibitory synapses. The

spatiotemporal patterns were analyzed in the coupled

model. The results indicated that the rapid excitatory

synapse coupling type is easier to produce periodic spa-

tiotemporal patterns than the rapid inhibitory synapse

coupling type, and the process was analyzed using the

bifurcation of a unique neuron model. They also introduced

the permutation entropy, defined as a measure of network

firing complexity to explore the process of formation and

transition of spatiotemporal patterns. Karthikeyan et al.

(Rajagopal et al. 2020) have introduced a modified Hind-

marsh-Rose neuron model having a fractional-order

threshold magnetic flux. Their investigations were con-

ducted both in the presence and absence of external elec-

tromagnetic induction. Besides, the emergence of the spiral

waves in the network of the proposed model was studied.

To find the effects of different factors on the formation and

destruction of spiral waves, the external current, the cou-

pling strength, and the external stimulus amplitude were

varied. It has been observed that all of these parameters

have significant impacts on the spiral waves.

As we all know, the nervous system has a large number

of neurons with different biological structures and functions.

Most memristive neurons and neural network models con-

sider only identical neurons and a single biological function

(Hou et al. 2021; Tabekoueng Njitacke et al. 2020; Goetze

and Lai 2021; Joshi 2021; Mersing et al. 2021; Wouapi et al.

2021). Then, the previous literature is devoted to investi-

gating the electrical activities of coupled neurons with either

identical neurons or non-identical neurons governed by the

same mathematical model. However, the dynamical behav-

iors of coupled neurons with different mathematical models

were rarely reported in previous publications (Li et al.

2021). Thus, more different memristive neuron and neural

network models need to be developed based on the different

biological neuronal systems as well as different mathemat-

ical models (Lin et al. 2021).

Very recently, Li et al. (Li et al. 2021) reported the

dynamics of coupled neurons made of HR and FN models

under the magnetic field effect. Studies of the coupled
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neurons showed the phenomenon of firing pattern coexis-

tence as well as phase synchronization. Before performing

this work on coupled neurons consisting of HR and FN

models under the effect of the magnetic field, it would have

been interesting to see what happened to the original 2D

HR neuron coupled to the original 2D FN neuron by

asymmetric electrical synapses. This later questioning

justifies the interest of this work since in a normal brain it

is difficult to have a homogenous coupling between neu-

rons as presented in Refs. (Tabekoueng Njitacke et al.

2020; Bao et al. 2019a; Ren et al. 2017; Njitacke et al.

2020).

It is well known that during the metabolic process of the

neuronal system or biological system, energy is consumed

so that neurons can save normal and continuous electric

activity (Harris et al. 2012). The liberation and storage of

energy of neuronal models can be estimated. Then it is

interesting to detect the energy transmission and release

dependencies on the electric activity mode in those neu-

ronal models. In several works focused on the dynamics of

neurons, Hamilton’s statistical function is usually exploited

to the energy consumption by exploiting Helmholtz’s the-

orem. The said energy can be also exploited to explain

some biological phenomena such as synchronization

regime, spiking state, bursting state. This discussion on the

energy of the neurons enables us to see the main drawback

of the previous works addressed on coupled neurons, and it

is solved in this work.

Then, in the present contribution, we have investigated

the complex dynamics of a simple heterogeneous neural

network made of the coupling between a 2D HR neuron

model with a 2D FN neuron model through asymmetric

electrical synapses. In addition, the electrical activity and

the Hamilton energy in the coupled neurons are analyzed

by considering the simultaneous effect of the asymmetrical

electrical coupling. Based on Helmholtz’s theorem, the

Hamilton energy function H and its derivative in terms of

membrane potentials, recovery variables, and parameters

of the model are provided (Lu et al. 2019; Ma et al. 2017;

Xin-Lin et al. 2015). This work is very distinct from the

previous research works, which focus on the homogeneous

coupling between neurons.

The plan of this work is presented as follows: In Sect. 2,

the heterogeneous model of the coupled neurons is estab-

lished. In Sect. 3, the dynamics of the coupled neurons

model is studied and its Hamilton energy analysed. In

Sect. 4, Pspice implementation of the coupled neurons is

realized. In Sect. 5, the microcontroller implementation of

the coupled neurons is addressed using the STM32F407ZE

microcontroller development board. Finally, we summarize

the paper in Sect. 6.

The model and its basic dynamics studies

Model description

It is well known that biological neurons can develop sev-

eral types of firing activities to reproduce brain dynamics.

To achieve that goal several mathematical models of

functional neurons have been proposed in the literature.

Among others, we have the Hodgkin–Huxley neuron

(Hodgkin and Huxley 1952), Hindmarsh–Rose (HR) neu-

rons (Hindmarsh and Rose 1982), Morris–Lecar neuron

(Tsumoto et al. 2006), Fitzhugh-Nagumo neuron (Izhike-

vich and FitzHugh 2006), Izhikevich neuron (Izhikevich

2003b), Hopfield neural networks (Njitacke et al.

2020a, 2019; Njitacke and Kengne 2018, 2019), and so on.

Let us recall that reduced from the Hodgkin-Huxley neuron

model (Hodgkin and Huxley 1952), the 2D HR neuron

model was first proposed in 1982 (Hindmarsh and Rose

1982) and, is described as:

_x1 ¼ y1 � a1x
3
1 þ b1x

2
1 þ I1

_y1 ¼ c1 � d1x
2
1 � y1

(
ð1Þ

where x1, y1 and I1 respectively indicate the membrane

potential, the spiking variable, and steady current. Besides

another 2-D simplification of the Hodgkin-Huxley (HH)

model leads to the FitzHugh-Nagumo (FN) model descri-

bed by Izhikevich and FitzHugh (2006)

_x2 ¼ x2 � b2x
3
2 � y2 þ I2

_y2 ¼ 1

e
a2 þ x2 � c2y2ð Þ

8<
: ð2Þ

where x2, y2 and I2 respectively indicate the membrane

potential, the retrieval variable, and the magnitude of

stimulus current. In the brain as well as in the neural sys-

tem, coupling plays an essential role in the processes of

generation of particular rhythms and formation of memory.

However, in all the previous works, the authors have

considered the coupling between identical neurons.

Although in practice, the coupling of neurons can be done

between different families of neurons having different

mathematical models. Motivated by this observation, the

bidirectional coupling between the HR neuron and the FN

neuron through electrical synapses of Fig. 1 is considered

in this work.

HR
neuron neuron

FN
1m

2m

Fig. 1 Bidirectional coupling between the two different families of

2D neurons
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Based on that figure, the mathematical model of the

coupled neurons is obtained as:

_x1 ¼ y1 � a1x
3
1 þ b1x

2
1 þ I1 þ m1 x2 � x1ð Þ

_y1 ¼ c1 � d1x
2
1 � y1

_x2 ¼ x2 � b2x
3
2 � y2 þ I2 þ m2 x1 � x2ð Þ

_y2 ¼ 1=e a2 þ x2 � c2y2ð Þ

8>>>>>><
>>>>>>:

ð3Þ

Here x1 and x2 are the potentials of the membrane in HR

neuron and FN neuron respectively, y1 and y2 are retrieval

variables related to a fast current of either Naþ or Kþ, i1
and i2 represent exterior input currents and m1 and m2

indicate the strengths of electrical coupling utilized as

command parameters. Let us stress that in the considera-

tions of this model the parameters are all positive and

defined as: a1 ¼ 1, b1 ¼ 3:05, c1 ¼ 1, d1 ¼ 5,a2 ¼ 0:77,

b2 ¼ 1=3, c2 ¼ 0:8e ¼ 13, i1 ¼ 0:4, m1 ¼ 1, i2 ¼ 0 and

m2 ¼ tuneable.

Steady states and their stabilities

The steady states of our coupled neurons are obtained by

solving the equation _x1 ¼ _y1 ¼ _x2 ¼ _y2 ¼ 0 thus we obtain

y1 � a1x
3
1 þ b1x

2
1 þ I1 þ m1 x2 � x1ð Þ ¼ 0

c1 � d1x
2
1 � y1 ¼ 0

� y2 þ x2 � b2x
3
2 þ I2 þ m2 x1 � x2ð Þ ¼ 0

1=e a2 þ x2 � c2y2ð Þ ¼ 0

8>>>>>><
>>>>>>:

ð4Þ

For the considered coupled neurons, the steady states are

numerically determined as

x1e; y1e; x2e; y2eð Þ ¼ x1; c1 � d1x
2
1; x2; 1=c2

a2 þ x2ð Þ
� �

ð5Þ

where x1 and x2 can be obtained graphically from the

intersection between the following curves

f1 x1; x2ð Þ ¼ x1 þ
1

m2

� 1=c2

� �
a2 þ x2ð Þ � x2 � b2x

3
2 þ I2 � m2x2

� �
¼ 0

ð6Þ

f2 x1; x2ð Þ ¼ x2

þ 1

m1

c1 � d1x
2
1 � a1x

3
1 þ b1x

2
1 þ I1 � m1x1

� �
¼ 0

ð7Þ

Considering some selected values of the synaptic weight

m2 the steady states of the coupled neurons model are

shaped in Fig. 2. From this figure, it is evident that the

coupled neurons model possesses only one steady state

since both curves display one intersection point. It is also

observed that the stability of the steady-state depends on

the control synaptic weight m2. To have an idea of the

stability of the coupled neurons, let consider the following

Jacobian matrix:

J ¼

�3a1x
2
1 þ 2b1x1 � m1 1 m1 0

�2d1x1 �1 0 0

m2 0 �3b2x
2
2 þ 1 � m2 �1

0 0 1=e
�c2=e

2
664

3
775

ð8Þ

The eigenvalues at the steady-state x1; y1; x2; y2ð Þ are

computed from the following equation:

det kI � Jð Þ ¼ 0 ð9Þ

Using some selected values of the electrical synaptic

weight m2, the steady states and their stability are sum-

marized in Table 1. From Table 1 it is evident that the

coupled neurons can display either hidden dynamics

associated with a stable equilibrium point or self-excited

dynamics associated with unstable equilibria (Njitacke

et al. 2020a; Lai et al. 2018b; Tsafack et al. 2020).

Dissipation property

The model of the coupled neurons is dissipative if its

divergence r/ is negative i.e. r/\0. The divergence of

the coupled neurons model defined in Eq. (3) also known

as the volume contraction rate is evaluated as indicated in

Eq. (10) to evaluate the dissipation property.

r/ ¼ o _x1

ox1

þ o _y1

oy1

þ o _x2

ox2

þ o _y2

oy2

¼ � 3a1x
2
1 þ 3b2x

2
2 þ m1 þ m2 þ

c2

e

� �
þ 2b1x1 ð10Þ

where / stands for the phase volume. To be sure that

coupled model of neurons is dissipative, the result of the

divergence should verify � 3a1x
2
1 þ 3b2x

2
2 þ m1 þ m2þ

�
c2

e Þ þ 2b1x1\0 which imply that 2b1x1\ 3a1x
2
1þ

�
3b2x

2
2 þ m1 þ m2 þ c2

e Þ. This enables the volume element

/0 to be contracted and the flow to be confined into a

volume element /0e
� 3a1x

2
1
þ3b2x

2
2
þm1þm2þc2

eð Þ�2b1x1ð Þt over

time t. In other words when t ! 1, each volume involving

the trajectories of the coupled neurons model contract to

zero with the exponential rate � 3a1x
2
1 þ 3b2x

2
2þ

��
m1 þ m2 þ c2

e Þ � 2b1x1Þ. Consequently, the trajectories are

all confined in a particular set of zero volume and the

behavior is stabilized on a stable state in the state space

(Zheng et al. 2004).

Hamiltonian energy of the coupled neurons

The field of study based on energy utilization in the brain

has been considered experimentally and not theoretically

due to the complex connections in the brain (Chuankui

902 Cognitive Neurodynamics (2022) 16:899–916

123



2011). Given that there is no accurate method to establish

the energy consumption and supply, Hamilton energy is

usually exploited to identify the appurtenance of state on

energy considering a unique neuron model or a coupled

neurons model (Nabi et al. 2012). To Determine the energy

of our coupled neurons F xð Þ, let us express its dynamical

equations by Eq. (11) (Lu et al. 2019; Xin-Lin et al. 2015)

F xð Þ ¼ Fc xð Þ þ Fd xð Þ ¼ J xð Þ þ R xð Þ½ �rH ð11Þ

here Fc xð Þ and Fd xð Þ represent the conservative com-

ponent and the dissipative component, respectively. rH

represents the gradient matrix of an energy function H xð Þ.
J xð Þ Indicates a skew-symmetric matrix and R xð Þ is a

symmetric matrix. The Hamilton energy function can be

determined as:

_H ¼ rHTR xð ÞrH ¼ rHTFd xð Þ

rHTJ xð ÞrH ¼ rHTFc xð Þ ¼ 0

(
ð12Þ

Thus, for the coupled bidirectional neurons given in

Eq. (3), we have

Fc ¼

y1 þ I1 þ m1x2

c1 � d1x
2
1

� y2 þ I2 þ m2x1

1

e
a2 þ x2ð Þ

2
666664

3
777775 ð13Þ

Fd ¼

� a1x
3
1 þ b1x

2
1 � m1x1

� y1

x2 � b2x
3
2 � m2x2

� c2

e
y2

2
666664

3
777775 ð14Þ

From Eqs. (11) and (12), the Hamilton energy function

H x1; y1; x2; y2ð Þ of the coupled neurons can be expressed as

follows:

y1 þ I1 þ m1x2ð Þ oH
ox1

þ c1 � d1x
2
1

� �
1

oH

oy1

þ �y2 þ I2 þ m2x1ð Þ oH
ox2

þ 1

e
a2 þ x2ð Þ oH

oy2

¼ 0 ð15Þ

The general solution of Eq. (15) is computed as:

Fig. 2 Evolution of the functions defined In Eq. 6 and Eq. 7 showing the steady states of the coupled neurons at the intersection for some

selected values of synaptic weight m2
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H ¼ �2d1

3m1

x3
1

þ 2c1

m1

x1 þ
1

em2

a2 þ x2ð Þ2� 1

m1

y1 þ I1 þ m1x2ð Þ2

þ 1

m2

�y2 þ I2 þ m2x1ð Þ2

ð16Þ

The derivative of the Hamilton energy function with

respect to the time is given by

_H ¼ _x1

�2d1

m1

x2
1 þ

2c1

m1

þ 2 �y2 þ I2 þ m2x1ð Þ

þ _y1 � 2

m1

ðy1 þ I1 þ m1x2Þ
� �

þ

_x2 �2ðy1 þ I1 þ m1x2Þ þ
2

em2

ða2 þ x2Þ
� �

þ _y2

2

m2

ð�y2 þ I2 þ m2xsÞ
� �

ð17Þ

_H ¼ �a1x
3
1 þ b1x

2
1 � m1x1 þ y1 þ I1 þ m1x2

� �
�2d1

m1

x2
1 þ

2c1

m1

þ 2 �y2 þ I2 þ m2x1ð Þ
� �

þ �y1 þ c1 � d1x
2
1

� �
� 2

m1

y1 þ I1 þ m1x2ð Þ
� �

þ

x2 � b2x
3
2 � m2x2 þ m2x1 þ I2 � y2

� �
�2 y1 þ I1 þ m1x2ð Þ þ 2

em2

a2 þ x2ð Þ
� �

þ �c2

e
y2 þ

1

e
a2 þ x2ð Þ

� �
�2

m2

�y2 þ I2 þ m2x1ð Þ
� �

ð18Þ

After some algebraic manipulation, we obtained

_H ¼ �2d1

m1

x2
1 þ

2c1

m1

þ 2 �y2 þ I2 þ m2x1ð Þ
� �

�a1x
3
1 þ b1x

2
1 � m1x1

� �
þ � 2

m1

y1 þ I1 þ m1x2ð Þ
� �

�y1ð Þþ

�2 y1 þ I1 þ m1x2ð Þ þ 2

em2

a2 þ x2ð Þ
� �

x2 � b2x
3
2 � m2x2

� �
þ �2

m2

�y2 þ I2 þ m2x1ð Þ
� �

� c2

e
y2

� �
ð19Þ

Table 1 Steady states for some values of m2 with their corresponding eigenvalues and stabilities

Electrical synapse value Steady states Eigenvalues System stability

m2 ¼ 0:5 P01 ¼ 0.3311,0:4519;�0.8186, - 0:0607ð Þ �5.6884 + 0.0000i

�0.1190 � 1.5769i

�0.0758 + 0.0000i

Stable

m2 ¼ 0:5301 P02 ¼ 0.3417,0:4162;�0.7904, - 0:0255ð Þ �5.3093 + 0.0000i

�0.0938 � 1.5925i

�0.0770 + 0.0000i

Stable

m2 ¼ 0:75 P03 ¼ 0.4123,0:1500;�0.5861,0:2299ð Þ �2.9905 + 0.0000i

0.0661 � 1.6547i

�0.0913 + 0.0000i

Unstable

m2 ¼ 0:9 P04 ¼ 0.4525, - 0:0238;�0.4554,0:3932ð Þ 0.1328 � 1.6399i

�1.8641 + 0.0000i

�0.1146 + 0.0000i

Unstable

m2 ¼ 1:0 P05 ¼ 0.4757, - 0:1315;�0.3753,0:4934ð Þ 0.1477 � 1.6126i

�0.1466 + 0.0000i

�1.2761 + 0.0000i

Unstable

m2 ¼ 0:54 P06 ¼ 0.3452,0:4042;�0.7812, - 0:0140ð Þ �5.1889 + 0.0000i

�0.0855 � 1.5975i

�0.0774 + 0.0000i

Stable

m2 ¼ 0:523 P07 ¼ 0.3393,0:4244;�0.7971, - 0:0339ð Þ �5.3981 + 0.0000i

�0.0995 � 1.5891i

�0.0767 + 0.0000i

Stable

904 Cognitive Neurodynamics (2022) 16:899–916

123



In addition,

rHTFd ¼ c1 c2 c3 c4½ �

�a1x
3
1 þ b1x

2
1 � m1x1

�y1

x2 � b2x
3
2 � m2x2

� c2

e
y2

2
666664

3
777775
ð20Þ

c1 ¼ �2d1

m1

x2
1 þ

2c1

m1

þ 2 �y2 þ I2 þ m2x1ð Þ;

c2 ¼ � 2

m1

y1 þ I1 þ m1x2ð Þ

c3 ¼ �2 y1 þ I1 þ m1x2ð Þ þ 2

em2

a2 þ x2ð Þ;

c4¼
�2

m2

�y2 þ I2 þ m2x1ð Þ
�

ð21Þ

Then

rHTFd ¼
�2d1

m1

x2
1 þ

2c1

m1

þ 2 �y2 þ I2 þ m2x1ð Þ
� �

�a1x
3
1 þ b1x

2
1 � m1x1

� �
þ � 2

m1

y1 þ I1 þ m1x2ð Þ
� �

�y1ð Þþ

�2 y1 þ I1 þ m1x2ð Þ þ 2

em2

a2 þ x2ð Þ
� �

x2 � b2x
3
2 � m2x2

� �
þ �2

m2

�y2 þ I2 þ m2x1ð Þ
� �

� c2

e
y2

� �
ð22Þ

From (19) and (22), it is easy to conclude that _H ¼
rHTFd xð Þ which validates the choice of the energy func-

tion. Regarding Eq. (16), it is evident that the Hamilton

energy of the coupled neurons depends on its state vari-

ables (membrane potentials and recovery variables) and its

parameters. More interestingly, it is obvious that the energy

function defined in Eq. (16) depends on the external cur-

rents I1 and I2 as it was mentioned in some works

addressed on the neurons model (Lu et al. 2019; Xin-Lin

et al. 2015). Consequently, energy will be sufficient to

maintain continuous electrical activities in the considered

coupled neurons.

Result of numerical simulations

Dynamic behavior of the bidirectional coupled
neurons

The well-known fourth-order Runge–Kutta integration

algorithm is exploited in this work for various numerical

investigations with a fixed step of 5 � 10�3. Two param-

eters Lyapunov exponent graphs when increasing respec-

tively decreasing two electrical synapses in both directions

enable to quickly explore the various firing activities that

can occur into the proposed bidirectional coupled model of

neurons.

As depicted in Fig. 3a, b the coupled neurons considered

in this work can display several types of firing patterns

among which resting patterns are characterized by kmax\0,

periodic patterns when kmax ¼ 0 and chaotic patterns;

characterized by kmax [ 0. In addition, a window of hys-

teretic neuronal activities can be recorded in the area called

R1ð Þ which materializes the region where the right and left

diagrams are different. To have a deep and detailed

understanding of what happens in our functional coupled

neurons, the local maxima of the first neuron are deter-

mined. The corresponding bifurcations are computed ver-

sus the electrical synapse, which connects the FN neuron

with the HR neuron, and the result is presented in Fig. 4a.

Figure 4b represents the maximal Lyapunov exponent

related to the neuronal activity shown by the bifurcation

diagrams. Finally, in Fig. 4c, we have the variation of the

volume contraction rate of the model versus the bifurcation

parameter m2. It is trivial that for any value of m2 we have

/\0 which, justifies the dissipative nature of the proposed

coupled neurons model. From Fig. 4a, b two sets of data

are clearly identified; the data in blue is obtained when

increasing the control parameter and the red data is

obtained when decreasing the control parameter. From the

blue diagram, the model is able to display three types of

neuronal activity including resting patterns characterized

by kmax\0, periodic patterns when kmax ¼ 0 and chaotic

patterns characterized by kmax [ 0. In contrast, the dia-

grams in red enable us to identify only two types of firing

patterns including periodic patterns for kmax ¼ 0 and

chaotic patterns for kmax [ 0. Besides, these various firing

activities, a huge window of hysteretic dynamics in the

coupled neurons model characterized by the phenomenon

of the coexistence of several types of bifurcations is found.

Hidden coexistence of multiple firing patterns

Multistable dynamics have been investigated in some

functional neuron models (Ngouonkadi et al. 2016; Pis-

archik et al. 2018; Bao et al. 2019a, b). This phenomenon

corresponds to the coexistence of several firing patterns in

the state space of a given model of single or coupled

neurons. Recall that in practice the initial condition of the

neuron can be affected by the environment such as the

electric field, the magnetic field (Zhang et al. 2020), the

temperature (Xu et al. 2020) as well as the light based on

the photosensitivity of the neuron(Liu et al. 2020). The

coexisting patterns exhibited by a neuron can be hidden

(Bao et al. 2019b) when the neuronal activity comes from

either a model with a stable rest point or a model without

rest points. Self-excited (Bao et al. 2019a) when the
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Fig. 3 Two parameters Lyapunov exponent of the proposed model

when the coupling parameters m1 and m2 are simultaneously varied in

both direction. Initial conditions are �1; 2; 1; 0ð Þ. The left panel a is

computed by increasing the control parameters and the right panel b is

computed by decreasing control parameters

Fig. 4 Bifurcations of the coupled neurons with respect to the

variation of the synaptic coupling m2 in a with the corresponding

diagram of maximum Lyapunov exponent in b. The evolution of the

volume contraction rate of the coupled neurons versus m2 is depicted

in c. Initial conditions are �1; 2; 1; 0ð Þ with m1 ¼ 1. The diagrams in

red are obtained decreasing the synaptic coupling m2 while those in

blue are obtained when increasing synaptic coupling m2
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neuronal activity comes from a model with unstable rest

points. The phenomenon of coexisting bifurcations exhib-

ited by the coupled neurons model is studied in this work

through an enlargement of the window of hysteretic

behavior identified on the graphs of Fig. 4. This enlarge-

ment is depicted in the graphs of Fig. 5.

The simultaneous study of the bifurcation diagrams of

Fig. 5a and the corresponding graphs of the maximum

Lyapunov exponents of Fig. 5b allows us to identify many

types of activities that coexist. Among others, the coexis-

tence of resting patterns (kmax\0) with periodic patterns

(kmax ¼ 0), the coexistence of resting patterns (kmax\0)

with chaotic patterns (kmax [ 0) and the coexistence of

periodic patterns (kmax ¼ 0) with chaotic patterns

(kmax [ 0).

For example, when m2 ¼ 0:54, the coupled neurons

display the coexistence of periodic spiking and chaotic

bursting, as shown in Fig. 6 with the 2D projection of the

HR neuron variables. While the coexistence of periodic and

chaotic spiking behavior is illustrated in Fig. 7 using the

2D projection of the FN neuron variables as an argument.

These coexisting patterns involving periodic and chaotic

patterns are supported using both phase portraits in (a) and

the time evolution of the membrane potential of each

neuron in (b), both for Fig. 6 and Fig. 7. For the set of

neurons parameters enabling the neuronal activities of

Fig. 6 and Fig. 7, the fixed point of the model is given by

P06 ¼ 0:3452,0:4042;�0:7812, � 0:0140ð Þ, and the

eigenvalues associated with this rest point are given by

k1¼ �5.1889 + 0.0000i; k2;3¼ �0.0855 � 1.5975i;

k4¼ �0.0774 + 0.0000i: As the coupled neurons model

presents eigenvalues with two complex conjugate roots

showing negative real parts, and two negative real roots,

we can conclude that the model is stable for the considered

set of parameters consequently; the coexistence of firing

patterns found is hidden. When m2 ¼ 0:523, the functional

model of the coupled neurons under the considerations

displays the coexistence of the resting pattern with a

chaotic bursting as presented in Fig. 8 using the 2D pro-

jection of the HR neuron variable. Furthermore, the coex-

istence of the resting pattern with a chaotic spiking of

Fig. 9 is also obtained for the same set of parameters but

using the 2D projection of the FN neuron. These coexisting

patterns are further supported using phase portraits as well

as the time evolution of the membrane potential of each

considered neuron. On the phase space, the resting pattern

is characterized by a dot; while on time series is charac-

terized by a straight line.

For these coexisting patterns, the fixed point of the model

is given by P07 ¼ 0.3393,0:4244;�0.7971, - 0:0339ð Þ and

the eigenvalues associated given by k1¼ �5.3981 + 0.0000i;

k2;3¼ �0.0995 � 1.5891i;k4¼ �0.0767 + 0.0000i. For this

set of parameters, it is clear that the coupled neurons model

presents eigenvalues with two complex conjugate roots

showing negative real parts, and two negative real roots, and

then it is evident that it is stable consequently; display the

phenomenon of the coexistence of hidden firing patterns.

Attraction basins associated with other initials

The basin of attraction corresponds to the set of ini-

tial values leading to each of the various coexisting firing

patterns discovered in this work (Kengne et al. 2016a, b;

Kengne et al. 2015). When m2 ¼ 0:54 coexisting behaviors

involving periodic and chaotic patterns are captured using

both phase portraits and time evolutions as arguments. The

basin of attraction of each neuron model (either HR or FN)

has been determined as presented in Fig. 10a, b. Figure 10a

represents the set of initial conditions; in the x1 0ð Þ; y1 0ð Þð Þ
plane that enables to obtain; the coexistence of the hidden

patterns from the coupled neurons using the HR neuron

when the initial conditions of the FN neuron model are all

Fig. 5 Enlargement of the bifurcation diagrams of Fig. 4a and the equivalent graph of the maximum Lyapunov exponent of Fig. 4b. Initial

conditions are �1; 2; 1; 0ð Þ
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Fig. 6 Coexistence of two different types of patterns from the HR

neuron including, a periodic spiking pattern (blue) and a chaotic

bursting (red) for m2 ¼ 0:54 using two different initials conditions as

depicted on the graph of phase portraits of Fig. 6a and their

corresponding time series of Fig. 6b

Fig. 7 Coexistence of two different types of patterns from the FN neuron including, a periodic spiking (blue) and a chaotic spiking (red) for

m2 ¼ 0:54 using two different initials conditions as depicted on the graph of phase portraits of a and their corresponding time series of b

Fig. 8 Coexistence of two different types of patterns from the HR neuron including, a resting-state (blue) and a chaotic bursting (red) for

m2 ¼ 0:523 using two different initials conditions as depicted on the graph of phase portraits of a and their corresponding time series of b

908 Cognitive Neurodynamics (2022) 16:899–916

123



Fig. 9 Coexistence of two different types of patterns from the FN neuron including, a resting-state (blue) and a chaotic spiking (red) for

m2 ¼ 0:523 using two different initials conditions as depicted on the graph of phase portraits of a and their respective time series of b

Fig. 10 Basin of attractions, given the set of initial conditions

associated with each of the firing patterns depicted in Fig. 6–9 for

m2 ¼ 0:54 for a and b and m2 ¼ 0:523 for c and d. The red color is

associated with the chaotic pattern; the blue color is associated with

periodic or resting patterns, while the yellow color corresponds to the

unbounded motion of the coupled neurons
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set to zero. While Fig. 10b displays the set of the initial

conditions, in the x2 0ð Þ; y2 0ð Þð Þ plane that enables the

capture of the coexistence of the hidden firing patterns of

the coupled neurons from the FN neuron when the initial

conditions of the HR neuron are all fixed at zero. When

m2 ¼ 0:523 the functional model of the coupled neurons

under consideration displays the coexistence of a resting

pattern with a chaotic pattern. The set of the initial con-

ditions; that enables to have each coexisting hidden firing

activity are shown in Fig. 10c for the HR neuron and

Fig. 10d for the FN neuron. From these figures, the basin of

periodic or resting activities and chaotic activities are

respectively marked in blue and red while the yellow color

stands for the unbounded activity. These attraction basins

clearly demonstrate that the distribution of the multista-

bility in each neuron of the coupled model is associated

with the initial conditions of the other neuron. In addition,

the absence of the riddled structure on each basin of

attraction shows that each attraction basin has a specific

domain associated with each coexisting pattern thus, the

occurrence of extreme events is excluded in the introduced

model of coupled neurons (Chaudhuri and Prasad 2014).

Circuit implementation of the coupled
neurons

In this section, we want to confirm the hidden firing pat-

terns exhibited by the coupled neurons considered in this

work. To achieve this goal, an analog circuit based on

operational amplifiers TL082, analog multipliers

AD633JN, resistors, and capacitors is built as presented in

Fig. 11 Analog circuit implementation of the bidirectional coupled neurons
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Fig. 12 Simulation issues of the analog circuit under PSPICE

environment (left-hand side) showing coexisting time evolutions of

the membrane potential of the coupled neurons model with their

MATLAB equivalents (right-hand side). Those in a are associated

with the HR neuron while those in b are associated with the FN

neuron. Initial values of voltages are 0V ; 20V ; 0V ; 0Vð Þ for resting

behaviors and 0V ;�20V ; 0V ; 0Vð Þ for the chaotic bursting and

spiking behaviors obtained for R24 ¼ 19:1kX for m2 ¼ 0:523ð Þ
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Fig. 11. The power supply of the operational amplifiers is

�15V symmetric. The circuit build for the coupled neurons

is composed of three main blocks: one block is an emulator

of the HR neuron (in the red enclosure), another block

serves as an emulator of the FN neuron (in the green

enclosure) and the third block plays the role of coupling

between the above-mentioned blocks (in the blue enclo-

sure). Using the well-known Kirchhoff’s electrical circuit

law, the circuit equations of the coupled neurons are given

as:

_X1 ¼ Y1 �
R

R13

X3
1 þ

R

R12

X2
1 þ

VI1

R11

þ R

R14

X2 � X1ð Þ

_Y1 ¼ R

R16

VC1 �
R

R15

X2
1 � Y1

_X2 ¼;
R

R21

X2 �
R

R22

X3
2 � Y2 þ

VI2

R23

þ R

R24

X1 � X2ð Þ

_Y2 ¼;
R

R27

VC2 þ
R

R26

X2 �
R

R25

Y2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð23Þ

In the set of the nonlinear differential equation obtained in

Eq. (23) Xi and Yi represent the state evolution of the

membrane potential and the recovery variable respectively.

VCi indicate the outer parameters and VIi the sources

exploited for the generation of external stimulus.

Considering RC ¼ 10nF � 10KX ¼ 100us, VCi ¼ VIi

¼ V0 ¼ 1V ,xi ¼ Xi

V0
, yi ¼ Yi

V0
.

The comparison between Eq. (23) and Eq. (3) yields to:
R
a1
¼ R13 ¼ 10KX, R

b1
¼ R12 ¼ 3.333KX, V0

I1
R ¼ R11 ¼

25KX, R
m1

¼ R14 ¼ 10KX, Vc1

c1
R ¼ R16 ¼ 10KX, R

d1
¼

R15 ¼ 2KX, R ¼ R21 ¼ 10KX, R
b2
¼ R22 ¼ 30KX, V0

I2
R ¼

R21 ¼ 1, R
m2

¼ R24 ¼ tuneable , eVc2

a2
R ¼ R27 ¼ 168:8KX,

Table 2 Some important resources of the STM32F407ZE microcon-

troller for the implementation

Core ARM CortexTM-M4 32-bit RISC Core

Floating point unit (FPU)

Frequency up to 168 MHz

DSP instructions

Adaptive real-time accelerator (ART)

Peripheral Flash memory 512 Kb

SRAM memory 192 ? 4 Kb

2 9 12-bit D/A converters

Fig. 13 Block diagram of the digital computer with microcontroller

(Black Board STM32F407ZE)

Fig. 14 Flowchart of the 4th order Runge–Kutta integration method

implemented with the STM32F407ZE
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eR
1
¼ R26 = 130KX, eR

c2
¼ R25¼ 162.5KX, R ¼ 10KX,

Ci ¼ 10nF.

When performing PSPICE simulations, the coexisting

behaviors found in the previous section have also been

reported. Figure 12 shows the coexisting time evolutions of

the membrane potentials of the HR neuron in (a) and the

one of the FN neuron in (b). From these figures, several

kinds of coexisting behaviors are exhibited by coupled

neurons. For example, the HR neuron displays the coex-

istence of the resting pattern with the chaotic bursting

behavior while the FN neuron displays the coexistence of

the resting pattern with the chaotic spiking behavior. All

these coexisting patterns are obtained for the same group of

circuit values but using different initial values of the

capacitors. Good accordance is observed between numer-

ical analysis (on the right-hand side of Fig. 12) with the

PSPICE results (on the left-hand side of Fig. 12).

Microcontroller based implementation

In this section, the theoretical and numerical dynamics will

be reproduced practically using a microcontroller devel-

opment board (Nestor et al. 2020). A microcontroller is a

digital environment system comprising encapsulated in a

single case: a microprocessor, memories (Flash, EEPROM,

RAM, etc.), and I / O peripherals. This digital computer

operates sequentially and can reach operating frequencies

of several hundred megahertz. Although it has some

drawbacks, the digital computer has several advantages

over the analog computer: it is robust, reprogrammable,

compact, flexible in setting the parameters and the initial

conditions of the oscillator to be implemented with

precision, just to name a few. The STM32F407ZE devel-

opment board was selected as our digital computer due to

its important resources, as it is mentioned in Table 2.

The synoptic diagram of our microcontroller computer

is given in Fig. 13. This configuration has advantages in

terms of cost, size, and gain in energy consumption.

The implementation of the system consists of coding the

flowchart of Fig. 14 in an evolved language (here

C/C ? ?) using an integrated development environment

(Arduino 1.8.13 in our case). The 4-byte real numbers

(float) were used as the data format during experiments.

The experimental set-up is presented in Fig. 15 using

parameters and initial seed of Fig. 6 and Fig. 7.

Following the parameters and initial conditions of

Fig. 6, experimental coexisting attractors in several 2D

projections, planes are obtained and results are illustrated

in figure Fig. 16. High similarity can be observed between

the numerical and experimental results.

Conclusion

In this contribution, a model of bidirectionally coupled

neurons consisting of HR and FN neurons was considered

and analyzed in depth. The equilibrium point of the cou-

pled neurons was investigated. Their stability has revealed

that for some values of the electrical connection, the model

under consideration can display either self-excited firing

patterns or hidden patterns. In addition, hidden phenomena

such as the coexistence of chaotic bursting with periodic

spiking, the coexistence of chaotic spiking with period

spiking, the coexistence of chaotic bursting with a resting

pattern, and the coexistence of chaotic spiking with a

resting pattern are also found for some sets of parameters.

For all the phenomena reported, the Hamiltonian energy of

the model has been determined. It enables us to estimate

the amount of energy released during the transition

between various electrical activities. A series of PSPICE

simulations have been carried out based on the analog

circuit of the coupled neurons model to support our

numerical results. Finally, a microcontroller implementa-

tion based on the STM32F407ZE development board has

been used to further support our numerical results of the

multistability. Since in real neurons, it is difficult to have

the same homogenous dimension in a coupling between

several neurons, for future work we are going to explore

the complex dynamics of two different families of neurons

having different dimensions.

Fig. 15 Experimental setup of a digital computer based on a

microcontroller and visualization of the signals using a digital

oscilloscope
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