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Abstract: As the existing processing algorithms for LiDAR echo decomposition are time-consuming,
this paper proposes an FPGA-based improved Gaussian full-waveform decomposition method. The
proposed FPGA architecture consists of three modules: (i) a pre-processing module, which is used
to pipeline data reading and Gaussian filtering, (ii) the inflection point coordinate solution module,
applied to the second-order differential operation and to calculate inflection point coordinates, and
(iii) the Gaussian component parameter solution and echo component positioning module, which
is utilized to calculate the Gaussian component and echo time parameters. Finally, two LiDAR
datasets, covering the Congo and Antarctic regions, are used to verify the accuracy and speed of the
proposed method. The experimental results show that (i) the accuracy of the FPGA-based processing
is equivalent to that of PC-based processing, and (ii) the processing speed of the FPGA-based
processing is 292 times faster than that of PC-based processing.

Keywords: LiDAR; echo processing algorithm; Gaussian decomposition; FPGA

1. Introduction

LiDAR (light detection and ranging) provides a significant means to acquire three-
dimensional (3D) data [1]. LiDAR waveform analysis and decomposition is one of the most
important research areas in LiDAR systems.

A lot of methods, considering different detection areas and the LiDAR operation
environments, have been proposed over the past of decades. For example, Hofton et al. [2]
proposed the Gaussian decomposition algorithm and evaluated the accuracy of the de-
composition results using the root mean square error (RMSE). The key parameters of the
Gaussian components include their amplitude, center position, and pulse width. Abdal-
lah et al. [3] presented an underwater LiDAR waveform simulation model algorithm, which
divides the returned waveforms in a water body into three parts: the water surface, the
water body, and the water bottom. Cheng et al. [4] used the peak position of the GLAS
(spaceborne earth science laser altimeter system) waveform to extract the relative height of
ground targets and calculated the height of the building by identifying the peak position of
the rooftop and the ground peak position in the waveform [5]. Gong et al. [6] used ICESat
GLAS LiDAR data for urban environmental monitoring. In their study, the Gaussian decom-
position method was used to estimate the height and density of buildings. Wang et al. [7]
reviewed the methods involved in GLAS data processing and summarized some of the
challenges faced, considering how to make better use of GLAS data. Brodu et al. [8] used 3D
LiDAR to classify complex natural scene data under multi-scale criteria. Compared with the
single-scale method, multi-scale analysis enhances the separability and spatial resolution
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of classification. Kinzel et al. [9] used the peak detection method in the RARRL software
(which comes with the LiDAR system) in order to perform a second-order derivation of
the echo waveform. Zhuang et al. [10] proposed an accurate and efficient ground peaking
algorithm for a large “footprint” of LiDAR data. This algorithm sequentially combines
a set of multi-scale second-order derivative filters and K-means clustering algorithms to
avoid detecting “false” ground peaks. Pan et al. [11] used the wavelet decomposition
algorithm to obtain the peak and position of the base reflectivity. Li et al. [12] proposed the
use of small-footprint full-wave airborne LiDAR data to generate pseudo-large footprint
waveforms for the hierarchical inversion of the orchard leaf area index. Liu et al. and
Ma et al. [13,14] reviewed LiDAR echo processing algorithms and divided the existing
LiDAR echo processing algorithms into mathematical simulation, deconvolution, and peak
detection methods. Bruggisser et al. [15] proposed an algorithm that uses a tilted normal
distribution function for waveform decomposition for tree species classification. Moun-
trakis et al. [16] proposed a linear approximate Gaussian decomposition algorithm, also
known as the linear approximate iterative Gaussian decomposition (LAIGD) algorithm.
Budei et al. [17] used Teledyne Optech’s multispectral airborne LiDAR (equipped with
1550 nm, 1064 nm, and 532 nm lasers) to identify tree genus or species. Song et al. [18,19]
proposed a multi-spectral waveform decomposition method, which makes use of the prin-
ciple that lasers of different wavelengths (556 nm, 670 nm, and 780 nm) have different
reflectivity characteristics for the same target. Zhou et al. [20] proposed supercontinuum
laser hyperspectral LiDAR, where the laser hyperspectral echo signals at 50 band covering
400~900 nm at a spectral resolution of 10 nm are reflected by the ground target.

With the development of detection technology, it is extremely urgent to quickly obtain
the information contained in LiDAR echoes. In order to obtain information at near real-time,
traditional methods have to handle the LiDAR waveform data on a personal computer (PC).
Such traditional methods have the following shortcomings: (i) as a PC is a serial instruction
system, the processing speed makes it difficult to meet the demand of time urgency, thus
leaving the abundant echo resources underutilized, (ii) the LiDAR system collects a lot of
data, which leads to large storage and post-processing, and (iii) the large amount of data
generated in the process of LiDAR detection leads to post-processing, making it difficult
to meet the needs of real-time detection. For the reasons above, this paper proposes an
FPGA-based LiDAR echo Gaussian decomposition algorithm. The contributions of this
paper are as follows:

(i) proposing a new LiDAR echo Gaussian decomposition algorithm, which utilizes a
pair of the Gaussian inflection points and eliminates the “false” inflection points using
a judgment condition;

(ii) paralleling the proposed algorithm with a FPGA hardware architecture;
(iii) validating the accuracy and timeliness of the proposed method using two LiDAR

datasets covering the Congo and Antarctic regions, respectively.

2. Improved Gaussian Decomposition Algorithm
2.1. Pre-Processing

LiDAR waveforms are usually superimposed as the sum of all reflected signals of
the detected target mixed with background noise [21,22], which usually contains a large
amount of high-frequency noise. The random fluctuations of these noises greatly reduce the
accuracy of the final fit. When obtaining the amplitude of the Gaussian component in the
hardware structure, it is necessary to obtain the maximum value out of the inflection points
of the original echo waveform. Thereby, it is necessary to obtain the first derivative of this
segment of the waveform in order to estimate the amplitude. If the waveform contains a
lot of noise, a few complicated comparison methods are required to obtain the amplitude,
which undoubtedly increases the complexity of the hardware structure. Therefore, a LiDAR
waveform should be pre-processed before the LiDAR waveform is decomposed, which
includes noise estimation and Gaussian filtering. Through the two steps, the existence of a
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large number of “false” inflection points, which impact the solution of Gaussian component
parameters, can be removed.

Gaussian filtering for smoothing the background noise and facilitating the subsequent
processing of LiDAR waveforms is expressed [22] by

f (x) =
1√
2πδ

exp(− x2

2δ2 ), (1)

where x represents the sampling time and δ represents the pulse width of the fitted transmit
waveform. The larger the value of δ, the wider the frequency band of the Gaussian filter.

The calculation is carried out by using a specified template (or convolution mask) to
scan each response strength in the echo waveform and replaces the response intensity value
at the center of the template according to the response strength determined by the template.
In this paper, the width of the Gaussian filter was set to 3 σt and the length was set to 10 σt
(the high-speed AD sampling period), as shown in Figure 1.

Figure 1. Comparison of LiDAR waveform and filtered waveform.

When evaluating the noise of the full echo waveform, the beginning and end of the
LiDAR echo waveform are both regarded as inactive and stable. The first 50 points of the
echo signal are used to estimate the noise level, as shown in Figure 1. The area delimited
by the two arrows represents the area used for evaluating the noise, where the first column
of the table represents the time point and the second column represents the amplitude
value corresponding to each time point, which is regarded as the background of the LiDAR
waveform noise.

2.2. Inflection Point Coordinate Solution

According to the Gaussian decomposition algorithm [23] and the principle of the Gaus-
sian function, two inflection points are obtained by taking the second-order derivative of
the Gaussian function. The pulse width, half-wave width, and center position are directly
dependent on the accuracy of the coordinates of the inflection points. The amplitude value
depends on a certain value of the echo waveform between the inflection points. Therefore, it is
necessary to obtain the exact inflection point coordinates before calculating the characteristic
parameters (i.e., initial position, pulse width, half-wave width, and amplitude).

Previous research for solving the Gaussian inflection point has not specified the
number of the inflection points [1,24]. This paper proposes pairing the Gaussian inflection
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points, where every fourth Gaussian inflection point is labelled as a Gaussian component.
The conditions for finding the inflection points were refined using Equations (4) and (5).
Before finding an inflection point, it was necessary to find the second-order difference of
the LiDAR echo (i.e., to find the second-order derivative; see Figure 1). The process of
obtaining the second-order difference from the Gaussian function is proposed by

∆(∆y(x)) = y(x + 2) + y(x)− 2× y(x + 1). (2)

where x is the time sample and x = 0, 1, . . . ; y(x) is the amplitude sample at time x.
The following situations may be encountered, as shown in Figure 2, when calculating

the second difference using Equation (2).

Figure 2. Comparison of the LiDAR waveform and the waveform after the second-order derivation.

In Figure 2, the blue line represents the LiDAR waveform, which can be decomposed
into three Gaussian components which are the parts 1, 2 and 3, while the red line represents
the waveform after the second-order derivation. After putting the LiDAR waveform and
the second-order differential waveform into a diagram to find the second-order difference,
it can be more significantly observed that each Gaussian component corresponds to a
downward “spike”. The intersection of the second-order difference of the waveform
and the x-axis is the inflection point of the Gaussian component and each LiDAR echo
component corresponds to two inflection points, indicating that two adjacent odd–even
inflection points, i.e., x2i−1 and x2i, can determine a Gaussian component.

When the left and right inflection points of the Gaussian component are zero, the two
inflection points are obtained. When the left and the right inflection points of the Gaussian
component are zero, the two inflection points are obtained. However, sampling of the LiDAR
echo results in the time-series, which is always discrete and, so, it is not always zero. Therefore,
when calculating the inflection point of the LiDAR echo (the step length of x is set to 1), the
inflection point on the left, x2i−1, is determined by the adjacent coordinates, x2i−1,le f t, y2i−1,le f t
and x2i−1,right, y2i−1,right, of the upper and the lower sample points, which after second-order
differencing are closest to the x-axis, while x2i−1 matches the nearest inflection point, x2i,
which needs the following to be satisfied: y2i−1,le f t < 0 and y2i−1,right < 0. Then, x2i−1 and
x2i are used to determine an undetermined Gaussian component. A total of four adjacent
coordinates of the sample point are required to determine a Gaussian component. Therefore,
the judgment of an undetermined Gaussian component is given by (see Figure 3):
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yweight_i =


1 i f

{
(y2i−1 = 0)

∣∣∣∣∣∣(y2i−1,le f t > 0 & & y2i−1,right > 0)
}

& &{
(y2i = 0)

∣∣∣∣∣∣(y2i,le f t < 0 & & y2i,right > 0)
}

0 else

, (3)

where yweight_i represents the undetermined Gaussian component and x2i−1 and x2i represent
the left and right inflection points of the undetermined Gaussian component, respectively.

Figure 3. Inflection points near coordinates representation.

The adjacent coordinates of the two inflection points corresponding to the Gaussian
component of the LiDAR waveforms are (536, 0.1464), (537, −0.0005684), (570, −0.05633),
and (571, 0.05664), respectively (see Figure 3). As each pair of Gaussian inflection points
requires four proximity coordinates, we substituted the above four coordinates into Equa-
tions (4) and (5) to obtain the specific locations of the left inflection point, x2i−1, and the
right inflection point, x2i.

x2i−1 = x2i−1,left +
y2i−1,left

y2i−1,left+
∣∣∣y2i−1,right

∣∣∣ , (4)

x2i = x2i,left +
y2i,right

y2i,right+
∣∣∣y2i,left

∣∣∣ , (5)

where x2i−1,left, y2i−1,left and x2i−1,right, y2i−1,right represent the adjacent coordinates of the
two inflection points.

2.3. Gaussian Component Parameter Solution

The parameters (such as amplitude, center position, pulse width, and half wave width)
are implicit in a single Gaussian waveform (see Figure 4). According to the inflection point
coordinate solution method described in Section 2.2, the left and right inflection points,
x2i−1 and x2i of the undetermined Gaussian component can be obtained, respectively. The
estimated value of the center position ci and the pulse width δi of each Gaussian component
are solved using the positions and intervals of consecutive inflection points. The relationship
for the center position ci and pulse width δi are calculated using Equations (6) and (7),
respectively [25]. The position and intensity (xmax, ymax) of the crest point, the corresponding
center position ci and amplitude ai can be determined using Equation (8).
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Figure 4. Analog echo waveform.

ci = (x2i−1 + x2i)/2, (6)

δi = |x2i−1 − x2i|/n, (7)

ai = ymax − µnoise, (8)

where x2i−1 and x2i represent a set of inflection points corresponding to the Gaussian
component, respectively; n represents the undetermined coefficient; ymax represents the
maximum amplitude; and µnoise represents the average background noise.

2.4. Echo Component Location

As different reflectors have different reflectivities in response to the laser, meanwhile,
the backscattering of the LiDAR occurs, which further interferes with the determination
the parameters of the LiDAR waveform. Simulation investigation of the LiDAR echo
signal based the models and the actual echo signal shown in Figure 4, including the echo
waveform and corresponding key parameters, i.e., the amplitude (ai), center position (ci),
pulse width (δi), and half-wave width (FWHM), was conducted. It can be observed, from
Figure 4 that the LiDAR waveform was not completely symmetrical from left to right, like
a high-beam waveform, where the left half of the echo component was more accurate, but
the right half of the waveform had a large deformation.

Traditional methods, such as the centroid method, determine the echo time as the
time corresponding to the local amplitude point; that is, the time point of the center
position [26,27]. Therefore, the echo moment is determined by calculating the average of
the center position and the transverse coordinates of the half-wave width FWHM and the
intersection of the waveform on the left using Equation (9). In turn, the effects of using
the right half-echo waveform component and the errors caused by a single reliance on the
amplitude corresponding to the moment of the location can be avoided.

ti = tmax − 0.25tFWHM, (9)

where ti represents the distance measurement point corresponding to the Gaussian com-
ponent, tmax represents the center position, and tFWHM represents the length of the half-
wave width.
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3. FPGA Implementation for the Improved Gaussian Decomposition Algorithm
3.1. FPGA Overall Hardware Architecture

In order to fast the calculation for the proposed algorithm above, an FPAG hardware
architecture is established (Figure 5a), mainly consisting of three modules, namely, the
pre-processing module, the inflection point coordinate solution module, and the Gaus-
sian component parameter solution and echo component positioning module. The pre-
processing module (see Figure 5b) includes the data reading and Gaussian filtering pipeline.
After reading the waveform of the LiDAR echo from RAM, the waveform enters the FPGA
through the pipeline, and the filtered waveform was obtained after the Gaussian filter-
ing convolution operation. The second module is for inflection point coordinate solution
(see Figure 5c). The data is divided into two channels after the second-order differential
operation—one is stored in RAM, while the other enters the state machine for detection.
The coordinates that meet the requirements are stored in FIFO-A and FIFO-B and inter-
polation is used to calculate the inflection point coordinates. The third module involves
the solution of the Gaussian component parameters and echo component positioning (see
Figure 5d). The Gaussian component and echo time parameters are obtained through this
step. The details of FPGA-based implementation for each module are described in the
following sections.

Figure 5. FPGA architecture: (a) overall architecture; (b) pre-processing architecture; (c) inflec-
tion point coordinate solution architecture; (d) Gaussian component parameter solution and echo
component positioning architecture.

3.2. Submodule
3.2.1. Pre-Processing Module

The pre-processing module includes a RAM data reading module and a Gaussian filter.
The RAM data are read in a pipeline structure, according to the parallel characteristics
of the FPGA. The structure of the Gaussian filter also needs to meet the requirements
of parallelism.

A. RAM data reading module

Pipeline processing is a commonly used design method for FPGAs [28,29]. In order to
meet the requirements of the subsequent filtering. The reading module is designed using
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a pipeline mode. The initial waveform of the LiDAR echo is stored in a RAM IP with a
width of 11 bits and a depth of 528/1024. The architecture for FPGA pipeline data reading
is shown in Figure 6.

Figure 6. RAM data read module.

As shown in Figure 6, the waveform values of the LiDAR echo are stored in RAM,
denoted as yi = {y1, y2, . . . , yn}. There are 20 variables, datai (I = 1, . . . , 20). In the first
cycle, t1, y1 is read from RAM and assigned to data1. In the second cycle, t2, y2 is read from
RAM and assigned to data1; at the same time, the value y1 of data1 in the previous cycle is
assigned to data2. By the twentieth cycle, t20, the value of data20 is assigned y1, the value of
data19 is assigned y2, and so on, until the value of data2 is y19 and the value of data1 is y20.
Data1 to data20 begun being output at the twenty-first period t21, where the output data
from data1 to data20 are y20 to y1. In the 22nd cycle, the output data from data1 to data20
are y21 to y2, and so on. The pipeline data reading module in each cycle simultaneously
outputs twenty values to the Gaussian filter module.

B. Gaussian filter module

The filter pulse response Equation (1) contains a lot of decimals and involves a lot of
floating-point operations, which result in difficulties for FPGA-based implementation, i.e.,
it consumes a lot of DSP arithmetic units [29,30]. Therefore, this paper transforms it into
shift, addition, and multiplication operations using the conversion shown in Equations (10)
and (11).

h = [0.0210, 0.0269, 0.0336, 0.0409, 0.0483, 0.0555, 0.0620, 0.0674, 0.0712, 0.0732, 0.0732, 0.0712, 0.0674,
0.0620, 0.0555, 0.0483, 0.0409, 0.0336, 0.0269, 0.0210].

(10)

After normalizing and rounding the above matrix, we have

A = 1/211[43, 55, 69, 84, 99, 114, 127, 138, 146, 150, 150, 146, 138, 127, 114, 99, 84, 69, 55, 43]. (11)

If the above data are directly shifted, the 11th bit of data will be lost. However, in order
to save the consumption of resources, ensure the accuracy requirements of the algorithm,
and balance the consumption of resources, a floating-point division IP core is added at the
end of the filter. The hardware structure is shown in Figure 7.
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Figure 7. Filter module.

The 20 integer multiplication IP cores and the 19 integer adder IP cores are used in the
filter hardware structure (see Figure 7). Starting from the 21st cycle, when data_fitting_en
is high, the variables data1 to data20 of the pipeline data reading module output 20 data.
The data output in RAM is multiplied by the 20 data from A1 to A20, respectively. The
design of the t0 column uses 20 integer multiplier IP cores, and the output is 20 data. The
design of the t1 column uses 10 integer adder IP cores, and so on, the t2 column uses five
integer adder IP cores. The t3 column uses two integer adder IP cores. At this time, there
is one datum left, and two data are output, or there are three data remaining, and two
additions are needed. The t4 column uses an integer adder IP core, which outputs one
datum. The t5 column uses an integer adder IP core, adds the output data in the t4 column
and the remaining data in the t2 column, and then outputs one datum. Finally, a 64-bit
floating-point multiplication IP core is used to reduce the data by 211, to form the output.
However, the second-order difference operation is required after filtering. The second-order
difference operations mainly include addition and subtraction, and the floating-point IP
core is good at processing multiplication/division operations, while consuming a lot of
resources when performing addition/subtraction operations. Therefore, we transferred
the double-precision floating-point division IP core that should have been added after
the Gaussian filter module to the last step of the second-order difference module; that is,
the double-precision floating-point IP core was added to the inflection point coordinate
solution sub-module.

3.2.2. Inflection Point Coordinate Solution Module

The inflection point coordinate solution module consists of a second-order difference
module, an inflection point coordinate query module, and an inflection point coordinate
calculation [31–33].

A. Second-order difference module

Two additions, one multiplication, and one subtraction in the second-order difference
module are involved. The architecture of the second-order difference operation is shown in
Figure 8. This module uses a total of 7 IP cores, including two 24-bit shift register IP cores,
two 24-bit integer addition register IP cores, a 25-bit integer subtraction register IP core,
and a 24-bit integer to floating-point IP core, respectively. The output data, Ddata, is 64-bit
floating point.
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Figure 8. Second-order differential module.

When the filtered data, F_data, is input, the second-order differential module and
the RAM data read module have the same pipeline read working mode. After two cycles
of buffering, three shift registers output at the same time; as shown in Equation (2),
the data of shift_RAM2 (y(x + 1)) plus itself constitutes the next subtraction. The data
y(x + 2) of shift_RAM1 plus the data y(x) of shift_RAM3 constitute the next subtracted
number. As integers cannot be directly input to the double-precision floating-point
division IP core, this method first uses an integer-to-double-precision floating-point IP
core, based on the previous step, to convert integer data into double-precision floating-
point; then, double-precision floating-point division is performed; finally, the 64-bit
double-precision floating-point data are output to the next module.

B. Inflection point coordinate query module

The output data, D_data, in Figure 8 are the 64-bit double-precision floating-point
data after the second-order difference operation, which are stored in RAM as the input
in Figure 9. Then, D_data is input into the floating-point comparison IP core in order to
compare the size of the input and zero. When the data is greater than 0, the output is 1;
when the data is less than 0, the output is 0. In general, the data after the second-order
difference operation ddy, corresponding to a set of inflection point coordinates x, is in the
form of . . . 11100 . . . 1 . . . Furthermore, the module designs a state machine (the specific
structure of the state machine is shown in Figure 10) to store all pairs of adjacent coordinates
(10, 01) of the inflection point in the RAM, which conform to Equation (3) into the FIFO.

Figure 9. Inflection point coordinate query module.
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Figure 10. Schematic diagram of state machine.

When the value of 10 is detected, the enable state of FIFO_A (FIFO_A_wr_en) is “1”,
and the coordinate x2i−1,left corresponding to 10 is stored in FIFO_A. Then, when the value
of 01 is detected, the enable state of FIFO_B (FIFO_B_wr_en)) is “1”, and the coordinate
x2i−1,right corresponding to 01 is stored in FIFO_B. Next, we use the value of FIFO_B is
used to subtract the value in the corresponding FIFO_A. If the value is less than 2, the echo
component, whose pulse width is less than 4 ns, is removed. If the value is greater than 5,
the values are shifted from FIFO_A and FIFO_B to FIFO_C and FIFO_D. The output is a
pair of adjacent coordinates corresponding to the inflection points x2i−1 and x2i.

C. State machine

The state machine has five states; namely, IDLE, positive, inflection point 1, negative,
and inflection point 2. Each state must detect the positive and negative states of two
consecutive points. Assuming a continuous sequence {1, 2, 3, 4, 5, . . . }, the first detection is
1 and 2, the second detection is 2 and 3, and so on. First, when the initial state is IDLE, check
whether the state of the data meets the state of 11; if not, the state is IDLE, and continue
to check whether the state of the next group of data meets the state of 11. If the status is
11, then jump to the next state: positive. When the current state is positive, the next group
sequence is detected, if the next group of data status is 11, the state is positive; otherwise,
the state is 10 is detected, and we jump to the next state: inflection point 1. When the
current state is inflection point 1, check the next set of data. If the next set of data state is
01, as the interval between inflection points 1 and 2 is too small, it is judged that this set of
inflection points are a “False turning point,” and the next state jumps to IDLE. If the state
of the next group of data is 00, then jump to the next state: negative. If the state of the next
group of data is 01, the next state is inflection point 2; if the current state is inflection point
2, no matter whether the state of the next group of data is 11/10, the next state will be IDLE.
Then, the group of obtained inflection points are judged. After judging a set of inflection
points, store the coordinates of inflection point 1 in FIFO_A and store the corresponding
inflection point 2 in FIFO_B.

D. Inflection point coordinate calculation module

As shown in Figure 11, the inflection point coordinates, x2i−1 and x2i, are calculated
using Equations (4) to (5). The abscissa of the coordinate near the inflection point is input
into RAM (Ddata), and the corresponding ordinate is output. Then, the absolute value,
addition, division, and addition operations are performed in parallel mode in order to
obtain a set of inflection points corresponding to Gaussian components.
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Figure 11. Inflection point coordinate calculation module.

3.2.3. Gaussian Component Parameter Solving and Echo Component Positioning Module

After calculating the inflection point, two sub-modules, a key parameter solving
module (with respect to the amplitude, ai, the center position, ci, and the pulse width, δi)
and the result output module, are designed. The details are described below.

A. Solving the amplitude ai

The calculation for the amplitude corresponding to each Gaussian component is shown
in Figure 12. First, the adjacent coordinates of the inflection point calculated in the previous
step are input into the module, and the original echo waveform is stored in RAM. Then,
part of the waveform, are according to the adjacent coordinates of the inflection point, and
set the read address of RAM to yaddra, such that the value range of yaddra is between the
two adjacent coordinates of the inflection point [32,33].

After extracting the data between the two inflection points, we extract the local max-
imum, ymax, is extracted from it. The intercepted part of the waveform is subjected to
the first-order difference operation, through shift_RAM. We compare the output results
each time. According to the principle of local maximum, the first half of the Gaussian
waveform is increasing, and the second half is decreasing, so the result of the difference
is . . . 111000 . . . If the condition 1100 is met, it is judged to be the address corresponding
to the maximum value, ymax, of this Gaussian component. Then, we input its address into
RAM (Ydata) and output the maximum value of the Gaussian component ymax. Finally, the
amplitude, ai, is calculated using Equation (8).

Figure 12. The calculation for the amplitude of each Gaussian component: (a) Solving for the
maximum value, ymax; (b) Solving for the amplitude ai.

B. Solving the center position ci, pulse width δi, and echo component positioning module
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With Equations (6) and (7), the module performs subtraction, addition, and multiplication
operations on the inflection points corresponding to a group of Gaussian components in order
to obtain the center position ci and pulse width δi of the Gaussian component. Then, it
performs multiplication and subtraction to obtain the echo time, ti, as shown in Figure 13.

Figure 13. Solving center position ci, pulse width δi, and result output module.

4. Experiments and Analysis
4.1. Data Sets

In order to verify the validity of the methods in this paper, experiments were conducted
using data from NASA’s airborne full-waveform LiDAR system (LVIS), where the study
areas are:

(1) The Congo. The experimental data were collected from February to March 2016, and
the flight area was Gabon, Africa. A Langley King Air B-200 aircraft was fitted with
an LVIS installation for data collection, flying at an average ground elevation of 24 km.
The nominal LVIS strip width was 1.5 km (200 mrad), and the nominal LVIS footprint
diameter was 18 m (2.5 mrad). There are a total of 400,000 sets of data in each set, and
the size of each data set is 1 × 1024.

(2) Antarctica. The experiment was carried out in the Antarctic region is 2011. The LVIS
was installed on NCAR’s G-V aircraft with an average ground altitude of 45 km. The
nominal LVIS strip width was 2.7 km (200 mrad), and the nominal LVIS footprint
diameter was 20 m (2.5 mrad). There are 700,000 sets of data in each set, and the size
of each data set is 1 × 528.

(3) Appendix A Figure A1 black waveform shows 20 sets of echo waveform data in the
land area of Congo, while Appendix B Figure A2 black waveform shows 20 sets of
echo waveform data in the ocean area of Antarctica. For the experiment, the echo
waveform of the measurement area was decomposed and located, which is mainly
divided into two categories: land and ocean. Vivado was used to test these 40 groups
of data in order to realize the real-time reliability and accuracy of the algorithm.

(4) In Appendix A Figure A1 black waveform, the abscissa is the sampling time point and
the ordinate is the amplitude of the waveform. This paper includes as many various
complex LiDAR echo waveforms as possible with different terrains, and the number
of Gaussian components of each LiDAR echo ranged from 3 to 6.

(5) In Appendix B Figure A2 black waveform, the abscissa is the sampling time point
and the ordinate is the amplitude of the waveform. Due to the small influence factors,
such as wind and waves, in the ocean area, the echo waveforms are simpler and have
fewer Gaussian components.

4.2. Echo Waveform Decomposition

The above forty groups of LiDAR waveforms were input into Vivado for simulation in
order to realize the decomposition of LiDAR waveforms. After fitting the parameters of the
Gaussian component, it was compared with the LiDAR waveform. It basically coincided
with the LiDAR waveform. The fitted waveforms of the two sets of experiments are shown
in Appendix A, Figure A1, and Appendix B, Figure A2, respectively.
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In Appendix A, Figure A1(a,b), the blue waveform shows only three Gaussian com-
ponents in each group of echo waveforms, and there are fewer echo components. Some
data had more echo components, such as those of the blue waveform in Appendix A,
Figure A1(h,i), where each group of echo waveforms contains five and six Gaussian compo-
nents, respectively.

Figure 14 presents the key parameters of LiDAR echo decomposition results in Congo.
The center position in Figure 14a and the content of the ranging point response in Figure 14d
are all relative elevations. In order to display the relative elevation data, we reversed the
y-coordinate direction of these two graphs. As the detection target is a tropical rain forest
area, the relative elevation of the two images can reflect the information of the detected
object from different angles. These Gaussian components may represent obviously different
levels of the canopy, underlying layer, and ground. The last Gaussian component of the
echo waveform is the farthest from the transmitted waveform, which represents the ground.
The pulse width in Figure 14b is related to the target surface roughness, mostly concentrated
between 7 and 16. The amplitude reflects the backscattering characteristics of the target,
where the main value range is less than 150. Comparing Figure 14b,c, it can be seen that
the physical properties of the target were basically the same.

Figure 14. LiDAR echo decomposition results in Congo: (a) Central position; (b) Pulse width;
(c) Amplitude; (d) Distance measuring point.

The detection area for Antarctica, as shown in Appendix B, Figure A2, was mainly
ocean and, so, the waveforms were relatively simple. The echo component was less
prominent. Compared with Appendix A, Figure A1, the pulse width of the echo waveform
is narrower, and the decomposition coefficient needs to be adjusted appropriately.

Detection targets on the sea surface are simple. The center position in Figure 15a and
the content of the ranging point in Figure 15d are all relative elevations. The first Gaussian
component of the echo waveform represents the sea surface. The y-coordinate direction
of these two plots was reversed. The relative elevation of the two images represents the
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shape of the sea surface. The pulse width in Figure 15b is related to the surface roughness
of the target. The amplitude of Figure 15c reflects the backscattering characteristics of the
target. The values between the two figures tended to the same interval, indicating that the
physical properties of the target were basically the same.

Figure 15. LiDAR echo decomposition results in Antarctica: (a) Central position; (b) Pulse width; (c)
Amplitude; (d) Distance measuring point.

4.3. Error Analysis of Echo Waveform Decomposition

For waveform decomposition algorithms, the most commonly used error analysis
standard is the root mean square error (RMSE) analysis method, as shown in Equation
(12) [25]. We used the RMSE to make a certain comparison between the fitted waveform
and the echo waveform, analyze the accuracy of the improved Gaussian decomposition
algorithm, and provide a comparison for the subsequent analysis of the accuracy of the
hardware structure.

RMSE =

√
1
n ∑n

i=1(yi − f (x))2, (12)

where f (x) represents the value of the fitted waveform and yi represents the laser radar
return waveform. These indicators reflect the overall accuracy of the fitted waveform
between the fitted waveform and the original waveform. The standard of fitting is shown
in Equation (13):

σT ≤ 3σn = ε, (13)

where σT represents the residual between the original and filtered data, σn represents the
residual between the original and fitted data, and ε represents the triple residual.

The land echo waveform shown in Appendix A Figure A1a,b, were analyzed, where
the FPGA run resulted in a double precision floating-point type.

The 64-bit double precision floating point type was converted to decimal, with two
decimal places retained (see Table 1). Table 1 shows the decomposition results of Ap-
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pendix A Figure A1a,b, Table 2 shows the result of MATLAB running and processing. The
parameters include echo number, central location, pulse width, amplitude, and root mean
square error (RMSE). The three parameters that make up the Gaussian component are
the center position, pulse width, and amplitude. Each Gaussian component represents a
different layer of the map. For example, each 2 ns corresponds to a one-way correction
range of 0.2997 m. As shown in the results in Table 1, the different reflection areas (canopy)
at these two footprint positions led to the following: (i) the average height detected in the
first group was 44.47 m, 18.21 m, and the ground, and (ii) the average height detected in
the second group was 26.54 m, 11.96 m, and the ground. The relative height of the ground
for the first and second groups was 0.47 m.

Table 1. FPGA terrestrial LiDAR echo decomposition results.

Number Echo
Number

Central Location
(Bins)

Pulse Width
(Bins)

Amplitude
(Counts) RMSE

Figure A1a 3
546.74 24.27 206.19

6.83631.87 14.41 40.71
692.96 15.60 37.33

Figure A1b 3
605.78 14.87 117.70

6.60655.82 7.10 38.72
693.81 12.64 43.41

Table 2. Matlab terrestrial LiDAR echo decomposition results.

Number Echo
Number

Central Location
(Bins)

Pulse Width
(Bins)

Amplitude
(Counts) RMSE

Figure A1a 3
546.74 24.27 206.03

6.83631.88 14.40 40.71
692.96 15.59 37.34

Figure A1b 3
605.78 14.86 117.63

6.60655.82 7.11 38.73
693.81 12.65 43.41

Comparing the results in Tables 2 and 3, the following was found:

(i) The deviation of the center position of the second Gaussian component in the first
group of waveforms was 0.01, and the rest were the same;

(ii) The pulse width error was generally 0.01;
(iii) The amplitude error was relatively large, ranging from 0 to 0.16, but the amplitude

value had no effect on the distance measurement point;
(iv) Half of the distance measurement point had an error of 0.01—that is, the error was

0.0029 m—and the ratio of the order of magnitude to the distance measurement of this
project was 10−2. Combining the above data, the result of FPGA operation basically
met the requirements.

The root mean square error was calculated for the forty sets of arithmetic results shown
in Appendix A, Figure A1, and Appendix B, Figure A2, as shown in Figure 16. The blue
line represents the error analysis for the land echo waveform, and the black line represents
the error analysis of the ocean echo waveform. The experimental results basically met the
requirements of error analysis.
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Figure 16. Error analysis of echo waveform.

The land echo waveform generally had more components and, so, the uncertainty of
the error analysis was greater. Compared with the land echo waveform RMSE, the error of
the ocean echo waveform was more stable. Although the land echo waveform was more
complicated than the ocean echo waveform, the root mean square error of the land echo
waveform in the whole was smaller than the root mean square error of the ocean echo
waveform. Generally speaking, the fitting result still met the requirements.

Table 3. FPGA hardware resource consumption (xc7z035ffg676-2).

Resources Consumption Percentage of Total Resources

FFs 3389 0.9%
LUTs 7215 60%

Memory LUTs 39.5 7.9%
DSP48s 32 3.5%

4.4. Processing Speed and Hardware Consumption Resource Situation

The use of Vivado simulation waveforms allowed for analysis of the deviation of calcu-
lation results between the FPGA and the PC, the processing speed, and the consumption of
hardware resources. The following were the main parameters of the PC: Windows 10 (64-bit),
Intel(R) Core (TM) i5-7200U CPU@2 GHz with 4G RAM, and the MATLAB 2016b software.
The selected chip was an XC7Z035FFG676-2 (Xilinx). The following were the main resources:
343,800 FFs, 11,900 LUTs, 500 Block Memory, and 900 DSPs. The price of PC and FPGA was
about USD 700 and USD 400, respectively, and the power consumption was about 65 W and
30 W, respectively.

From the perspective of FPGA resource consumption analysis, LUTs were used the most
in the hardware architecture of this paper, which was 7215; followed by 3389 FFs; 32 DSPs;
6.50 BRAMs; and 33 LUTRAM. In summary, the resource consumption (see Table 3) can be
summarized as follows: LUTs used the most (which is 60%); FFs used 0.9%; Block RAMs used
7.9%; and DSPs used 3.5%.

The running time on the PC was 12 ms, while the simulation time on the FPGA was
0.041 ms; thus, the time acceleration ratio was 292. Therefore, when the LiDAR with laser
emission frequency increased to 24 kHz, the algorithm was fully able to meet the real-time
requirements on the FPGA.
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5. Conclusions

In this paper, an improved Gaussian decomposition algorithm is proposed. The
corresponding FPGA-based hardware architecture is implemented, which consists of six
sub-modules: (1) pipeline data reading module, (2) Gaussian filtering module, (3) second-
order difference module, (4) inflection point calculation module, (5) parameter solving
module, and (6) output module. The functions of each sub-module are simulated through
Vivado to verify the improved Gaussian decomposition algorithm using the experimental
data. The decomposition errors of the echo signal waveform were analyzed.

Finally, a comparative analysis of the processing speed was conducted and the resource
consumption of the hardware structure was validated. The experimental results show
that the processing speed for the LiDAR full waveform decomposition using the proposed
method is 292 times faster than that using a PC-based processing system without losing the
accuracy of signal processing.
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Appendix A. LiDAR Waveform Data and LiDAR Echo Decomposition Waveform in
the Congo Region

Figure A1. Cont.
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Figure A1. (a–t) LiDAR waveform data and LiDAR echo decomposition waveform in the Congo
region. The abscissa is the sampling time point of the LiDAR waveform and the ordinate is the
amplitude coordinate of the waveform.
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Appendix B. LiDAR Waveform Data and Decomposed Waveforms of Ocean LiDAR
Waveforms in Antarctica

Figure A2. Cont.
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Figure A2. (a–t) LiDAR waveform data and decomposed waveforms of ocean LiDAR waveforms in
Antarctica. The abscissa is the sampling time point of the LiDAR waveform and the ordinate is the
amplitude coordinate of the waveform.
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