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araGWAB: Network-based boosting 
of genome-wide association studies 
in Arabidopsis thaliana
Tak Lee & Insuk Lee

Genome-wide association studies (GWAS) have been applied for the genetic dissection of complex 
phenotypes in Arabidopsis thaliana. However, the significantly associated single-nucleotide 
polymorphisms (SNPs) could not explain all the phenotypic variations. A major reason for missing true 
phenotype-associated loci is the strict P-value threshold after adjustment for multiple hypothesis tests 
to reduce false positives. This statistical limitation can be partly overcome by increasing the sample 
size, but at a much higher cost. Alternatively, weak phenotype-association signals can be boosted by 
integrating other types of data. Here, we present a web application for network-based Arabidopsis 
genome-wide association boosting—araGWAB—which augments the likelihood of association with 
the given phenotype by integrating GWAS summary statistics (SNP P-values) and co-functional 
gene network information. The integration utilized the inherent values of SNPs with subthreshold 
significance, thus substantially increasing the information usage of GWAS data. We found that 
araGWAB could more effectively retrieve genes known to be associated with various phenotypes 
relevant to defense against bacterial pathogens, flowering time regulation, and organ development 
in A. thaliana. We also found that many of the network-boosted candidate genes for the phenotypes 
were supported by previous publications. The araGWAB is freely available at http://www.inetbio.org/
aragwab/.

Genome-wide association studies (GWAS) have greatly altered the approach to studying complex phenotype 
genetics. GWAS have been utilized to map >50,000 unique single-nucleotide polymorphism (SNP)-phenotype 
associations in humans to date1. GWAS have also been applied to study complex phenotypes in several animals 
and plants. As a reference plant, Arabidopsis thaliana is an ideal organism for GWAS because its inbreeding 
nature allows the preservation of the genotypic information of samples2. Therefore, the genotypic information 
can be reused for association mapping for different phenotypes, enabling cost-effective GWAS. For example, the 
genotyping of 199 natural accessions using a custom Affymetrix 250 k SNP chip was applied to identify candidate 
genomic loci and genes associated with 107 distinct phenotypes3. With sequencing-based genotyping, GWAS 
have been applied to various crop species as well4.

Despite having an enormous impact on genetics in humans and plants, GWAS are still influenced by “missing 
heritability,” in which the identified phenotype-associated SNPs cannot explain all of the phenotypic variations5. 
One major reason for missing true phenotype-associated genes is the very strict significance thresholds applied 
in GWAS to reduce false positives when testing the associations of numerous SNPs simultaneously. The strict 
P-value thresholds after adjustment for multiple hypothesis tests such as the Bonferroni correction generally 
allow only a handful of SNPs to be significant (Fig. 1A). Genetic variants associated with complex phenotypes 
are distributed across many genes in the phenotype-involved pathways, which results in genetic heterogeneity6, 
where phenotype-associated variants occur in only a subset of a population for the phenotype, consequently 
reducing the statistical power of the association between a single variant and the phenotype. Presumably, this 
statistical limitation may be overcome somewhat by increasing the population size; but at a much higher cost. 
The pathway nature of complex phenotypes also provides an opportunity for augmenting GWAS by integrating 
phenotype-association data via the co-functional gene network, which maps the functional couplings between 
genes. To rescue highly probable candidates with subthreshold significance by GWAS alone, a method involving 
network-based boosting of GWAS signals has been proposed7, with a companion web application developed for 
humans8.
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Because the numbers of GWAS in A. thaliana and crop species continue to grow, GWAS augmentation would 
facilitate the study of complex phenotypes in plants. Here, we present a web application for the network-based 
Arabidopsis genome-wide association boosting, araGWAB (http://www.inetbio.org/aragwab/), which augments 
the likelihood of association with the given phenotype by integrating GWAS summary statistics (SNP P-values) 
and co-functional gene network information. We found that araGWAB could more effectively retrieve genes 
known to be associated with defense against bacterial pathogens, flowering time regulation, and organ develop-
ment in A. thaliana. Many of the network-boosted candidate genes were also supported in the literature.

Methods
Overview of the network-based boosting of GWAS data.  Many previous studies have shown that 
the genes for the same complex phenotypes tend to be connected in co-functional gene networks9. Therefore, 
we hypothesized that genes that have subthreshold GWAS significances but that functionally connect to signif-
icant GWAS candidate genes are also likely to be associated with the phenotype. To use the gene-centric signifi-
cance information, araGWAB first allocates SNP P-values to genes based on chromosomal proximity (Fig. 1B), by 
assigning the best P-value within the user-defined distance from the beginning or end of the gene.

The araGWAB boosts the original GWAS signals using “soft” guilt-by-association (GBA)7 (Fig. 1C–D) with 
a co-functional gene network of genes in A. thaliana10. We implemented a soft GBA using (pj − (1 − pj), where pj 
is the probability of phenotype involvement of gene j. The total GBA score of gene i, Si, was calculated from the 
network neighboring gene j as follows:

S p l(2 1) (1)i j j j ij∑= −

where, lij is the weight of the link that connects genes i and j. The soft GBA only sums those j when 2pj − 1 > 0. 
Thus, only genes that are very strongly associated with the phenotype provided full weights during the GBA. 
Assuming that the network and GWAS data are conditionally independent, they can be integrated by a naïve 
Bayesian framework. Then, the posterior log odds (the final araGWAB score) that gene i was associated with the 
phenotype for the given network data (Dnet) and GWAS data (DGWAS) was calculated as follows:

Figure 1.  Overview of the network-based boosting of GWAS signals by araGWAB. First, araGWAB takes 
GWAS summary statistics (SNP P-values) (A) and then assigns them to genes by chromosomal proximity (B). 
The significance of the phenotype-association for each gene is based on the assigned P-value, which is overlaid 
on a co-functional network of Arabidopsis genes, AraNet (C). The significance of each gene is boosted by guilt-
by-association, resulting in additional candidate genes (e.g., Gene D) for the phenotype (D).

http://www.inetbio.org/aragwab/


www.nature.com/scientificreports/

3Scientific REPOrTS |  (2018) 8:2925  | DOI:10.1038/s41598-018-21301-4

∈ | = + ∈ |log O i D D D S log O i D D( ) ( ) (2)net GWAS i GWAS

where, log O i D D( )GWAS∈ |  is the log odds of association with the phenotype obtained from the GWAS data.
The shortcoming of network-based boosting is that the final araGWAB score for hub genes that connect to 

many other genes with low significance can be greatly boosted, potentially resulting in false positives. To reduce 
this type of artifact, araGWAB uses a P-value threshold to restrict the genes that contribute to the boosting pro-
cess. For a given P-value threshold, araGWAB evaluates prediction quality for the given phenotype by calculating 
the retrieval rate of “reference phenotype-associated genes,” which are known to be involved in the phenotype 
(positives) and the other genes (negatives), resulting in receiver operating characteristic (ROC) curves. We uti-
lized the area under the ROC curve (AUC) as a function of prediction quality for the given P-value threshold. 
Because only high-ranked candidates were considered for follow-up studies in general, we determined the predic-
tion quality based on AUC before the 5% false-positive rate (AUC [<5% FPR]). For each phenotype, predictions 
were made by the optimal P-value threshold that achieved the maximum AUC (<5% FPR) score.

GWAS data, co-functional gene network, and reference phenotype-associated genes.  We 
developed the araGWAB by analyzing the GWAS data from a study of 107 phenotypes3. Because the P-values 
for all SNPs were not available for the 107 GWAS datasets, we calculated them using Efficient Mixed-Model 
Association software11. Mixed models are known to over-represent the phenotype associations for SNPs with a 
minor allele frequency ≤0.13. To avoid this over-representation, we used only the 178,623 SNPs that had a minor 
allele frequency >0.1 to calculate the P-values. The effectiveness of network boosting is significantly influenced 
by the quality of the co-functional gene network. For network boosting, we applied the latest version of AraNet 
(version 2)12, which is known as the most accurate and comprehensive co-functional gene network of genes for 
A. thaliana.

To assess the performance of network boosting, we utilized reference phenotype-associated gene sets for each 
of the phenotypes. We generated reference phenotype-associated gene sets by compiling Gene Ontology biolog-
ical process (GOBP)13 terms that were relevant to each phenotype. Because we also utilized GOBP information 
to train the co-functional gene network for boosting (AraNet), there could be a circularity in the assessment of 
the boosting effect. To evaluate the boosting effect in a highly conservative manner, we excluded the GOBP genes 
that were previously utilized for the training of AraNet. We also removed GOBP genes annotated by evidence of 
low reliability such as ND (No biological data available) and NAS (Non-traceable Author Statement). Finally, we 
could generate reference phenotype-associated gene sets for only 64 of the 107 phenotypes.

Web server implementation.  The araGWAB server has a front-end system that provides a user interface 
and a back-end system that performs data preprocessing and network boosting. To conduct network boosting 
for a GWAS, users need to submit GWAS summary statistics (P-values) for all tested loci and a set of refer-
ence phenotype-associated genes. In addition to the input data, several parameters need to be chosen by users. 
Genotyping of A. thaliana natural accessions have been conducted based on various genome builds (TAIR714, 
TAIR814, and TAIR1015). Thus, users need to choose the correct version of the genome build for the given GWAS 
data. Users can also choose a range for the chromosomal distance between SNPs and genes (10 kb by default) for 
assigning P-values to the genes. Using the given input data, araGWAB sequentially performs assigning P-values 
to genes, integrating GWAS data and network data, and assessing the boosting efficiency for the given P-value 
threshold.

Boosting efficiency is assessed for the user-input reference phenotype-associated genes by the AUC (<5% 
FPR) score. To measure the significance of the observed boosting efficiency for the given network, araGWAB 
repeats the whole network boosting process for 100 randomized networks with the same parameter settings. To 
identify the optimal P-value threshold for boosting a given GWAS, araGWAB repeats the analysis over various 
P-value thresholds within a given range (−6 < log10(P) < −2 by default) with a set interval (0.3 by default). The 
P-value that maximizes the AUC (<5% FPR) score is selected as the optimal threshold. Finally, araGWAB pro-
vides a summary graph that presents the AUC (<5% FPR) scores calculated by AraNet and randomized networks 
across the range of log10(P) thresholds and other input parameters used for the given GWAS boosting. AUC (<5% 
FPR) scores that surpass the deviations of randomized networks indicate a significant GWAS boosting. Users can 
then download reprioritized genes with the final araGWAB scores for the optimal P-value threshold.

Phenotype Description

As2CFU2 In planta bacterial growth (number of CFU/leaf area) of the five P. viridiflava strains were individually measured

At1CFU2 In planta bacterial growth (number of CFU/leaf area) of the five P. viridiflava strains were individually measured

Bacterial titer Bacterial titers of Pseudomonas syringae pv. tomato DC3000

FLC FLC gene expression level

FRI FRI gene expression level

LD Days to flowering time under 16 h daylight, 18 °C

LDV Days to flowering time under 16 h daylight, 18 °C, vernalized (5 wks, 4 °C)

Leafserr10 Level of leaf serration of plants grown in 10 °C

Trichomeavg JA Trichome density measured after jasmonic acid treatment

Table 1.  Nine phenotypes that were efficiently boosted by araGWAB.
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Results
We conducted GWAS boosting for 64 of the 107 phenotypes for which we could compile appropriate reference 
phenotype-associated genes from GOBP annotations. Among the analyzed 64 phenotypes, GWAS signals for 9 
phenotypes (Table 1) involved in the defense against bacterial pathogens (As2CFU2, At1CFU2, and Bacterial titer; 
Fig. 2A–C), flowering time regulation (Flowering Locus C [FLC], FRI, LD, and LDV; Fig. 2D–G), and organ devel-
opment (Leafserr10 and Trichomeavg JA; Fig. 2H–I) in A. thaliana were effectively boosted by araGWAB. Network 
boosting for all other phenotypes showed no significant improvement in retrieving reference phenotype-associated 
genes, indicated as AUC (<5% FPR) scores by araGWAB stayed within two standard deviations of 100 randomized 
networks for the entire range of the P-value threshold. In all nine phenotypes, network boosting retrieved reference 
phenotype-associated genes most efficiently (indicated by highest AUC (<5% FPR) score by araGWAB) using only 
SNPs that passed the optimal log10(P) threshold: −3 for As2CFU2, −3.6 for At1CFU2, −3.6 for Bacterial titer, −2.4 
for FLC, −2.1 for FRI, −3.9 for LD, −4.2 for LDV, −3.3 for Leafserr10, and −3.9 for Trichomeavg JA. The araGWAB 
server returned reprioritized candidate genes for each phenotype by network boosting with the optimal P-value 
threshold. Pre-calculated results of network boosting for the nine phenotypes are available from the web site.

Next, we sought for supporting evidence from the literature for the top 20 candidate genes (excluding ref-
erence phenotype-associated genes) by network boosting for each of the 9 phenotypes. For all 9 phenotypes, a 
total of 40 network-boosted candidates (40/180 = 22.2%) were supported by direct evidence (e.g., mutant phe-
notype assay) or indirect evidence (e.g., expression analysis and protein-protein interactions) in the literature 
(Supplemental Table S1). For example, among the top 20 network-boosted candidates for “the days to flowering 

Figure 2.  Performance of network boosting of GWAS signals by araGWAB. The retrieval efficiencies of the 
user-input reference phenotype-associated genes by araGWAB (red line), GWAS alone (blue dotted line), and 
100 randomized gene networks (grey region for two standard deviations) were measured by the area under 
the receiver operating characteristic curve (AUC) before 5% false positive rate (AUC (<5% FPR), y-axis) for 
the given range of the log10(P) threshold (x-axis). The vertical pink line denotes the optimal P-value threshold. 
Here, we showed the performance curves for nine phenotypes: (A–C) phenotypes for defense against bacterial 
pathogens, (D–G) phenotypes for flowering time regulation, and (H and I) phenotypes for organ development.
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time under 16 h daylight, 18 °C” (LD) phenotype, six genes were supported by evidence in the literature (Fig. 3, 
nodes with red borderlines). We found that only two of the genes (AT5G1014016 and AT1G2277017) could be 
identified with the original GWAS signal alone. In fact, AT5G10140 is a well-known transcription factor involved 
in flowering time regulation, i.e., FLC. We predicted FLC to be a new candidate gene because it was used for 
training AraNet, and thus was excluded from the reference phenotype-associated genes. Nevertheless, this also 
demonstrated that araGWAB effectively retrieved known phenotype-associated genes. As expected, four other 
literature-supported candidate genes (AT1G2736018,19, AT3G2873020, AT3G0927018, and AT5G1502021) were 
largely boosted by network integration, as indicated by the large size of the nodes in the network.

Discussion
Network-based boosting of GWAS signals provides advantages for the discovery of phenotype-associated genes. 
First, it can effectively integrate information from population-based and molecular profiling studies. The com-
plementarity of these data was demonstrated by the fact that many phenotype-associated Arabidopsis genes were 
retrieved not by GWAS alone but by network-based boosting. Second, the integration enables utilization of the 
inherent value of SNPs with subthreshold significance, thus substantially increasing the information usage of 
GWAS data. Currently, the majority of the published GWAS for plants do not provide summary statistics for all 
SNPs. As clearly demonstrated in the present study, sharing the entire summary statistics data will potentiate 
GWAS for the genetic dissection of complex phenotypes in plants.

We obtained different optimal P-value thresholds for the best efficiency of network boosting in different 
GWAS. We reasoned that several factors affected the optimal P-value thresholds for the given GWAS. First, as 
mentioned above, hub genes that have many connected genes in the network are highly likely to be boosted by the 
network. If the given phenotype has many reference phenotype-associated genes that are network hubs, account-
ing for only SNPs with relatively high significance (i.e., SNPs with relatively low P-values) may retrieve many true 
positives by network boosting while minimizing the chances of introducing false positives. Second, phenotypes 
differ in their degree of genetic heterogeneity. If many genes with small effects contribute to the phenotype, 
including SNPs with low significance (i.e., SNPs with relatively high P-values) might improve the network boost-
ing. Third, the quality of GWAS data varies. High quality GWAS data may allow the use of SNPs with relatively 
low significance for network boosting with minimal probability of noise introduction.

Given that only 9 of the 64 analyzed phenotypes were boosted significantly, the current araGWAB requires 
improvement. The boosting effect relies on the original GWAS signals. Unless there are many genes significantly 
associated with the phenotype in the original GWAS, we cannot expect a considerable boosting effect by GBA. 
This issue can be partially resolved using restructured population and regional sampling in plant GWAS22. The 
quality of co-functional gene networks also influences boosting efficiency. Although AraNet is one of the most 
comprehensive networks of Arabidopsis genes (covers >84% of the coding genome), it still falls short in the 
complete reconstruction of biological processes. We might be able to boost more phenotypes by improving the 
co-functional gene network of A. thaliana in the future.

Since high-quality co-functional gene networks are available for non-model crop species23–26, we will be able 
to apply the same strategy of network-based boosting for GWAS on phenotypes of economic interest in crops. 
However, the majority of GWAS in crop species have not released raw genotype and phenotype data to the pub-
lic to date. Therefore, we highly recommend reporting summary statistics data of GWAS in crop species for 
follow-up research.

Figure 3.  A network of candidate genes by araGWAB for the LD phenotype. Only the genes with an araGWAB 
score >5.25 are shown. The intensity of the node color represents the significance by the original GWAS and 
node size represents the degree of network boosting by araGWAB. The nodes with red borderlines are candidate 
genes with literature support.



www.nature.com/scientificreports/

6Scientific REPOrTS |  (2018) 8:2925  | DOI:10.1038/s41598-018-21301-4

References
	 1.	 MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic acids 

research 45, D896–D901, https://doi.org/10.1093/nar/gkw1133 (2017).
	 2.	 Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29, https://doi.

org/10.1186/1746-4811-9-29 (2013).
	 3.	 Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631, 

https://doi.org/10.1038/nature08800 (2010).
	 4.	 Huang, X. & Han, B. Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65, 531–551, 

https://doi.org/10.1146/annurev-arplant-050213-035715 (2014).
	 5.	 Manolio, T. A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753, https://doi.org/10.1038/nature08494 

(2009).
	 6.	 McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217, https://doi.org/10.1016/j.cell.2010.03.032 

(2010).
	 7.	 Lee, I., Blom, U. M., Wang, P. I., Shim, J. E. & Marcotte, E. M. Prioritizing candidate disease genes by network-based boosting of 

genome-wide association data. Genome research 21, 1109–1121, https://doi.org/10.1101/gr.118992.110 (2011).
	 8.	 Shim, J. E. et al. GWAB: a web server for the network-based boosting of human genome-wide association data. Nucleic acids research 

45, W154–161, https://doi.org/10.1093/nar/gkx284 (2017).
	 9.	 Shim, J. E., Lee, T. & Lee, I. From sequencing data to gene functions: co-functional gene network approaches. Anim Cells Syst 21, 

77–83, https://doi.org/10.1080/19768354.2017.1284156 (2017).
	10.	 Lee, T. & Lee, I. AraNet: A Network Biology Server for Arabidopsis thaliana and Other Non-Model Plant Species. Methods in 

molecular biology 1629, 225–238, https://doi.org/10.1007/978-1-4939-7125-1_15 (2017).
	11.	 Kang, H. M. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723, 

https://doi.org/10.1534/genetics.107.080101 (2008).
	12.	 Lee, T. et al. AraNetv2: an improved database of co-functional gene networks for the study of Arabidopsis thaliana and 27 other 

nonmodel plant species. Nucleic acids research 43, D996–1002, https://doi.org/10.1093/nar/gku1053 (2015).
	13.	 Gene Ontology, C. Gene Ontology Consortium: going forward. Nucleic acids research 43, D1049–1056, https://doi.org/10.1093/nar/

gku1179 (2015).
	14.	 Kim, S. et al. Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39, 1151–1155, https://doi.org/10.1038/

ng2115 (2007).
	15.	 Lamesch, P. et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic acids research 

40, D1202–1210, https://doi.org/10.1093/nar/gkr1090 (2012).
	16.	 Michaels, S. D. & Amasino, R. M. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of 

flowering. The Plant cell 11, 949–956 (1999).
	17.	 Mizoguchi, T. et al. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. The Plant 

cell 17, 2255–2270, https://doi.org/10.1105/tpc.105.033464 (2005).
	18.	 Cao, D., Cheng, H., Wu, W., Soo, H. M. & Peng, J. Gibberellin mobilizes distinct DELLA-dependent transcriptomes to regulate seed 

germination and floral development in Arabidopsis. Plant physiology 142, 509–525, https://doi.org/10.1104/pp.106.082289 (2006).
	19.	 Schmid, M. et al. Dissection of floral induction pathways using global expression analysis. Development 130, 6001–6012, https://doi.

org/10.1242/dev.00842 (2003).
	20.	 Van Lijsebettens, M. & Grasser, K. D. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction 

of flowering. Plant signaling & behavior 5, 715–717 (2010).
	21.	 Gu, X., Wang, Y. & He, Y. Photoperiodic regulation of flowering time through periodic histone deacetylation of the florigen gene FT. 

PLoS biology 11, e1001649, https://doi.org/10.1371/journal.pbio.1001649 (2013).
	22.	 Brachi, B., Morris, G. P. & Borevitz, J. O. Genome-wide association studies in plants: the missing heritability is in the field. Genome 

Biol 12, 232, https://doi.org/10.1186/gb-2011-12-10-232 (2011).
	23.	 Lee, T. et al. RiceNetv2: an improved network prioritization server for rice genes. Nucleic acids research 43, W122–127, https://doi.

org/10.1093/nar/gkv253 (2015).
	24.	 Kim, H. et al. TomatoNet: A Genome-wide Co-functional gene Network for Unveiling Complex Traits of Tomato, a Model Crop for 

FleshyFruits. Molecular plant 10, 652–655, https://doi.org/10.1016/j.molp.2016.11.010 (2017).
	25.	 Lee, T. et al. WheatNet: a Genome-Scale Functional Network for Hexaploid Bread Wheat, Triticum aestivum. Molecular plant 10, 

1133–1136, https://doi.org/10.1016/j.molp.2017.04.006 (2017).
	26.	 Lee, T., Kim, H. & Lee, I. Network-assisted crop systems genetics: network inference and integrative analysis. Current opinion in 

plant biology 24, 61–70, https://doi.org/10.1016/j.pbi.2015.02.001 (2015).

Author Contributions
T.L. and I.L. conceived the project. T.L. developed software under supervision of I.L. T.L. and I.L. wrote the 
manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21301-4.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1093/nar/gkw1133
http://dx.doi.org/10.1186/1746-4811-9-29
http://dx.doi.org/10.1186/1746-4811-9-29
http://dx.doi.org/10.1038/nature08800
http://dx.doi.org/10.1146/annurev-arplant-050213-035715
http://dx.doi.org/10.1038/nature08494
http://dx.doi.org/10.1016/j.cell.2010.03.032
http://dx.doi.org/10.1101/gr.118992.110
http://dx.doi.org/10.1093/nar/gkx284
http://dx.doi.org/10.1080/19768354.2017.1284156
http://dx.doi.org/10.1007/978-1-4939-7125-1_15
http://dx.doi.org/10.1534/genetics.107.080101
http://dx.doi.org/10.1093/nar/gku1053
http://dx.doi.org/10.1093/nar/gku1179
http://dx.doi.org/10.1093/nar/gku1179
http://dx.doi.org/10.1038/ng2115
http://dx.doi.org/10.1038/ng2115
http://dx.doi.org/10.1093/nar/gkr1090
http://dx.doi.org/10.1105/tpc.105.033464
http://dx.doi.org/10.1104/pp.106.082289
http://dx.doi.org/10.1242/dev.00842
http://dx.doi.org/10.1242/dev.00842
http://dx.doi.org/10.1371/journal.pbio.1001649
http://dx.doi.org/10.1186/gb-2011-12-10-232
http://dx.doi.org/10.1093/nar/gkv253
http://dx.doi.org/10.1093/nar/gkv253
http://dx.doi.org/10.1016/j.molp.2016.11.010
http://dx.doi.org/10.1016/j.molp.2017.04.006
http://dx.doi.org/10.1016/j.pbi.2015.02.001
http://dx.doi.org/10.1038/s41598-018-21301-4
http://creativecommons.org/licenses/by/4.0/

	araGWAB: Network-based boosting of genome-wide association studies in Arabidopsis thaliana

	Methods

	Overview of the network-based boosting of GWAS data. 
	GWAS data, co-functional gene network, and reference phenotype-associated genes. 
	Web server implementation. 

	Results

	Discussion

	Figure 1 Overview of the network-based boosting of GWAS signals by araGWAB.
	Figure 2 Performance of network boosting of GWAS signals by araGWAB.
	Figure 3 A network of candidate genes by araGWAB for the LD phenotype.
	Table 1 Nine phenotypes that were efficiently boosted by araGWAB.




