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Type 2 diabetes (T2D) is a systematic chronic metabolic condition with abnormal sugar
metabolism dysfunction, and its complications are the most harmful to human beings
and may be life-threatening after long-term durations. Considering the high incidence
and severity at late stage, researchers have been focusing on the identification of
specific biomarkers and potential drug targets for T2D at the genomic, epigenomic,
and transcriptomic levels. Microbes participate in the pathogenesis of multiple metabolic
diseases including diabetes. However, the related studies are still non-systematic and
lack the functional exploration on identified microbes. To fill this gap between gut
microbiome and diabetes study, we first introduced eggNOG database and KEGG
ORTHOLOGY (KO) database for orthologous (protein/gene) annotation of microbiota.
Two datasets with these annotations were employed, which were analyzed by multiple
machine-learning models for identifying significant microbiota biomarkers of T2D. The
powerful feature selection method, Max-Relevance and Min-Redundancy (mRMR), was
first applied to the datasets, resulting in a feature list for each dataset. Then, the list was
fed into the incremental feature selection (IFS), incorporating support vector machine
(SVM) as the classification algorithm, to extract essential annotations and build efficient
classifiers. This study not only revealed potential pathological factors for diabetes at
the microbiome level but also provided us new candidates for drug development
against diabetes.

Keywords: type 2 diabetes, gut microbiome, machine learning, feature selection, support vector machine,
microbiota biomarkers

Frontiers in Microbiology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 711244

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.711244
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.711244
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.711244&domain=pdf&date_stamp=2021-07-09
https://www.frontiersin.org/articles/10.3389/fmicb.2021.711244/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-711244 July 5, 2021 Time: 19:22 # 2

Zhang et al. Identification of Microbiota Biomarkers

INTRODUCTION

Type 2 diabetes (T2D) is a systematic chronic metabolic
condition with abnormal sugar metabolism dysfunction
(Chatterjee et al., 2017; Zheng et al., 2018). Glucose, as an
essential sugar subtype for human beings, is abnormally
metabolized during T2D (Zheng et al., 2018), failing to properly
transform or be stored in cells but accumulating in the circulatory
system. Insulin resistance has been summarized as the general
pathological cause for T2D in early studies (Goldstein, 2002;
Kahn et al., 2006). However, the major concerns of T2D are not
restricted to a disabled sugar storage capacity or an extremely-
up-regulated blood sugar level. The complications of T2D are
the most harmful to human beings and may be life-threatening
after long-term durations (Schlienger, 2013). With an extremely
high blood sugar, multiple diseases, including stroke and high
blood pressure as blood vessel diseases (Sanahuja et al., 2016),
abnormal pains and tingling as nerve dysfunctions (Yan et al.,
2020), kidney damage (Bakris et al., 2020), and vision loss (Li
et al., 2019), have been confirmed to be tightly correlated with
long-term diabetes.

Type 2 diabetes is a common disease. According to the recent
updated data, more than 27 million Americans and more than
400 million people all over the world suffered from diabetes
(Bullard et al., 2018; Deputy et al., 2018). As a long-term
disease, patients with pre-diabetes or early-stage diabetes may
lack symptoms. One-third of all adult Americans are assumed to
be in pre-diabetes status (Arthur et al., 2017). Considering the
high incidence and severity at late stage, researchers have been
focusing on the identification of specific biomarkers and potential
drug targets for T2D. Biomarkers of diabetes at the genomic,
epigenomic, and transcriptomic levels have been systematically
studied (Zou et al., 2018), and multiple biomarkers, such as
HbA1c (Lai et al., 2019), fructosamine (Vergès et al., 2021), and
adiponectin (Liu et al., 2016), at multi-omics levels have already
been identified and applied in clinical usage.

With the development of gut microbiome, the pathogenesis
studies for complex diseases especially for metabolism associated
diseases have been extended from traditional host genetics level
to microenvironment-associated microbiome level. Microbes
participate in the pathogenesis of multiple metabolic diseases
including diabetes. In 2019, a summary for the microbiome
role in T2D confirmed that Bifidobacterium, Bacteroides,
Faecalibacterium, Akkermansia, and Roseburia can prevent the
progression of diabetes, whereas Ruminococcus, Fusobacterium,
and Blautia promote its development (Gurung et al., 2020).
Therefore, microbial factors in gut, whose dysfunctions are
underlying conditions of diabetes, may be an additional
regulatory factor for the maintenance of sugar metabolism.
However, current studies face two limitations in investigating
the microbial influences on diabetes pathogenesis. Firstly,
such studies are non-systematic, focusing on one or several
significant microbes/proteins/genes. Next, they overlook the
functional exploration of identified microbes, focusing only on
the identification of potential diabetes-associated microbes.

To fill this gap between gut microbiome and diabetes
studies, we first introduced the eggNOG (Powell et al., 2014)

and KEGG ORTHOLOGY (KO) databases (Mao et al., 2005)
for orthologous (protein/gene) annotations. Considering the
systematic connection between KOs and related functions,
these databases may help in the exploration of the potential
general biological functions of identified microbes. Then, based
on previously reported gut microbiome sequencing data, we
applied multiple machine-learning models to identify significant
microbiota biomarkers for T2D. The feature selection method,
Max-Relevance and Min-Redundancy (mRMR) (Peng et al.,
2005), was first applied to the data for producing a feature
list. Then, the incremental feature selection (IFS) (Liu and
Setiono, 1998), incorporating support vector machine (SVM)
(Cortes and Vapnik, 1995) as the classification algorithm, adopted
such list to extract essential annotations and construct efficient
classifiers. The essential annotations can be novel biomarkers
of T2D and the classifiers can be useful tools for identification
of T2D samples. The identified biomarkers not only revealed
potential pathological factors for diabetes at the microbiome
level but also provided us new candidates for drug development
against diabetes.

MATERIALS AND METHODS

Data
We downloaded the eggNOG and KO annotations of gut
microbiome in 75 T2D and 277 control from the work of
Forslund et al. (2015) at http://vm-lux.embl.de/∼kultima/
share/gene_catalogs/620mhT2D/620.mhT2D.RefGeneCatalog.eg
gnog3.annotations and http://vm-lux.embl.de/∼kultima/
share/gene_catalogs/620mhT2D/620.mhT2D.RefGeneCatalog.ke
gg62.annotations. Within each sample, 21,902 eggNOG and
6971 KO terms were found. We aimed to investigate the
functional differences of gut microbiome between T2D and
normal conditions.

Max-Relevance and Min-Redundancy
(mRMR) Feature Selection
Max-Relevance and Min-Redundancy (Peng et al., 2005) is
a feature selection method that can select relevant features
and filter redundant features simultaneously, which has wide
applications in analysis of various biological and medical systems
(Zhao et al., 2018; Chen et al., 2019; Zhang S. et al., 2019; He et al.,
2020; Zhang et al., 2020, 2021a). mRMR uses mutual information
(MI) to estimate the feature relevance and redundancy. For
variables x and y, their MI values can be computed by

I(x, y) =
x

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (1)

where p(x, y) stands for the joint probabilistic density of x and
y, whereas p(x) and p(y) stand for the marginal probabilistic
densities of x and y, respectively. The mRMR method can
output two feature lists, named MaxRel and mRMR feature lists,
respectively. To obtain the former list, mRMR method calculates
the MI value between each feature and class labels. Such list
ranks features by the decreasing order of their MI values to
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class labels. Evidently, a feature with a high rank means that
it is highly related to the class labels. However, redundancies
between some top features in this list may exist. Thus, these
features cannot always comprise the compact and optimum
feature subspace for a certain classification algorithm. In view of
this, mRMR method generates the later list, mRMR feature list,
which further considers the redundancies between features. Such
list is an empty one initially. Features are added to this list one by
one. In each round, a feature with maximum relevance to class
labels and minimum redundancies to already-selected features
is selected and appended to the current list. Clearly, some top-
ranked features in this list have larger feature relevance and less
feature redundancy than other features. They can constitute the
optimum feature subspace for a certain classification algorithm.
This study only adopted the mRMR feature list because we want
to build efficient classifiers for identification of T2D samples.

The mRMR program used in this study was sourced from
http://penglab.janelia.org/proj/mRMR/. Default parameters were
adopted to execute this program.

Incremental Feature Selection (IFS)
Incremental feature selection (Liu and Setiono, 1998) aims to
determine the optimal number of features to build a classifier
for discriminating diseases, such as diabetes, by integrating
a supervised classification algorithm (e.g., SVM; Cortes and
Vapnik, 1995). According to the mRMR feature list generated by
the mRMR method, IFS produces several feature subsets with
a given interval s (i.e., 1 or 10). For example, the first feature
subset would have the first s features in the mRMR feature list,
then the second feature subset can have the first 2 × s features,
and so forth. On the basis of these candidate feature subsets, a
classifier can be learnt on the samples within each feature subset
from the training dataset. Each classifier is evaluated by a cross-
validation method (Kohavi, 1995). A classifier that can yield the
best performance measurement, such as Matthews correlation
coefficient (MCC) (Matthews, 1975), is found. Such classifier was
called the optimal classifier in this study and the corresponding
feature subset was termed as the optimal feature subset.

SVM
Support vector machine (Cortes and Vapnik, 1995) is a
supervised machine learning model for classification, which
is always an important candidate for constructing efficient
classifiers (Chen et al., 2017; Tahir and Idris, 2020; Zhou et al.,
2020; Liu et al., 2021; Pan et al., 2021; Zhang et al., 2021b; Zhu
et al., 2021). This machine can transform the original sample
data with a non-linear pattern in low-dimensional space to new
sample data with a linear pattern in high-dimensional space.
Then, the SVM divides the data points by maximizing the point
interval among different supervised classes in such a new space.
Finally, SVM can predict the class label of a new sample by
determining which interval this new data point belongs to.

To date, several types of SVMs have been proposed to tackle
different kinds of problems. This study used the SVM optimized
by the sequential minimal optimization (SMO) algorithm (Platt,
1998a,b). The tool “SMO” in Weka (Witten and Frank, 2005)
implements this type of SVM and it was directly adopted in this

study. It was performed with its default parameters. In detail,
the kernel was a polynomial function and the regularization
parameter C was set to one.

Measurements
In this study, a binary classification problem (normal versus
diabetes) was analyzed for each dataset with eggNOG or KO
annotations. The normal samples were termed as positive
samples and T2D samples were considered as negative samples.
Generally, four entries: true-positive (TP), true-negative (TN),
false-positive (FP), and false-negative (FN) are always counted
for the predicted results of a binary classification. Accordingly,
several measurements can be calculated. They are sensitivity
(SN), specificity (SP), accuracy (ACC), precision, F1-measure,
and MCC (Matthews, 1975; Jia et al., 2020; Liang et al., 2020;
Zhang et al., 2021c), which can be computed by

SN =
TP

TP + FN
(2)

SP =
TN

TN + FP
(3)

ACC =
TP + TN

TP + FN + TN + FP
(4)

precision =
TP

TP + FP
(5)

F1−measure =
2× SN × precision

SN + precision
(6)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(7)

The SN, SP, and precision can only evaluate the quality of
predicted results in one aspect, whereas ACC, F1-measure,
and MCC can fully evaluate the performance of the classifiers.
Considering the fact that normal samples were much than T2D
samples, MCC was selected as the key measurement in this study
because it is a balanced measurement when the class sizes are
of great differences. MCC has values ranging from −1 to + 1,
and when MCC is equivalent to + 1, the classifier achieves the
best performance.

RESULTS

Two datasets were investigated in this work: T2D microbiome
data with function features from eggNOG database and T2D
microbiome data with alternative function features from KO.
For each dataset, a similar analysis was carried out. The whole
procedures are illustrated in Figure 1. This section gives the
detailed results.
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FIGURE 1 | Entire procedures to investigate the T2D datasets with eggNOG or KO annotations. The dataset is first analyzed by the Max-Relevance and
Min-Redundancy method, resulting in a feature list. This list is fed into the incremental feature selection method, incorporating support vector machine as the
classification algorithm, to extract essential annotations and construct efficient classifiers.

Results of mRMR Method
The mRMR method was first applied on each of two datasets
to analyze the importance of each feature. A feature list, named
mRMR feature list, was generated for each dataset, which is
provided in Supplementary Tables 1, 2, respectively. These two
lists would be used in the following IFS method.

Results of the IFS Method
Based on an mRMR feature list, IFS was employed to give further
analysis. However, there were lots of eggNOG or KO features
in the corresponding dataset. If all possible feature subsets were
considered, it would be time-consuming due to our limited
computer power. In view of this, we designed a two-stage IFS
method. In the first stage, we constructed feature subsets with an
interval of 10 for each dataset. On each feature subset, an SVM
classifier was built and evaluated by 10-fold cross-validation. The
predicted results were counted as measurements listed in Section
“Measurements.”

For the dataset with eggNOG annotations, obtained
measurements are available in Supplementary Table 3. For
an easy observation, an IFS curve was plotted, as shown in
Figure 2A, where the number of features was set as X-axis
and MCC was set as Y-axis. It can be observed that when top
2090 features were adopted, the SVM classifier produced the
highest MCC of 0.844. As for the dataset with KO annotations,
the performance of all constructed SVM classifiers is listed in
Supplementary Table 4. Likewise, an IFS curve was plotted, as
illustrated in Figure 3A. When top 200 features were used, the
SVM yielded the highest MCC of 0.687.

To further determine the optimum feature subspace of SVM
on two datasets, the second stage of IFS method was performed.
For the dataset with eggNOG annotations, top 2090 features
yielded the best performance of SVM in the first stage. In
view of this, we did the same procedure for all possible feature
subsets containing less than 2090 features. The performance
of SVM classifiers on all these feature subsets is available in
Supplementary Table 5. The IFS curve is displayed in Figure 2B,
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FIGURE 2 | IFS curves with support vector machine (SVM) classifiers on different numbers of eggNOG features. (A) IFS curve with an interval of 10, the highest
MCC is 0.844 when top 2090 features are adopted. (B) IFS curve with an interval of one, the highest MCC is still 0.844, however, it can be obtained by only using
top 2082 features.

FIGURE 3 | IFS curves with support vector machine (SVM) classifiers on different numbers of KO features. (A) IFS curve with an interval of 10, the highest MCC is
0.687 when top 200 features are adopted. (B) IFS curve with an interval of one, the highest MCC is still 0.687, which is obtained by the same top 200 features.

TABLE 1 | MCC performance of classifiers with different features.

Feature types Number of features MCC

eggNOG 2082 0.844

KO 200 0.687

from which we can see that the highest MCC was still 0.844.
However, it can be obtained by using top 2082 features. Thus,
these features comprised the optimal feature subset and the
SVM classifier with these features was called the optimal SVM
classifier. The MCC of such classifier is listed in Table 1
and other measurements are provided in Figure 4. Except
SP, SN, ACC, precision, and F1-measure were all quite high
(>0.900). These results indicated the good performance of such
optimal SVM classifier.

As for the dataset with KO annotations, top 200 features
produced the highest MCC in the first stage of IFS method. In
the second stage, all possible feature subsets with less than 200
features were considered. The performance of SVM classifiers on
all these feature subsets is provided in Supplementary Table 6.
Similarly, an IFS curve was plotted, as shown in Figure 3B.
Interestingly, the top 200 features still yielded the highest MCC.
Thus, we can determine that these top 200 features comprised
the optimal feature subset. The SVM with these features was
the optimal SVM classifier. The MCC yielded by such classifier
is listed in Table 1 and other measurements are illustrated in

Figure 4. Similar to the optimal SVM classifier with eggNOG
annotations, the SP was still not very high, whereas other
measurements were satisfied. It is indicated that such classifier
also provided good performance.

DISCUSSION

As analyzed above, we constructed two optimal SVM classifiers to
distinguish T2D patients from normal controls. The features used
in these two classifiers can be potential biomarkers to distinguish
T2D patients from normal controls at the gut microbiome level.
Features describing the orthologous (proteins/genes annotation
from eggNOG and KO database) with functional interpretation
have been screened out and optimized to identify significant
microbes together with their summarized functions associated
with the pathogenesis of T2D. According to recent publications,
some top functional features have been validated, and some
representative features, listed in Table 2, from each database have
detailed interpretations and are summarized below.

Optimal Orthologous Gene/Protein
Features Annotated by eggNOG
Database
The first functional term identified is NOG275679, describing
the S-layer proteins derived from multiple organisms, including
Bacillus thuringiensis and Caldicellulosiruptor saccharolyticus.
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FIGURE 4 | Detailed performance of the optimal support vector machine (SVM) with eggNOG or KO annotations. Except SP, other four measurements are all quite
high.

TABLE 2 | Top annotations from eggNOG or KO databases.

Top annotation (genes/proteins) Annotation
database

Protein/gene annotation Organisms

NOG275679 eggNOG S-layer protein Bacillus thuringiensis
Caldicellulosiruptor saccharolyticus
Acaryochloris marina, etc.

COG4678 Muramidase (phage lambda lysozyme) Escherichia coli
Acaryochloris marina
Burkholderia vietnamiensis

NOG70379 ATP-binding protein Leptospira interrogans
Helicobacter hepaticus

NOG10530 Hypothetical protein Escherichia coli
Burkholderia glumae

COG0810 TonB-like protein Acidovorax citrulli
Acinetobacter baumannii
Koribacter versatilis, etc.

K00244 KO Fumarate reductase flavoprotein
subunit

Escherichia coli
Salmonella enterica
Shigella flexneri, etc.

K14744 rzpD, prophage endopeptidase Escherichia coli
Enterobacter cloacae
Cronobacter sakazakii, etc.

K03367 dltA, D-alanine—poly (phospho-ribitol)
ligase subunit 1

Enterobacter cloacae
Pectobacterium atrosepticum
Staphylococcus aureus, etc.

K03201 virB6, lvhB6,type IV secretion system
protein VirB6

Escherichia coli
Salmonella enterica
Klebsiella pneumoniae, etc.

K01006 ppdK, pyruvate, orthophosphate
dikinase

Arabidopsis thaliana
Capsella rubella
Eutrema salsugineum, etc.

According to recent publications, 4-hydroxyisoleucine (4-HIL)
is one of the most significant compounds for treating T2D with
specific blood glucose control capacity (Zafar and Gao, 2016); 4-
HIL is also a major metabolite of B. thuringiensis (Kodera et al.,
2009; Zafar and Gao, 2016). Therefore, using NOG275679 as a
biomarker may help us identify important functional microbes,

such as B. thuringiensis, that may further assist in distinguishing
diabetes patients from normal controls.

The next functional term is COG4678 describing muramidase
(phage lambda lysozyme) from multiple organisms, including
Escherichia coli. Muramidase has been previously reported
to be correlated with multiple complications of T2D. In
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1989, muramidase had been shown to be correlated with
tubular dysfunction (Tanaka et al., 1989), triggering diabetic
nephropathy. Further in 1992, the enzyme was shown to be
associated with diabetic mastopathy (Tomaszewski et al., 1992);
this enzyme, which is triggered by T2D, is also associated with
chronic inflammation all over the body (Maes et al., 2013).
Therefore, COG4678 is a microbe-associated biomarker for T2D.

NOG70379 as the next identified potential biomarker
describes the ATP-binding proteins in five organisms, including
four Leptospira species and Helicobacter hepaticus. Given
that ATP-binding proteins are essential for Leptospira and
H. hepaticus, the identification of such protein from these
species indicates the potential significant role of such species for
T2D pathogenesis. In 2020, a systematic analysis confirmed the
potential association between autoimmune disorders (including
T2D) and Leptospira infection (Teh et al., 2020). Another
independent research also validated that the infection of
Leptospira is associated with diabetic chronic kidney disease
(Carrillo-Larco et al., 2019). These tight correlations between
Leptospira infection and diabetes support microbe NOG70379 as
a potential biomarker for T2D.

Although the next identified protein NOG10530 is typically
a hypothetical protein, the organisms from which such protein
is derived from have also been linked with T2D. According to
the eggNOG database, such gene/protein is mainly derived from
E. coli and Burkholderia glumae. According to a systematic gut
microbiome analysis on patients with T2D (Wu et al., 2017),
the distributions of different strains of E. coli are significantly
altered due to diabetes pathogenesis. Therefore, as a signature
protein from E. coli, NOG10530 may have a predictive potential
for T2D patients.

The next identified biomarker (COG0810) describes the
TonB-like protein in multiple organisms, including Acidovorax
citrulli, Acinetobacter baumannii, and Koribacter versatilis.
TonB-like protein is associated with the microbe-assistant
vitamin B12 metabolism (Fischer et al., 1989; Gherasim et al.,
2013). The majority of patients with T2D suffer from vitamin
B12 deficiency (Kibirige and Mwebaze, 2013). Therefore, as a
mediator for vitamin B12 metabolism, COG0810 is a potential
biomarker for distinguishing T2D patients and normal controls.

Optimal Orthologous Gene/Protein
Features Together With Functional
Interpretations Annotated by KO
Database
As discussed above, multiple genes/proteins from microbes
have been identified and associated with T2D. For further
functional exploration and summarization, we predicted another
group of gene/protein features with functional annotation
from KO database.

The first identified functional term K00244 describes
the fumarate reductase flavor-protein subunit. Such term
has been functionally annotated with citrate cycle, oxidative
phosphorylation, and carbon fixation pathways in prokaryotes.
In 2019, a mouse-based study (Beli et al., 2019) confirmed that
carbon metabolism, including the carbon fixation of prokaryotes,

is altered during the initiation and progression of T2D. Therefore,
K00244 is predicted as a potential diabetes-associated protein at
the microbial level.

The second functional term K14744 (rzpD, prophage
endopeptidase) has also been predicted to participate in
distinguishing T2D patients and normal controls. Although no
direct evidence confirms its pathological role for T2D, the specific
role of the phage from which such protein is mainly derived
from has been validated during T2D progression, participating
in the regulation of chronic inflammatory environment (Górski
et al., 2016; Ma et al., 2018). Therefore, K14744 may also be
a potential biomarker for the identification of T2D, playing
the specific role of prophage endopeptidase for phage-mediated
biological processes.

The next functional term K03367 describes the D-alanine—
ploy (phospho-ribitol) ligase subunit 1, which has further
been associated with the Staphylococcus infection and D-alanine
metabolism. For staphylococci, in 2015, a research confirmed
that patients with T2D have different abundances and kinds of
Staphylococcus in the gut microbiome compared with normal
controls (Gan, 2013; Farnsworth et al., 2015), indicating that
Staphylococcus infection is associated with the initiation and
progression of T2D. Further, key metabolites of D-alanine
metabolism are gut microbiome markers of T2D mellitus (Wang
et al., 2017), corresponding with our prediction.

Other functional terms like K03201 describing protein VirB6,
and K01006 describing pyruvate, orthophosphate dikinase have
also been predicted to be associated with type 2 diabetes via
microbiome level regulation. Recent publications have also linked
these proteins with the pathogenesis of T2D, indicating that they
may also be potential biomarkers. Vir86 was identified in a long-
read metagenomics exploration of human gut and is functionally
correlated with inflammatory bowel disease and T2D (Suzuki
et al., 2019). Pyruvate, orthophosphate dikinase is a potential
pharmacological target of hypoglycemic agents (Zhang F. et al.,
2019), with altered expression level from gut microbiome in
response to the pharmacological effects of drugs. Therefore,
these proteins with their functional annotations may be potential
biomarkers distinguishing T2D at the gut microbiome level.

Overall, the identified optimal eggNOG and KO terms,
which can be used to describe effective genes/proteins together
with their potential biological functions and pathways, have all
been associated with T2D pathogenesis and sugar metabolism-
associated pathways. Therefore, on the basis of eggNOG
orthologous and KO functional annotations, the machine
learning models that we applied can identify optimal biomarkers
or drug targets for further translational medicine studies on
T2D and lay a solid foundation for studies of the detailed
pathogenesis of T2D.

CONCLUSION

This study investigated two T2D microbiome datasets. One was
annotated by eggNOG annotations, whereas the other one was
annotated by KO annotations. Several machine learning models
were applied to these two datasets. Some latent biomarkers
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were extracted and efficient classifiers were constructed. They
can be useful for identifying T2D patients from normal
controls and improving our understanding on T2D at the gut
microbiome level.
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S., Rogóż, P., et al. (2016). Phage therapy: combating infections with
potential for evolving from merely a treatment for complications to
targeting diseases. Front. Microbiol. 7:1515. doi: 10.3389/fmicb.2016.
01515

Gurung, M., Li, Z., You, H., Rodrigues, R., Jump, D. B., Morgun,
A., et al. (2020). Role of gut microbiota in type 2 diabetes
pathophysiology. EBioMedicine 51:102590. doi: 10.1016/j.ebiom.2019.
11.051

He, S., Guo, F., Zou, Q., and Ding, H. (2020). MRMD2.0: a python tool for machine
learning with feature ranking and reduction. Curr. Bioinform. 15, 1213–1221.
doi: 10.2174/1574893615999200503030350

Frontiers in Microbiology | www.frontiersin.org 8 July 2021 | Volume 12 | Article 711244

http://vm-lux.embl.de/~kultima/share/gene_catalogs/620mhT2D/
http://vm-lux.embl.de/~kultima/share/gene_catalogs/620mhT2D/
https://www.frontiersin.org/articles/10.3389/fmicb.2021.711244/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.711244/full#supplementary-material
https://doi.org/10.1111/andr.12287
https://doi.org/10.1056/nejmoa2025845
https://doi.org/10.3390/nu11102310
https://doi.org/10.15585/mmwr.mm6712a2
https://doi.org/10.15585/mmwr.mm6712a2
https://doi.org/10.1371/journal.pntd.0007458
https://doi.org/10.1109/access.2017.2775703
https://doi.org/10.3390/ijms20174269
https://doi.org/10.15585/mmwr.mm6743a2
https://doi.org/10.1128/iai.03074-14
https://doi.org/10.1128/iai.03074-14
https://doi.org/10.1128/jb.171.9.5127-5134.1989
https://doi.org/10.1128/jb.171.9.5127-5134.1989
https://doi.org/10.1371/journal.ppat.1003794
https://doi.org/10.1371/journal.ppat.1003794
https://doi.org/10.1074/jbc.r113.458810
https://doi.org/10.1016/s0002-9149(02)02553-5
https://doi.org/10.1016/s0002-9149(02)02553-5
https://doi.org/10.3389/fmicb.2016.01515
https://doi.org/10.3389/fmicb.2016.01515
https://doi.org/10.1016/j.ebiom.2019.11.051
https://doi.org/10.1016/j.ebiom.2019.11.051
https://doi.org/10.2174/1574893615999200503030350
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-711244 July 5, 2021 Time: 19:22 # 9

Zhang et al. Identification of Microbiota Biomarkers

Jia, Y., Zhao, R., and Chen, L. (2020). Similarity-based machine learning model
for predicting the metabolic pathways of compounds. IEEE Access 8, 130687–
130696. doi: 10.1109/access.2020.3009439

Kahn, S. E., Hull, R. L., and Utzschneider, K. M. (2006). Mechanisms linking
obesity to insulin resistance and type 2 diabetes. Nature 444, 840–846. doi:
10.1038/nature05482

Kibirige, D., and Mwebaze, R. (2013). Vitamin B12 deficiency among patients with
diabetes mellitus: is routine screening and supplementation justified? J. Diabetes
Metab. Disord. 12:17.

Kodera, T., Smirnov, S. V., Samsonova, N. N., Kozlov, Y. I., Koyama,
R., Hibi, M., et al. (2009). A novel L-isoleucine hydroxylating enzyme,
L-isoleucine dioxygenase from Bacillus thuringiensis, produces (2S, 3R, 4S)-
4-hydroxyisoleucine. Biochem. Biophys. Res. Commun. 390, 506–510. doi: 10.
1016/j.bbrc.2009.09.126

Kohavi, R. (1995). “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in Proceedings of the International joint
Conference on Artificial Intelligence, (London: Lawrence Erlbaum Associates
Ltd), 1137–1145.

Lai, Y.-R., Chiu, W.-C., Huang, C.-C., Tsai, N.-W., Wang, H.-C., Lin, W.-C.,
et al. (2019). HbA1C variability is strongly associated with the severity of
peripheral neuropathy in patients with type 2 diabetes. Front. Neurosci. 13:90.
doi: 10.3389/fnins.2019.00090

Li, T., Xu, X., Xu, Y., Jin, P., Chen, J., Shi, Y., et al. (2019). PPARG polymorphisms
are associated with unexplained mild vision loss in patients with type 2 diabetes
mellitus. J. Ophthalmol. 2019:5284867.

Liang, H., Chen, L., Zhao, X., and Zhang, X. (2020). Prediction of drug side effects
with a refined negative sample selection strategy. Comput. Math. Methods Med.
2020:1573543.

Liu, C., Feng, X., Li, Q., Wang, Y., Li, Q., and Hua, M. (2016). Adiponectin,
TNF-α and inflammatory cytokines and risk of type 2 diabetes: a systematic
review and meta-analysis. Cytokine 86, 100–109. doi: 10.1016/j.cyto.2016.
06.028

Liu, H., Hu, B., Chen, L., and Lu, L. (2021). Identifying protein subcellular location
with embedding features learned from networks. Curr. Proteom. [Epub ahead
of print].

Liu, H. A., and Setiono, R. (1998). Incremental feature selection. Appl. Intellig. 9,
217–230.

Ma, Y., You, X., Mai, G., Tokuyasu, T., and Liu, C. (2018). A human gut
phage catalog correlates the gut phageome with type 2 diabetes. Microbiome
6:24.

Maes, M., Kubera, M., Leunis, J. C., Berk, M., Geffard, M., and Bosmans, E. (2013).
In depression, bacterial translocation may drive inflammatory responses,
oxidative and nitrosative stress (O&NS), and autoimmune responses directed
against O&NS-damaged neoepitopes. Acta Psychiatr. Scand. 127, 344–354. doi:
10.1111/j.1600-0447.2012.01908.x

Mao, X., Cai, T., Olyarchuk, J. G., and Wei, L. (2005). Automated genome
annotation and pathway identification using the KEGG Orthology (KO)
as a controlled vocabulary. Bioinformatics 21, 3787–3793. doi: 10.1093/
bioinformatics/bti430

Matthews, B. (1975). Comparison of the predicted and observed secondary
structure of T4 phage lysozyme. Biochim. Biophys. Acta Protein Struct. 405,
442–451. doi: 10.1016/0005-2795(75)90109-9

Pan, X., Li, H., Zeng, T., Li, Z., Chen, L., Huang, T., et al. (2021). Identification
of protein subcellular localization with network and functional embeddings.
Front. Genet. 11:626500. doi: 10.3389/fgene.2020.626500

Peng, H., Long, F., and Ding, C. (2005). Feature selection based on mutual
information: criteria of max-dependency, max-relevance, and min-redundancy.
IEEE Trans. Pattern Anal. Mach. Intellig. 27, 1226–1238. doi: 10.1109/tpami.
2005.159

Platt, J. (ed.) (1998a). Fast Training of Support Vector Machines Using Sequential
Minimal Optimization. Cambridge, MA: MIT Press.

Platt, J. (1998b). Sequential Minimal Optimizaton: A Fast Algorithm for Training
Support Vector Machines. Technical Report MSR-TR-98–14. Redmond:
Microsoft Corporation.

Powell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J.,
et al. (2014). eggNOG v4. 0: nested orthology inference across 3686 organisms.
Nucleic Acids Res. 42, D231–D239.

Sanahuja, J., Alonso, N., Diez, J., Ortega, E., Rubinat, E., Traveset, A., et al. (2016).
Increased burden of cerebral small vessel disease in patients with type 2 diabetes
and retinopathy. Diabetes Care 39, 1614–1620. doi: 10.2337/dc15-2671

Schlienger, J.-L. (2013). Type 2 diabetes complications. Presse Med. 42, 839–848.
Suzuki, Y., Nishijima, S., Furuta, Y., Yoshimura, J., Suda, W., Oshima, K.,

et al. (2019). Long-read metagenomic exploration of extrachromosomal mobile
genetic elements in the human gut. Microbiome 7:119.

Tahir, M., and Idris, A. (2020). MD-LBP: an efficient computational model for
protein subcellular localization from hela cell lines using SVM. Curr. Bioinform.
15, 204–211. doi: 10.2174/1574893614666190723120716

Tanaka, A., Shima, K., Fukuda, M., Tahara, Y., Yamamoto, Y., and Kumahara, Y.
(1989). Tubular dysfunction in the early stage of diabetic nephropathy. Med. J.
Osaka Univ. 38, 57–63.

Teh, S.-H., You, R.-I., Yang, Y.-C., Hsu, C. Y., and Pang, C.-Y. (2020). A cohort
study: the association between autoimmune disorders and leptospirosis. Sci.
Rep. 10:3276.

Tomaszewski, J. E., Brooks, J. S. J., Hicks, D., and Livolsi, V. A. (1992). Diabetic
mastopathy: a distinctive clinicopathologic entity. Hum. Pathol. 23, 780–786.
doi: 10.1016/0046-8177(92)90348-7

Vergès, B., Rouland, A., Baillot-Rudoni, S., Brindisi, M. C., Duvillard,
L., Simoneau, I., et al. (2021). Increased body fat mass reduces the
association between fructosamine and glycated hemoglobin in obese type
2 diabetes patients. J. Diabetes Investig. 12, 619–624. doi: 10.1111/jdi.
13383

Wang, X., Xu, X., and Xia, Y. (2017). Further analysis reveals new gut microbiome
markers of type 2 diabetes mellitus. Antonie Van Leeuwenhoek 110, 445–453.
doi: 10.1007/s10482-016-0805-3

Witten, I. H., and Frank, E. (eds) (2005). Data Mining:Practical Machine Learning
Tools and Techniques. San Francisco: Kaufmann.

Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Mannerås-Holm, L., et al.
(2017). Metformin alters the gut microbiome of individuals with treatment-
naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat.
Med. 23:850. doi: 10.1038/nm.4345

Yan, A., Issar, T., Tummanapalli, S., Markoulli, M., Kwai, N., Poynten, A., et al.
(2020). Relationship between corneal confocal microscopy and markers of
peripheral nerve structure and function in Type 2 diabetes. Diabet. Med. 37,
326–334. doi: 10.1111/dme.13952

Zafar, M. I., and Gao, F. (2016). 4-hydroxyisoleucine: a potential new treatment
for type 2 diabetes mellitus. BioDrugs 30, 255–262. doi: 10.1007/s40259-016-
0177-2

Zhang, F., Wang, M., Yang, J., Xu, Q., Liang, C., Chen, B., et al. (2019). Response
of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine 66,
485–493. doi: 10.1007/s12020-019-02041-5

Zhang, S., Pan, X., Zeng, T., Guo, W., Gan, Z., Zhang, Y. H., et al. (2019). Copy
number variation pattern for discriminating MACROD2 states of colorectal
cancer subtypes. Front. Bioeng. Biotechnol. 7:407. doi: 10.3389/fbioe.2019.
00407

Zhang, S., Zeng, T., Hu, B., Zhang, Y. H., Feng, K., Chen, L., et al. (2020).
Discriminating origin tissues of tumor cell lines by methylation signatures and
Dys-methylated rules. Front. Bioeng. Biotechnol. 8:507. doi: 10.3389/fbioe.2020.
00507

Zhang, Y. H., Li, H., Zeng, T., Chen, L., Li, Z., Huang, T., et al. (2021a). Identifying
transcriptomic signatures and rules for SARS-CoV-2 infection. Front. Cell Dev.
Biol. 8:627302. doi: 10.3389/fcell.2020.627302

Zhang, Y.-H., Zeng, T., Chen, L., Huang, T., and Cai, Y.-D. (2021b). Detecting the
multiomics signatures of factor-specific inflammatory effects on airway smooth
muscles. Front. Genet. 11:599970. doi: 10.3389/fgene.2020.599970

Zhang, Y.-H., Zeng, T., Chen, L., Huang, T., and Cai, Y.-D. (2021c). Determining
protein–protein functional associations by functional rules based on gene
ontology and KEGG pathway. Biochim. Biophys. Acta Proteins Proteom.
1869:140621. doi: 10.1016/j.bbapap.2021.140621

Zhao, X., Chen, L., and Lu, J. (2018). A similarity-based method for prediction of
drug side effects with heterogeneous information. Math. Biosci. 306, 136–144.
doi: 10.1016/j.mbs.2018.09.010

Zheng, Y., Ley, S. H., and Hu, F. B. (2018). Global aetiology and epidemiology
of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 14:88.
doi: 10.1038/nrendo.2017.151

Frontiers in Microbiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 711244

https://doi.org/10.1109/access.2020.3009439
https://doi.org/10.1038/nature05482
https://doi.org/10.1038/nature05482
https://doi.org/10.1016/j.bbrc.2009.09.126
https://doi.org/10.1016/j.bbrc.2009.09.126
https://doi.org/10.3389/fnins.2019.00090
https://doi.org/10.1016/j.cyto.2016.06.028
https://doi.org/10.1016/j.cyto.2016.06.028
https://doi.org/10.1111/j.1600-0447.2012.01908.x
https://doi.org/10.1111/j.1600-0447.2012.01908.x
https://doi.org/10.1093/bioinformatics/bti430
https://doi.org/10.1093/bioinformatics/bti430
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.3389/fgene.2020.626500
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.1109/tpami.2005.159
https://doi.org/10.2337/dc15-2671
https://doi.org/10.2174/1574893614666190723120716
https://doi.org/10.1016/0046-8177(92)90348-7
https://doi.org/10.1111/jdi.13383
https://doi.org/10.1111/jdi.13383
https://doi.org/10.1007/s10482-016-0805-3
https://doi.org/10.1038/nm.4345
https://doi.org/10.1111/dme.13952
https://doi.org/10.1007/s40259-016-0177-2
https://doi.org/10.1007/s40259-016-0177-2
https://doi.org/10.1007/s12020-019-02041-5
https://doi.org/10.3389/fbioe.2019.00407
https://doi.org/10.3389/fbioe.2019.00407
https://doi.org/10.3389/fbioe.2020.00507
https://doi.org/10.3389/fbioe.2020.00507
https://doi.org/10.3389/fcell.2020.627302
https://doi.org/10.3389/fgene.2020.599970
https://doi.org/10.1016/j.bbapap.2021.140621
https://doi.org/10.1016/j.mbs.2018.09.010
https://doi.org/10.1038/nrendo.2017.151
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-711244 July 5, 2021 Time: 19:22 # 10

Zhang et al. Identification of Microbiota Biomarkers

Zhou, J.-P., Chen, L., Wang, T., and Liu, M. (2020). iATC-FRAKEL: a simple
multi-label web-server for recognizing anatomical therapeutic chemical classes
of drugs with their fingerprints only. Bioinformatics 36, 3568–3569. doi: 10.
1093/bioinformatics/btaa166

Zhu, Y., Hu, B., Chen, L., and Dai, Q. (2021). iMPTCE-Hnetwork: a multi-
label classifier for identifying metabolic pathway types of chemicals and
enzymes with a heterogeneous network. Comput. Math. Methods Med. 2021:66
83051.

Zou, Q., Qu, K., Luo, Y., Yin, D., Ju, Y., and Tang, H. (2018). Predicting diabetes
mellitus with machine learning techniques. Front. Genet. 9:515. doi: 10.3389/
fgene.2018.00515

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhang, Guo, Zeng, Zhang, Chen, Gamarra, Mansour, Escorcia-
Gutierrez, Huang and Cai. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) and the
copyright owner(s) are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 711244

https://doi.org/10.1093/bioinformatics/btaa166
https://doi.org/10.1093/bioinformatics/btaa166
https://doi.org/10.3389/fgene.2018.00515
https://doi.org/10.3389/fgene.2018.00515
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Identification of Microbiota Biomarkers With Orthologous Gene Annotation for Type 2 Diabetes
	Introduction
	Materials and Methods
	Data
	Max-Relevance and Min-Redundancy (mRMR) Feature Selection
	Incremental Feature Selection (IFS)
	SVM
	Measurements

	Results
	Results of mRMR Method
	Results of the IFS Method

	Discussion
	Optimal Orthologous Gene/Protein Features Annotated by eggNOG Database
	Optimal Orthologous Gene/Protein Features Together With Functional Interpretations Annotated by KO Database

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


