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Individuals who abuse methamphetamine (MA) exhibit heightened aggression, but the neurobiological underpinnings are poorly
understood. As variability in the serotonin transporter (SERT) gene can influence aggression, this study assessed possible
contributions of this gene to MA-related aggression. In all, 53 MA-dependent and 47 control participants provided self-reports of
aggression, and underwent functional magnetic resonance imaging while viewing pictures of faces. Participants were genotyped
at two functional polymorphic loci in the SERT gene: the SERT-linked polymorphic region (SERT-LPR) and the intron 2 variable
number tandem repeat polymorphism (STin2 VNTR); participants were then classified as having high or low risk for aggression
according to individual SERT risk allele combinations. Comparison of SERT risk allele loads between groups showed no
difference between MA-dependent and control participants. Comparison of self-report scores showed greater aggression in MA-
dependent than control participants, and in high genetic risk than low-risk participants. Signal change in the amygdala was lower
in high genetic risk than low-risk participants, but showed no main effect of MA abuse; however, signal change correlated
negatively with MA use measures. Whole-brain differences in activation were observed between MA-dependent and control
groups in the occipital and prefrontal cortex, and between genetic high- and low-risk groups in the occipital, fusiform,
supramarginal and prefrontal cortex, with effects overlapping in a small region in the right ventrolateral prefrontal cortex. The
findings suggest that the investigated SERT risk allele loads are comparable between MA-dependent and healthy individuals,
and that MA and genetic risk influence aggression independently, with minimal overlap in associated neural substrates.
Translational Psychiatry (2012) 2, e80; doi:10.1038/tp.2011.73; published online 21 February 2012

Introduction

Methamphetamine (MA) abuse is associated with a high
incidence of interpersonal violence,1 confirmed by consistent
reports of heightened hostility and aggression scores in MA-
abusing research participants.2–8 Aggressive behavior can
stem from abnormalities in neurocircuitry underlying emotion
processing, including serotonergic disturbances,9 and dys-
function of the amygdala (which is involved in the detection of
emotional salience in environmental stimuli) and prefrontal
cortex (PFC, which takes part in deliberative and executive
functions).10–12 MA-abusing individuals indeed show PFC and
amygdala abnormalities,13,14 as well as differences in sero-
tonergic markers,5,15 relating to socio-emotional disturbances
such as poor social cognition, insight, and harm avoid-
ance,8,16–20 low mood21 and hostility/aggression itself.5,6,8 In
addition to creating personal and public health and safety
concerns,22 these mood states and behaviors can negatively
impact treatment outcome, as emotional distress can con-
tribute to drug craving and relapse.23 Given the relevance to
abstinence success, therefore, it is important that the etiology
of these neurochemical and social–cognitive factors be clarified.

MA is considered a potent neurotoxin,24 and in animal models,
repeated administration results in the degeneration of mono-
amine nerve terminals;25 it is therefore possible that the

observed neurocognitive deficits reflect neuronal damage
and/or compensatory changes following long-term MA abuse.
However, independently of MA abuse, the same neural
circuits and behaviors are also influenced by normal genetic
variability in the serotonin system,26–28 raising the possi-
bility that the observed differences predate MA abuse.
As each possibility may favor different treatment appro-
aches, this study investigated the contribution of genetic
factors, in addition to MA abuse, to aggression and brain
function.

One integral gene to variability in the serotonin system is
SLC6A4, which encodes the serotonin transporter (SERT)
protein and contains two well-studied functional polymorph-
isms. The first, the SERT-linked polymorphic region (SERT-LPR),
is located within the gene promoter and consists of the
insertion/deletion of a 44-base-pair repetitive element, result-
ing in a short or long allele. An additional single-nucleotide
polymorphism mapping within the LPR (rs25531) modifies the
effect of the long allele, with the minor (g) allele rendering
it functionally similar to the short allele.29 The short allele
has reduced transcriptional efficiency and lower expression
levels,30 and is associated with phenotypes related to negative
emotionality, including aggression and violence,31–35 mood
disorders and anxiety,36–38 altered socio-emotional function
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and social sensitivity39–41 and differences in amygdala and
PFC structure and function.42–44

The second polymorphism, a variable number tandem
repeat in intron 2 of the SERT gene (STin2), resulting in 9, 10
or 12 repeats of a 17-base-pair sequence, can also affect
gene expression. The 12-repeat allele (particularly the 12/12
genotype) has been linked to aggression,45,46 mood and
anxiety disorders47–49 and impulsivity and disinhibition.50,51

The two polymorphisms therefore influence social–cognitive
and emotional processes that can result in heightened
aggression. Importantly, the two polymorphic domains inter-
act, suggesting that they should be studied in combination
rather than independently.51–53

As MA- and SERT-related effects resemble one another, it
is possible that differences previously attributed to MA abuse
in fact reflect differential risk allele loads or genotype effects
between MA-abusing and healthy participants. In this regard,
one study reported a higher SERT-LPR short allele load in
individuals with MA psychosis and spontaneous relapse to MA
abuse,54 but another found no difference in SERT-LPR allele
distribution between groups.55 Given these inconsistencies
and limited outcome measures, this study sought to investi-
gate the extent to which heightened aggression and differ-
ences in brain function reflect MA abuse status, genetic
factors or a combination of both. Specifically, the study aimed
(1) to determine whether heightened aggression in MA-
abusing populations reflects a higher SERT risk allele load,
and (2) to test for effects of genetic risk and MA abuse status
on self-reported aggression and brain activation.

Materials and methods

Participants and study procedure. All procedures were
approved by the UCLA Office of the Human Research
Protection Program. Non-treatment-seeking MA-dependent
and healthy control volunteers between the ages of 18 and
55 years gave written informed consent, and were screened
for eligibility using questionnaires, psychiatric diagnostic inter-
viewing (SCID-IV56) and a medical examination. Participants
in the MA group were required to meet the DSM-IV criteria for
current MA dependence, and to demonstrate recent MA use
by providing a urine sample that tested positive for MA.
Control participants were required to have no history of drug
abuse or dependence. Exclusion criteria for all participants
were: any current Axis I diagnosis, except MA dependence
or substance-induced mood/anxiety disorder (MA group) or
nicotine dependence (both groups); use of psychotropic
medications or substances, except some marijuana or alcohol
(not meeting abuse or dependence criteria); and nervous
system, cardiovascular, pulmonary or systemic disease.

Eligible MA participants were admitted to the UCLA General
Clinical Research Center, and participated on a residential
basis in a study lasting 15–30 days. They were required to
abstain from all illicit drugs and alcohol for the duration of the
study, verified by urine screening and breathalyzer. Eligible
control participants visited the laboratory only on test days,
and were required to test negative for illicit substances/alcohol
on each test day. Study compensation was provided in cash
and gift certificates. A total of 100 individuals (53 MA, 47

control) participated in the study (Table 1), and completed one
or more (but not necessarily all) of the measures below.

Outcome measures. To assess aggressive behavior, parti-
cipants completed a paper-and-pencil Aggression Questionnaire
(AQ),57 indicating on a Likert scale (1–5) how well each of
34 items reflected their behavior.

Brain function was assessed using functional magnetic
resonance imaging during observation of faces, as viewing
faces reliably engages the amygdala and PFC.58 Presentation
of face stimuli occurred in 25-s blocks, showing five distinct
faces59 for 5 s each. Participants viewed a total of eight blocks
(half showing neutral, and half angry/fearful facial expres-
sions), each followed by 16 s of fixation.

MA use and withdrawal measures. MA participants reported
MA use patterns (amount and frequency) during intake. Each
day following intake, they completed a 30-item rater-scored
Methamphetamine Withdrawal Questionnaire (MAWQ),60

assessing emotional, physical and functional withdrawal
symptoms on a 4-point scale, and a Visual Analog Scale
for Craving (VAS), indicating current levels of MA craving
on a line marked from 0 to 100 in 10-point increments. For
missing measures, scores from the preceding or following
day (or their mean if both were available) were used to
estimate scores.

Genotyping methods and analyses. Genotypes for the
SLC6A4 SERT-LPR short/long variant, STin2 and rs25531
were assessed simultaneously according to the protocol
published in ref. 29. Polymerase chain reaction products
were electrophoresed in 3.5% gold agarose (BMA, Rockland,
ME, USA) gels in 1� Tris/Borate/EDTA and imaged with
ethidium bromide under a fluorescent Kodak digital camera.
Alleles were determined by comparison with molecular weight
standards and data from control individuals with previously
determined genotypes. All genotypes were confirmed in
duplicate and samples were double-scored by two tech-
nicians independent of phenotype information. All assays
included positive and negative control samples. All
markers were in Hardy–Weinberg equilibrium.

Since complex phenotypes are more accurately predicted
by multiple than single polymorphisms, we combined SERT-
LPR and STin2 genotypes according to Aluja et al.,51 which
predicts that carrying the LPR short (s) allele and homo-
zygosity for the STin2 12-repeat allele should be risk factors
for aggression. It is important to note that while our
investigation focused on aggression, these risk factors are
not specific, and may predispose to aggressive behavior
indirectly. To categorize participants, we first calculated a
‘number of risk factors’ variable. Possible values were: 0 (LPR l/l
þ STin2 10þ), 1 (LPR l/lþ STin2 12/12 or LPR s/l (or l(g)/l)þ
STin2 10þ), 2 (LPR s/l (or l(g)/l)þ STin2 12/12 or LPR s/s
(or l(g)/s)þ STin2 10þ) and 3 (LPR s/s (or l(g)/s)þ STin2
12/12). Since the STin2 9-repeat allele is functionally unique
and its effects are unclear,61 the three MA participants who
were carriers were excluded. Given the small samples
created by this division, participants were then grouped into
genetic low-risk (0 or 1 risk factor) and high-risk (2 or 3 risk
factors) groups. Independent analyses of the individual
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polymorphisms demonstrated consistent but less robust
effects than when combined into risk groups (see Supple-
mentary Materials).

Imaging methods and analyses
Apparatus and parameters. Imaging was performed on a 3T
Siemens Allegra scanner (Erlangen, Germany), using a
standard T2*-weighted gradient-echo echo-planar imaging
pulse sequence to collect blood-oxygen-level-dependent
signal. Acquisition parameters were: TR¼ 2500ms, TE¼ 28ms;
flip angle¼ 801; matrix¼ 64� 64. Each volume consisted of
36 interleaved slices, parallel to the AC-PC line, with 2.5-mm
thickness and 0.5-mm distance. Each of two functional runs
yielded 210 volumes. T2-weighted and high-resolution T1-
weighted structural scans were also acquired for region-of-
interest (ROI) delineation and spatial normalization. Stimulus
displays were generated using the MacStim software
(WhiteAnt Occasional Publishing, West Melbourne, VIC,
Australia) and presented through video goggles (Resonance
Technology, Northridge, CA, USA).

Analysis. Data were processed using SPM5 (Wellcome Trust
Centre for Neuroimaging, London, UK). Functional images
were spatially realigned to the mean image to correct for
head motion (within 3 mm translation/51 rotation; exceeding
these parameters was exclusionary), and co-registered to
individual structural templates. Amygdala ROIs were drawn

on high-resolution structural images using FSL FIRST.62

Functional scans were smoothed with a 5-mm Gaussian
kernel, and masked with these ROIs. Using the MarsBaR
toolbox,63 a general linear model was applied at each voxel
within the ROIs, containing regressors for neutral and
emotional face blocks (modeled as boxcar functions con-
volved with the hemodynamic response function provided by
SPM5) and fixation as an implicit baseline. After fitting the
general linear model, percent signal change during obser-
vation of faces was calculated, and the resulting values
exported to SPSS 16.0 (SPSS Inc., Chicago, IL, USA).

For whole-brain analyses, functional images were
smoothed with an 8-mm Gaussian kernel, and the general
linear model described above applied at each voxel across the
brain. The resulting maps of parameter estimates were
spatially normalized to a standard template provided by
SPM5, and passed to a group-level random-effects analysis
with MA abuse status (MA-dependent or control) and genetic
risk (high or low) as factors. Results were assessed at a
statistical threshold of Po0.005 with a cluster criterion of 30
contiguous voxels, offering a good balance between potential
for Type I and Type II errors.64

Results

Demographic, genotype and MA use measures. MA and
control groups were matched for age, sex and ethnicity, but

Table 1 Demographic measures, genotypes and MA use measures

MA (N¼53) Control (N¼47) Test for group difference

Demographic measures
Number of men/women 31/22 25/22 w2(1) o1
Years of age (M, s.d.) 34.4 (9.4) 32.1 (9.5) t(98)¼1.19
Years of education (M, s.d.) 12.7 (1.5) 14.9 (2.2) t(98)¼5.80*

Ethnicity (number of participants)
Caucasian 29 28
African American 2 6
Hispanic/Latino 15 5
Asian American 2 5 w2(6)¼10.65
Native American 0 1
Multiple 1 0
Other 4 2

SERT-LPR genotype (number of participants)
Short/short 14 11
Short/long 22 20 w2(2) o1
Long/long 17 16

SERT-VNTR Genotype (number of participants)
9/9 0 0
9/10 1 0
9/12 2 0 w2(4)¼3.25
10/10 9 6
10/12 18 18
12/12 23 23

MA use measures (M, s.d.)
Years of MA use 11.0 (7.7)
Years of heavy MA use (3� per week or 2-day binges) 7.82 (7.0) NA NA
Days MA used per month 20.8 (9.1)
Grams of MA used per week 3.31 (4.29)

Abbreviations: MA, methamphetamine; NA, not applicable; SERT-LPR, serotonin transporter-linked polymorphic region; SERT-VNTR, SERT-variable number
tandem repeat polymorphism.
*Po0.05.
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MA participants had completed fewer years of education
(Table 1). Participants in the low and high genetic risk groups
were matched for sex and education, but the low-risk group
was marginally older (t(95)¼ 1.74, P¼ 0.086), and groups
were not matched for ethnicity (w2(6)¼ 12.81, P¼ 0.046).
Demographic measures were therefore used to follow-up all
analyses.

MA withdrawal measures. MA craving and physical
withdrawal decreased significantly between intake and test
days, and functional symptoms showed a similar trend, but
emotional symptoms did not significantly decrease (Table 2).
Withdrawal symptoms collected on test days did not correlate
with outcome measures collected that day (all P40.1), except
for physical symptoms on functional magnetic resonance
imaging day correlating with amygdala signal change (r¼ 0.436,
P¼ 0.042).

Outcome measures
Risk allele distribution. w2 analyses assessing SERT allele
distributions found no differences in risk allele loads between
MA and control groups (Table 1).

Aggression questionnaire. Analysis of variance of AQ
scores, with MA abuse status (MA or control) and genetic
risk (low or high) as factors, showed significant effects of
MA abuse (F(1,67)¼ 11.62, P¼ 0.001) and genetic risk
(F(1,67)¼ 7.92, P¼ 0.006), but no interaction (F(1,67)¼
0.06, P¼ 0.81) (Figure 1a). As predicted, MA-dependent and
high genetic risk participants reported greater aggression
than their counterparts. These effects persisted when age,
education and ethnicity were entered as additional cova-
riates; entering sex as an additional factor (as allelic direc-
tionality can differ between sexes) showed no main effect of
sex or sex� genetic risk interaction, while the effects of MA
abuse and genetic risk remained significant. Performing the
analysis of variance in a subsample matched for ethnicity
(Caucasian only, as this comprised the largest ethnic
subgroup: MA, N¼ 17 (12 low risk); control, N¼ 22 (10 low
risk)) yielded identical results, suggesting that ethnic make-
up of the sample did not bias outcome.

Amygdala ROI analysis. Percent signal change in the
amygdala did not differ between neutral and emotional faces
(t(46)¼ 0.89, P¼ 0.38), and values were combined by calcu-
lating their average. Further, signal change correlated between
left and right amygdala ROIs (r¼ 0.82, Po0.001), and values

were combined by calculating a volume-weighted average.
Analysis of variance of these values, with MA abuse status
and genetic risk as factors, showed a significant effect of
genetic risk (F(1,41)¼ 5.81, P¼ 0.021), but no effect of MA
abuse (F(1,41)¼ 1.18, P¼ 0.29) or interaction (F(1,41)¼
0.66, P¼ 0.42) (Figure 1b). Signal change in the amygdala
was lower in high-risk than low-risk participants. This effect
persisted when age, education and ethnicity were entered as
additional covariates; entering sex as an additional factor
showed no main effect of sex or sex� genetic risk intera-
ction, while the effect of genetic risk remained significant.

Table 2 MA withdrawal measures

Day of intake Day of AQ Test for difference from intake Day of scan Test for difference from intake

Days abstinent (M, s.d.) 1.09 (1.54) 6.92 (1.91) NA 8.56 (3.05) NA

MAWQ score (M, s.d.)
Emotional (range 0–27) 3.45 (3.90) 2.65 (3.24) t(36)¼ 1.05 3.10 (3.40) t(28) o1
Physical (range 0–21) 1.43 (2.06) 0.57 (1.09) t(36)¼ 2.73* 0.75 (1.21) t(28)¼2.05*
Functional (range 0–18) 3.33 (3.14) 2.41 (2.32) t(36)¼ 1.17 2.45 (2.30) t(28)¼ 1.95 (Po0.1)

MA craving (M, s.d.) 50.9 (28.7) 28.3 (29.4) t(34)¼ 5.58* 30.6 (30.3) t(32)¼3.05*

Abbreviations: AQ, Aggression Questionnaire; MA, methamphetamine; MAWQ, Methamphetamine Withdrawal Questionnaire; NA, not applicable.
*Po0.05.

Figure 1 (a) Mean (s.e.m.) Aggression Questionnaire (AQ) scores of
participants in the low genetic risk (MA, N¼ 22; control, N¼ 19) and high genetic
risk (MA, N¼ 13; control, N¼ 17) groups. MA-dependent participants reported
significantly higher aggression than control participants, and high genetic risk
participants reported significantly higher aggression than low genetic risk
participants. There was no MA abuse� genetic risk interaction. (b) Mean
(s.e.m.) percent signal change in the amygdala during observation of faces for
participants in the low genetic risk (MA, N¼ 13; control, N¼ 12) and high genetic
risk (MA, N¼ 9; control, N¼ 11) groups. High-risk participants showed significantly
less signal change in the amygdala than low-risk participants. There was no effect of
MA abuse or interaction. *Po0.05. HC, healthy control; MA, methamphetamine-
dependent.
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A similar (but nonsignificant) effect was found in a subsample
matched for ethnicity (Caucasian only: MA, N¼ 13 (8 low risk);
control, N¼ 12 (5 low risk)). Amount of MA used (g per week)
(Table 1) correlated inversely with signal change in the
amygdala (r¼�0.710, Po0.001), and frequency of use (days
per month) showed a similar trend (r¼�0.393, P¼ 0.063).

Whole-brain analysis. To identify regions in which activation
varied with SERT genotype, we queried voxels active during
observation of faces (vs fixation) for a main effect of genetic
risk (low risk vs high risk). Regions showing this effect
included occipital cortex, fusiform and supramarginal gyri,
and ventrolateral, dorsolateral and dorsomedial PFC (Figure 2a
and Table 3). To identify regions in which activation differed
by MA abuse status, we compared voxels active during
observation of faces between MA and control participants.
Regions showing this effect included occipital cortex and
right ventrolateral and dorsolateral PFC (Figure 2b and
Table 3). A cluster in right ventrolateral PFC showed effects
of both genetic risk and MA abuse (Table 3).

Discussion

Our investigation suggests that although SERT genotype
influences aggression and brain function, this effect appears
to be independent from that of MA. We found no evidence for
higher SERT risk allele loads in the MA-dependent group, and
no interaction between MA abuse and genetic risk in
predicting aggression (AQ scores). The imaging findings
suggest that genotype and MA abuse act via distinct neural
substrates, overlapping only in right ventrolateral PFC.
However, it should be noted that the present sample was
relatively small, and negative findings should be interpreted
with caution.

Our finding of comparable SERT risk allele loads between
MA-dependent and control groups in the present sample is
consistent with a previous study,55 and is the first report of the
relative distribution of STin2 alleles in these groups. The
findings argue against the possibility that a disproportionate
load of SERT risk alleles in MA-dependent populations drives
observed differences in aggression and neurocircuitry. How-
ever, only three SERT polymorphisms were queried, and
SERT is among many polymorphic genes influencing aggres-
sion,65 suggesting that other genetic loci may play a role. It is
also possible that owing to differences in early environmental
experiences,66 differential gene� environment interactions
led to distinct outcomes despite similar SERT allele distribu-
tions. Given the relatively small sample size, the possibility
that the analysis was not adequately powered to detect
differences in genotype distribution cannot be excluded.
Replication in a sufficiently large sample (n47866, given
post-hoc power analyses with present effect sizes) would be
necessary to conclusively interpret this negative finding.

The aggression self-report findings, showing effects of both
MA abuse and genetic risk, are consistent with previous
reports of heightened hostility and aggression in MA-abusing
samples,2–8 as well as evidence for LPR short allele and
STin2 12-repeat allele involvement in social–cognitive
and emotional phenotypes associated with aggression.31–35

However, there was no interaction between these factors,
suggesting that MA abuse and SERT genotype influence
aggression via distinct mechanisms.

One such distinction may involve the amygdala, as its
activation showed an effect of genetic risk, but not MA abuse.
Our finding of SERT-related variation in amygdala activation
is consistent with previous reports;42–44 however, the direction
of the effect was unexpected. In previous studies, LPR short-
allele carriers have exhibited amygdala hyperactivation,

Figure 2 Statistical maps overlaid onto a standard structural template provided by SPM5. (a) Regions showing a main effect of genetic risk (low vs high) in activation
associated with observation of faces. Regions included occipital cortex, fusiform and supramarginal gyri, and ventrolateral, dorsolateral and dorsomedial prefrontal cortex (see
Table 3). (b) Regions showing a main effect of MA abuse status (MA vs HC) in activation associated with observation of faces. Regions included occipital cortex and right
ventrolateral and dorsolateral prefrontal cortex (see Table 3). HC, healthy control; MA, methamphetamine-dependent; SPM, statistical parametric mapping.

MA and SERT effects on aggression and brain
DE Payer et al

5

Translational Psychiatry



whereas in the present sample, signal change was lower
in this group. It is possible that the finding reflects tonic
hyperactivity of the amygdala in the high-risk group, creating a
ceiling effect, while individuals in the low-risk group can
accommodate a larger change in activation. Several lines of
evidence support this view, including a ‘tonic model’,67

suggesting that carriers of the LPR short allele have high
amygdala activity at rest and during neutral and undefined
conditions.68–70 In addition, amygdala activation in the
present MA-dependent sample correlated inversely with MA
use measures (amount and frequency), so that that the lowest
signal change occurred in those participants who used MA
most heavily. Heavy MA use has been associated with high
glucose metabolism in the amygdala,21 suggesting that in the
present sample, the lowest activation reflected the highest
glucose metabolism (tonic activity). The direction of the effect
may therefore reflect the relative nature of functional magnetic
resonance imaging, rather than an actual reversal of the effect.

Our finding that amygdala activation did not differ between
MA-dependent and healthy participants suggests that
heightened MA-related aggression may occur via mecha-
nisms independent of the amygdala (for example, higher
cognitive and executive processes, life and social experi-
ences or personality traits). Again, we cannot exclude the
possibility that our sample size did not permit detection of
differences. Replication in a sufficiently large sample (n4275,
given post-hoc power analyses with present effect sizes) would
be necessary to conclusively interpret this negative finding.

Finally, both MA abuse and genetic risk modulated
activation in cortical regions linked to emotion processing,
but the regions showed little overlap. Genetic risk influenced
the core system for visual analysis of faces,71 and PFC
regions involved in recognition and interpretation of facial
affect, calculation of stimulus contingencies and regulation of
emotional responses,11,72 consistent with the idea that SERT-
related aggression is linked to social–cognitive neurocircuitry.
Effects of MA abuse were less manifest, revealing only small
activation differences in PFC and occipital cortex. While also
part of emotion processing circuitry, the roles of these regions
are less clear. Among the regions identified, the only one that
showed overlap between genotype and MA effects was the
right ventrolateral PFC, a region implicated in social cognition
and inhibitory control.13,14 The overlap suggests that this
region modulates aggression regardless of sources of
variation (genotype or MA abuse), suggesting it may have
utility as a biomarker for risk or intervention. Taken together,
the data suggest that the effects of MA abuse add to—but
mostly do not interact with—genetic risk in modulating
aggression and associated neurocircuitry.

Several limitations of the study should be noted. First,
statistical power was limited owing to sample size. We
maximized power by combining groups, using a small number
of outcome measures and including an ROI approach in
functional magnetic resonance imaging analyses. Second,
not all withdrawal symptoms resolved by the time of
testing, possibly confounding results; however, symptoms

Table 3 SPM clusters for observation of faces (compared with fixation)

Contrast Region Direction
of effect

MNI coordinates of
peak voxel (mm)

F-value Cluster size
(voxels)

x y z

Main effect of genetic risk (low risk vs high risk)
Right inferior frontal gyrus/
orbitofrontal cortexa

LR4HR 42 32 4 25.2 2096

50 16 22 21.7
60 18 12 20.1

Left inferior frontal gyrus/
orbitofrontal cortexa

LR4HR �60 18 30 19.3 613

�44 22 4 17.4
�46 32 �8 15.0

Right lateral occipital cortexa LR4HR 58 �72 0 18.7 37
Right lateral occipital cortexa LR4HR 34 �66 18 17.2 104
Left lingual gyrus HR4LR �10 �80 �6 14.7 61
Right fusiform gyrusa LR4HR 44 �44 �18 14.1 175
Right supramarginal gyrusa LR4HR 52 �40 10 12.8 140
Superior frontal/paracingulate gyrus LR4HR 2 12 56 10.2 34

Main effect of MA abuse status
(MA-dependent vs control)

Left occipital cortex HC4MA �26 �98 8 28.0 135

Left occipital cortex HC4MA �2 �102 �8 17.2 34
Left lingual gyrus HC4MA �2 �84 �2 13.6 78
Right inferior frontal gyrus/
orbitofrontal cortex

HC4MA 48 46 �2 12.9 125

Right middle frontal gyrusa HC4MA 38 10 44 12.4 89
Right precentral gyrus HC4MA �32 �14 66 12.0 38
Left precentral gyrus HC4MA 36 6 58 10.8 37

Overlap between effects Right inferior frontal gyrus/
orbitofrontal cortex

44 40 �6 12.7 33

Abbreviations: HC, healthy control group; HR, high-risk group; LR, low-risk group; MA, methamphetamine-dependent group; MNI, Montreal Neurological Institute;
SPM, statistical parametric mapping.
aRegions that survived after entering age, sex and education as covariates.
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and outcome measures were not correlated, suggesting that
outcomes were independent of withdrawal. In addition, data
were obtained at only one point following a brief abstinence
period; differences in brain activation may vary with time.
Third, our method for combining genotypes was based on one
prior study in a prison population,51 and generalization to other
populations is uncertain; however, our results using both
combined and individual variants (see Supplementary Materials)
support using this strategy more broadly. Finally, comparable
amygdala activation between negative and neutral faces calls
into question the psychological significance of the probe
task. However, although broad, the measured psychological
operation (‘detection of socially salient environmental cues’)
appears highly relevant to aggression, and as such, mean-
ingful to investigate. Potential reasons for comparable
amygdala activation between stimulus types are small sample
size/low statistical power, attribution of negative valence to
neutral faces73,74 or general role of the amygdala in detecting
socially relevant stimuli rather than merely threat.75

In summary, this study adds to our understanding of
genotype- and MA-related modulation of aggression and
social–cognitive neurocircuitry, suggesting that differences
associated with MA abuse occur independently of, and in
addition to, the predisposing influence of SERT genotype; it is
therefore important to recognize that in a certain proportion of
MA-dependent individuals, mere abstinence from MA or
attention to MA-use effects will not be sufficient in decreasing
propensity for aggression and violence (and, thereby, mini-
mizing risk for stress-induced relapse). At the same time, the
findings point to right ventrolateral PFC as a potential
biomarker for both MA- and genotype-related aggression,
suggesting that modulation of its function may allay this
behavior regardless of its source. In light of these findings,
continued investigation of socio-emotional function and its
neurobiological underpinnings will be critical in addressing
problematic behaviors and developing appropriate strategies
for intervention.
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