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B.; Pająk, D. Characteristics of the

Properties of Absodan Plus Sorbent

and Its Ability to Remove Phosphates

and Chromates from Aqueous

Solutions. Materials 2022, 15, 3540.

https://doi.org/10.3390/

ma15103540

Academic Editor: Irene Bavasso

Received: 11 April 2022

Accepted: 13 May 2022

Published: 15 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Characteristics of the Properties of Absodan Plus Sorbent and
Its Ability to Remove Phosphates and Chromates from
Aqueous Solutions
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Abstract: The aim of the research was to characterize the parameters of the diatomite sorbent Absodan
Plus as well as to assess its suitability for the adsorption of chromates and phosphates from acidic
aqueous solutions simulating the conditions occurring in some types of industrial wastewater. The
scope of the research includes XRD, SEM, BET, and PZC analyses, and 3D observation of commercial
diatomite granules and batch tests to determine the constants of kinetics and the equilibrium of
chromates and phosphates adsorption. Absodan Plus is a diatomite commercial material containing
an amorphous phase (33%) and is also the crystalline phase of quartz, hematite, and grossite. The
material is macro- and mesoporous and its specific surface area is about 30 m2/g. Its PZC is around
pH = 5.5–6.0 and in an acidic environment is able to adsorb the anions. The saturation of the
adsorbent surface with molecules of the adsorbed substance occurs after 2 h for chromates and 2.5 h
for phosphates. The maximum adsorption capacity of Absodan Plus in terms of phosphorus and
chromium amounts to 9.46 mg P/g and 39.1 mg Cr/g, respectively. As shown by XRD analysis,
Absodan Plus contains an admixture of hematite, which can support the removal of chromium
and phosphorus.

Keywords: chromates and phosphates removal; diatomite; isotherms; kinetics

1. Introduction

Chromium naturally occurs in the environment (air, water, rocks) and contamination
of groundwater and soil with chromates can be of natural origin [1], though anthropogenic
pollution is the main problem due to the toxicity and genotoxicity of the chromates [2].
The main emitter of chromium water pollution is the energy sector followed by waste and
wastewater management, in EU > 80% and about 10% of total emission respectively [3].
In the energy sector, both thermal power plants and refineries generate chromate releases.
As has been shown, the leaching of ashes deposited in the lignite power plant is a hex-
avalent chromium source and results in high contamination of groundwater (even up
to 0.120 ppm) [1]. Industrial wastewater has very diverse characteristics. Electroplat-
ing wastewater is very rich in hexavalent chrome (400–2000 ppm) and is strongly acidic
(pH 2) [4,5]. The tanning industry also generates chromium-rich wastewater. The produc-
tion is multistage, and the averaged wastewater has a neutral pH and contains up to several
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dozen ppm, however, at the pickling and chrome tanning step the acidic wastewater can
contain even 2000–3800 ppm of chromium [6,7]. Tannery wastewater can also be slightly
alkaline (pH 8) and contain smaller amounts of chromium (several ppm) [8]. Another
example of a chromate-contaminated environment is an area of Hanford Site in Washington
Stated (USA) [9]. In the production of plutonium in nuclear reactors, a significant amount
of chromate has been used as a corrosion inhibitor in reactor cooling water. The deposited
chromate sediments and wastes were leached into groundwater and therefore pose an
important threat to the environment. Chromite deposits can be the natural source of chro-
mates, as well as anthropogenic, when mining and processing are applied [3]. Especially
the poorly managed waste from chromite ore processing is a dangerous factor for the
environment [10].

Orthophosphates are a common nontoxic component of the environment. They are
desirable for their positive effect on plant cultivation, but their transmission to the aquatic
environment has an adverse eutrophication effect [11]. Important point sources of phos-
phorus pollution are discharges of industrial, municipal, and animal farm wastewater
meanwhile, nonpoint pollution is generated by surface runoff from agriculture and urban
areas [12,13]. Phosphorus removal from municipal wastewater is efficient at large treatment
plants when smaller objects grapple with the lack of effective technology [14]. Even in
developed areas of the world, there are still places with no sewage system, from which
only partially treated wastewater with nutrients is discharged into the ground [15]. Phos-
phate rock mining also affects the aquatic environment through runoff of phosphorus-rich
drainage waters [16] and phosphate industry processing of raw materials [17]. Industrial
wastewater generated in the wet process of phosphoric acid production is characterized by
phosphates concentration up to 100 ppm and low pH 2–3 [18,19].

Considering physicochemical techniques, precipitation is used to remove phosphates
and chromates from water and wastewater [20] however, it must be noted that during
precipitation chromates are additionally reduced to trivalent chromium hydroxide. The
wastewater from phosphoric acid production can be treated by precipitation phosphates
with ferric and calcium cations even in acidic conditions (pH 3) [18]. Phosphates precipita-
tion connected with ferrous to ferric cation oxidation was also useful to treat wastewater
from electroplating in a wide range of pH [21]. Adjustment of pH of neutral pH tannery
wastewater to slightly alkaline conditions (pH 8.6–10.3) using NaOH, Ca(OH)2, or MgO
allows for a very high precipitation efficiency, close to 100% [22]. The same effect was
obtained by adjusting acidic tannery effluent to neutral pH using NaOH [23]. Chromates
from tannery effluent also can be very effectively coprecipitated with mixed Fe(II) and
Fe(III) cations at slightly acidic to neutral conditions (pH 5–7) [8]. However, precipitation
technologies can only be beneficial when the resulting sediments are intermediates for
further use, even more so when it requires the use of a large dose of reagents in the case of
wastewater with extreme pH and high salinity.

Electrocoagulation is a useful method for phosphates removal from acid manufactur-
ing wastewater [19] and chromates removal from tannery wastewater [7] and synthetic
wastewater [24] using aluminum and iron electrodes respectively. The ion exchange tech-
nique on strongly basic anion resins is one of many chromate removal methods, although
due to the sensitivity of the ion exchangers it is used in drinking water treatment [25].
Metal oxides, especially iron oxide, are characterized by the ability to adsorb chromates and
phosphates. Iron and manganese oxides, being residues from groundwater treatment, has
been evaluated as good adsorbent for chromates removal [26]. The iron precipitates of bio-
genic origin are also positively assessed for the removal of this pollutant [5]. Iron oxides are
often used as coatings on mineral carriers and in this form, they adsorb phosphates [27,28].
The common feature is that the adsorption of chromates and phosphates is intensified
under acidic conditions due to electrostatic attraction, ion exchange, and complexation
with protonated surfaces [12]. Mineral materials such as indigenous volcanic rock [29],
aluminosilicate rock containing feldspar, montmorillonite, and illite [30], diatomite, and
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zeolite [31], dolomite and opoka [32], zeolitic tuff [33] are also used to remove chromates
and phosphates.

Diatomite is a siliceous sedimentary rock with a predominant opal content and a
smaller amount of quartz, calcite, clay minerals, iron compounds, or glauconite [34]. Its
biogenic nature comes from the shells of diatoms that build diatomite and give the rock a
porous structure. The lithological variability between deposits and even within one deposit
results in differentiated porosity, density, specific surface area, and adsorption capacity of
diatomite [35–37]. As a result, diatomite sorbents may have different properties depending
on their origin. Meso- and macroporosity is a characteristic feature of this material, due
to which it is widely used as a filtration aid in many industrial and environmental appli-
cations and the porosity can be additionally increased by heat processing [38,39] or acid
treatment [40]. Diatomite is used in various industrial applications as a filler, carrier, holder,
sorbent, abrasive, and ingredient [35].

The known use of diatomite is the production of diatomaceous sorbents for the removal
of oil spills and other petroleum contaminants [41,42]. Diatomite can also be used as a filling
in biosorption filters as it stimulates the growth of the nitrifying biofilm [42,43]. Diatomite
has the ability to adsorption of cations by ion exchange and electrostatic attraction with
dissociated silanol groups [44]. In this way, the raw diatomite can remove Pb, Cu, Cd,
Ni, and Ag cations from water solutions [39,45,46]. In an acidic environment, the surface
of diatomite undergoes protonation and as a result, it is able to adsorb oxyanions like
chromate, phosphate, and arsenite [32,47–50]. This proves the possible use of diatomite in
the treatment of wastewater containing chromates and phosphates. Other studies show
that opal-A is of little importance for the adsorption of arsenates, but there is a correlation
between the effectiveness of their removal and the content of iron oxide being the natural
impurities of the rock [51]. This is an important premise, indicating that the parent rock
admixtures have a significant impact on their adsorption properties, therefore particular
commercial diatomite sorbents may have different effectiveness. The unique properties
of diatomite enable its widespread and multi-sector use. The USA (35%) and China (19%)
dominate the world diatomite market, but the EU produces around 13% of the global
product [52]. Diatomite sorbents for general purposes are popular in the trade. They are
dedicated to the removal of pollutants from the environment as well as to protecting the
environment against contamination from entering it. Commercial universal diatomite
sorbents are designed to remove liquid substances such as oils, fuels, paints, inks, acids,
bases, water coolants, and other solvents from industrial floors [53–55]. Research on the
use of diatomite for heavy metal removal is important because it is an abundant, low-cost
eco-environmental functional material [38,56]. There are many studies on the sorption on
diatomites from various quarries [35,36,39,40,42,48,49,56], but these are not commercial
products. The popular diatomite sorbent Absodan Plus (AP) is intended for a wide range
of applications [55], however, research was carried out in the field of removing petroleum
derivatives oil [57]. Also, it is important to determine the sorption capacity of commercial
diatomites for other non-standard applications (not specified by the manufacturer), as these
materials are potentially available.

The aim of the research was to characterize the material parameters of the commercial
diatomite sorbent Absodan Plus as well as to assess its suitability for the adsorption
of chromates and phosphates from acidic aqueous solutions simulating the conditions
occurring in some types of industrial wastewater. The scope of the research includes: X-ray
diffraction (XRD), scanning electron microscopy (SEM) analysis, Brunauer-Emmett-Teller
(BET) surface area analysis, point of zero charge (PZC) analysis, and 3D observation of
commercial Absodan Plus granules as well as batch tests to determine constants of kinetics
and equilibrium of chromates and phosphates adsorption.
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2. Materials and Methods
2.1. Adsorbent
2.1.1. Characteristics of Absodan Plus

The diatomite sorbent Absodan Plus (Damolin, Katowice, Poland) was used for the
tests, which, according to the safety data sheet, is calcined diatomaceous earth. Its main
application is the removal of liquid substances such as fats, greases, oils, fuels, and water
from the ground. It is also designed to absorb bases, acids, solvents, and impurities from
water solutions. An exception is a hydrofluoric acid due to the large amounts of SiO2.
Absodan Plus is nonflammable, harmless, chemically inert, and odorless. It has many
advantages, as it does not release the absorbed liquid, has a high absorption capacity of
up to 130% of its weight, and allows multiple uses [55]. The chemical composition of the
tested diatomite is presented in Table 1.

Table 1. Physicochemical properties of the tested diatomite—Absodan Plus (safety data sheet) [based
on ref. [55]].

Parameter Value Parameter Value

SiO2, % (w/w) 75 MgO, % (w/w) 2
Al2O3, % (w/w) 7 K2O + Na2O, % (w/w) 2
Fe2O3, % (w/w) 9 Residue on ignition (1025 ◦C), % (w/w) 2
TiO2, % (w/w) 1 Weight density, g/mL 2.3

MnO2, % (w/w) 1 pH (10% suspended solids) 5.5
CaO, % (w/w) 1 Bulk density, g/L 509

2.1.2. Analysis of Absodan Plus Properties

A detailed study was conducted to evaluate Absodan Plus’s structure, chemical
composition, and properties. The samples of diatomite were subjected to the following set
of analyses:

• X-ray diffraction analysis (XRD): The mineral composition of diatomite was assessed
using X-ray diffraction with CuKα1 radiation, with scan step 0.015 degrees, scan rate
2 s/step, and scan range from 17 to 70◦ 2θ at 40 kV and 40 mA (Bruker D8 Advance,
Bruker AXS, Germany). The average crystallite sizes (D) of samples were calculated
from the XRD data by applying the Debye–Scherrer Equation: D = 0.89λ/BcosΘ, where
λ is the wavelength of the X-ray in nanometres, B is the peak width at half-height
(FWHM), and θ is the angle between the incident and diffracted beams in angular
degrees.

• Crystallinity and amorphous % of diatomite from its scan were computed with Bruker
Eva software, as follows:

% Amorphous = ((Global area − Reduced area)/Global area) × 100
% Crystallinity = 100 − % Amorphous.

• SEM microscopic analysis: The morphological and textural observation of the surface
was made by scanning electron microscope (SEM) (TESCAN VEGA 3, Fuveau France).
SEM was used also with a back-scattered electron detector (BSE) (INCA x-act, Oxford
Instruments) to broaden the scope of the element content analysis.

• Brunauer-Emmett-Teller (BET) surface area analysis: Specific surface area and total
pore volume were determined using low-temperature nitrogen adsorption-desorption
isotherms using an ASAP 2020 porosimeter (Micromeritics, Norcross, GA, USA).
Before measurements, the samples were degassed at 200 ◦C. The specific surface area
and total pore volume were calculated by the Brunauer-Emmett-Teller (BET) method
and the Barrett-Joyner-Halenda (BJH) method, respectively.

• Stereoscopic image of the diatomite was analyzed by X2000 series microscopes (Opta-
Tech, Warsaw, Poland) are designed for observation of small, 3D objects in transmitted
and reflected light, and the 2D surface of diatomite measurements of topography,
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and layer thickness were carried out by confocal 3D microscope (NanoFocus, Ober-
hausen, Germany).

• Fourier transform infrared spectroscopy (FTIR) analysis: FTIR spectra of Absodan
Plus were obtained with an Alpha spectrometer (Bruker, Billerica, MA, USA). The
tests were carried out with the transmission method, using the technique of pressing
samples with potassium bromide. Compressed adsorbent samples were mixed with
KBr at a constant adsorbent weight to KBr weight ratio of 0.25% and pelleted under
pressure. The FTIR spectra were employed in a spectral range of 4000 to 500 cm−1 [58].

• Determination of point of zero charge (PZC) of diatomite: The PZC was determined
using three methods:

1. Suspension method: In a series of 250-mL Erlenmeyer flasks, 0.5 g of diatomite
was added to 50.0 mL of 0.1 M NaNO3 solution. The pH was adjusted with
0.1 M HNO3 and 0.1 M NaOH as needed, to obtain the appropriate pH values
of 2, 3, 4, 5, 6, 7, 8, 9, 10, and 11. The samples were shaken for 12 h using a
shaker: vibration amplitude 8.5; rate 180 (ELPIN PLUS, type 358 A, Lubawa,
Poland). After settling, the pH values of the supernatant in each flask were again
measured. After settling, the pH values of the supernatant in each flask were
again measured [59,60].

2. Potentiometric method: Three flasks containing 0.05 g of diatomite, 3 mL of 0.1 M
NaNO3 (to establish an ionic strength constant), and 1 mL of 0.01 M NaOH were
added to 6 mL of distilled water. Then all samples were titrated with 0.01 M HCl.
Based on the obtained data, a plot of the dependence of the potential change [mV]
on the volume of titrant consumed [mL] was made. The research was carried
out for a blank and a test sample. The diatomite potential was measured using a
combination glass electrode (Elmetron, type OSH 10-00, Zabrze, Poland) [59,60].

3. Hahn’a Method: The method consists in determining the highest increase of
the potential (∆Emax) and two adjacent potential values that lie on both sides
of it (∆E1, ∆E2). Based on these values, the correction (xb) is calculated, which
increases the accuracy of the PZC determination (the correction enables the
precise determination of the volume of the titrant at the place of its occurrence [61].
The calculations were done according to Equation (1):

xb =
∆V·∆E2

2·∆E1
(1)

where:

xb—correction,
∆V—a volume of titrant,
∆E1—a potential gain that occurs before ∆Emax.

2.2. Adsorbate

The sorption of phosphates and chromates on diatomite was studied by batch exper-
iments. The concentration of phosphates and chromates after the sorption process was
determined using a UV-VIS spectrophotometer (JASCO, model V-670) at the wavelength
λ = 720 nm and two absorption maxima of 350 nm and 373 nm.

• Determination of the concentration of phosphates ions by the molybdenum blue
method: The standard curve was prepared based on a series of phosphates ions solu-
tions with concentrations ranging from 0 to 1.7 mg/L. The absorbance of the prepared
solutions was measured against the reagent blank (sample without the addition of
phosphates ions). Immediately before the measurement, 1.5 mL of ammonium molyb-
date and 2 drops of tin (II) chloride (reducing agent in the reaction of the formation
of navy blue molybdenum blue) were added to each of the samples. Because the
molybdenum method cannot determine strongly acidic or basic aqueous solutions,
all samples were neutralized by adding six drops of 6 M NaOH each. The standard



Materials 2022, 15, 3540 6 of 21

curve equation was determined by linear regression using the least-squares method.
The determined proper absorption coefficient (ε), corresponding to the slope in the
straight line equation, was 0.28 L/mg·cm (Figure 1a).

• Determination of the concentration of chromates ions by the chromate method (UV/VIS
spectrophotometry): Absorbance measurements were performed for given standard
solutions with known concentrations in the range of 0 to 35 mg/L. The absorbance
of the prepared solutions was measured against the blank reagent (a sample without
the addition of chromates ions. The determined proper absorption coefficient (ε) was
0.03 L/mg·cm (Figure 1b).
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2.3. Batch Studies of the Adsorption Process
2.3.1. Effect of Shaking Time on Adsorption

0.5 g of diatomite and 50 mL of a solution of phosphates or chromates ions at a
concentration of 50 mg/L were added to 6 flasks with a capacity of 100 mL. The pH of the
solutions was adjusted to 2 with 6 M HNO3 to create conditions typical of acidic industrial
wastewater [34,35,48,49]. The prepared samples were shaken for 15–400 min, then the
suspension obtained was filtered on a filter paper. The content of phosphates or chromates
was determined in the supernatant.

2.3.2. Effect of Adsorbent Concentration on Adsorption

0.5 g of diatomite and 50 mL of previously prepared solutions of phosphates or
chromates (pH 2) with concentrations of 10, 50, 200, 350, 400, 1000, 2000, and 3000 mg·L−1

were added to 5 flasks with a capacity of 100 mL. Then they were placed on a shaker, and
adsorption was carried out for 1.5 h. After this time, the resulting mixture was filtered on a
filter paper, and the content of phosphates or chromates was determined in the filtrate.

2.4. Models of Equilibrium and Kinetics of Adsorption

To fully understand the adsorption nature of phosphates or chromates ions in commer-
cial diatomite sorbent, graphs of Freundlich, Langmuir, Halsey, Jovanovich, and Redlich-
Peterson isotherms were prepared [Table 2] [62]. On their basis, it was determined which
isotherm equation describes the studied phenomenon most accurately. The coefficient
of determination (R2) and the chi-square statistic reduced by the number of degrees of
freedom (χ2/DoF) were used to define the fit of the models to the results of the experiment.
The calculations were made in Origin 7.5. The kinetic evaluation of the realized adsorption
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process was also performed with the use of pseudo-first and pseudo-second-order kinetic
models [Table 3].

To determine the rate-limiting stage of the adsorption process, the intraparticle diffu-
sion model developed by Weber and Morris [63] was used. This model is presented in the
Table 3.

Table 2. Lists of adsorption isotherm models.

Isotherms Equation Abbreviations References

Freundlich qe = KF·(Ce)
1
n

qe—the equilibrium concentration of the adsorbate on the
adsorbent surface [mg·g−1],
KF—Freundlich adsorption equilibrium constant
[mg1−1/n·L1/n·g−1],
Ce—the concentration of the adsorbate in the solution at
equilibrium [mg·L−1],
n—adsorption intensity,
qmax—maximum adsorption capacity [mg·g−1],
KL—Langmuir adsorption equilibrium constant [L·mg−1],
aR—Redlich-Peterson constant [L·mg−1]βR,
KR—Redlich-Peterson adsorption equilibrium constant [L·g−1],
βR—parameter dependent on the concentration of the adsorbate,
KJ—Jovanovich adsorption equilibrium constant [L·g−1],
KH—Halsey adsorption equilibrium constant [mgn+1·g−1·L−1].

[64,65]

Langmuir qe = qmax·
KL ·Ce

1+KL ·Ce
[65–67]

Jovanovich qe = qmax·
(

1− e(KJ ·Ce)
)

[68]

Halsey qe = (Kh·Ce)
1
n [69,70]

Redlich-Peterson qe = KR ·Ce

1+aR ·C
βR
e

[64–67]

Table 3. Lists of kinetic models [71].

Kinetic Model Pseudo-First-Order (PFO) Pseudo-Second-Order (PSO) Intra-Particle Diffusion

Equation dq/dt = k1(qe − qt)
qt = qe(1 − e−k1t)

dq/dt = k2(qe − qt)2

qt = k2qe
2t/(1 + k2qet) qt = kit1/2 + bi

where: qt—adsorption capacity (in time t) [mg·g−1],
ki—the intra-particle diffusion rate constant for adsorption [mg·g−1·min1/2],
bi—the boundary layer thickness [mg·g−1].

3. Results and Discussion
3.1. Adsorbent Characteristics

SEM microscopic observations allowed to characterize the morphology of the di-
atomite (Figure 2). The surface composed of mesopores and macropores indicates high
porosity and low density of this material, which was also observed in previous studies [57].
The results of the BET analysis show that the specific surface area of the Absodan Plus
was 30.6 m2/g, while the total pore volume was 0.46 cm3/g. The stereoscopic and two-
dimensional 2D image of diatomaceous earth together with the layer thickness is shown in
Figure 2. XRD analysis of Absodan Plus showed that quartz, hematite, and grossite are the
main minerals of the crystalline phase. They were found approximately in the 2.73:1:2.68
ratio, respectively (Figure 3). As a result of the adsorption of chromates and phosphates
ions, the structure of the diatomite slightly changes. XRD analysis performed confirms
the change in the size of the crystallites and grains of the adsorbent tested (Figure 3). A
strong diffraction peak (1 0 1) at 26.60◦ 2θ comes from quartz (Figure 4). Based on this
peak, the crystallite size (D) was calculated for three samples (Table 4). The change in
crystallite size is not significant and remains in the same order of magnitude. Crystallinity
and amorphous ratio are shown in Table 4. Diatomite adsorbent is characterized by a
twice higher proportion of the crystalline phase as compared to the amorphous phase. The
presence of phosphate and chromate adsorbates does not significantly affect the proportion
of these phases.
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Table 4. Crystallinity and the amorphous ratio of Absodan Plus take into account the size of crystallites.

Sample Crystallite Size, Å Crystallinity, % Amorphous, %

AP 342 66.6 33.4

AP + chromates ions 552 66.0 34.0

AP + phosphates ions 408 68.6 31.4

The FTIR spectrum was performed to identify functional groups on the surface of
the adsorbent used. As a result, it was possible to observe the structural changes caused
by the ongoing adsorption process. This is especially important from the point of view
of regenerating this type of adsorbent, and thus the possibility of its multiple uses in
subsequent processes. The spectrum analysis is shown in Table 5.
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Table 5. Analysis of the FTIR absorption spectrum of Absodan Plus samples-characteristic bands.

Wavelength, [cm−1] Band Description The Band Comes from:

3443 Very wide, high intensity the stretching vibrations of the –OH group.

1643 Narrow, low intensity the stretching vibrations of the groups: C=C, CO-CH2-CO

1386 Very narrow, low intensity the adsorbed PO3
4− ion

1076 Broad, high intensity the stretching vibrations of the C-O groups

796 Narrow, low intensity the stretching vibrations of asymmetric C-H groups; band
located in the dactyloscopy area

In all the spectra of the tested samples of Absodan Plus, there are characteristic bands
in the following areas: 3440 cm−1, 1630 cm−1, 1050 cm−1, and 800 cm−1 (Figure 4). The
band around 3443 cm−1 can come from both the hydroxyl groups that build the water
molecule and those that have been bonded to the AP surface by chemical bonds. The
band located at the value of 1643 cm−1 indicates the presence of C=C bonds and carboxyl-
carbonate structures. The most intense of the bands located at 1076 cm−1 comes from
vibrations of C-O bonds that occur in ether, carboxyl, and phenol groups. The band at
the value of 796 cm−1 is the result of the presence of SiO4

4− and AlO4
5− systems in the

tetrahedral samples, forming the three-dimensional structure of diatomites [72].
In the spectra of the samples after the adsorption process, an additional band appears

at the wavenumber value of 1386 cm−1. It was suspected that it could be derived from
an adsorbed orthophosphate (V) ion or a complex formed by it. To verify the thesis, the
experimental spectrum was correlated with the FTIR spectrum of sodium dihydrogen
phosphate, the source of phosphate ions in the conducted research. It turned out that
there is a characteristic band in the range of 1300–1400 cm−1. This fact confirms that the
1386 cm−1 band is derived from molecules of the adsorbate attached to the AP surface
(Figure 4). After analyzing the spectroscopic spectra, it was found that the process of
adsorption of phosphate ions and, to a lesser extent, chromate ions take place.

The value of the zero point of the adsorbent load determined by the suspension
method was 5.6 (Figure 5a). PZC is the point of intersection of the plot of the dependence
∆pH = f (pH 0) with the OX axis, therefore it is equivalent to the zero point of this function.
In the case of the potentiometric method, the PZC was 5.5 (Figure 5b). The value was read
from the graph of the dependence of the potential change [mV] on the volume of used
titrant [mL]-PZC is located at the intersection of the lines on the graphs. PZC determined
by Hahn’s method was 5.9 [Table 6], its average value fluctuates around pH = 5.5–6.0,
i.e., in the area classifying the reaction of the environment as slightly acidic. The pH
of the aqueous diatomite solution was 5.2, which is below the zero point of the electric
charge. This means that the Absodan Plus surface is positively charged, and it has a
greater ability to attach anions than cations. Speciation of phosphorus and chromium
anions is strongly pH-dependent. The experiment was carried out in an acidic environment
(pH 2), and in the range of the concentrations used, the anions were not fully dissociated.
Phosphorus was present as H3PO4 and H2PO4

− with a slight quantitative predominance
of the undissociated form [73]. Under these conditions, the dominant form of chromate
was partially dissociated HCrO4

− (~80%) and in a dozen or so percent Cr2O7
2− [74], as

well as the possible content of undissociated acid H2CrO4 [75]. This allows the conclusion
that the conditions of the experiment are favorable because a positively charged surface
would interact with the anions as a result of electrostatic attraction [75].
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Figure 5. PZC of the adsorbent: (a) suspension method; (b) potentiometric method.

Table 6. Values from the titration table based on which the PZC was determined by Hahn’s method.

Parameter ∆E1 ∆Emax ∆E2 pH0.8 *

Value 63.4 mV 52.8 mV 43.4 mV 5.9
* index 0.8 is the volume of added titrant at the PZC point, [mL].

3.2. The Adsorption Equilibrium

The adsorption isotherms of phosphates ions (Figure 6) and chromates ions (Figure 7)
were prepared to select the model that best describes the adsorption process on Absoban
Plus. Each of the isotherms is represented by the relation qe = f (Ce). The following isotherms
were made: Halsey, Jovanovich, Langmuir, Redlich-Paterson, and Freundlich. The compar-
isons of isothermal models for adsorbed phosphates and chromates ions are presented in
Figures 6 and 7. The parameters obtained for all isothermal models for adsorbed chromates
and phosphates ions are presented in Table 7.

A good fit to the experimental points is represented by those isotherms that determine
the relationship qe = f (Ce). The parameters determined from each of these equations can
help assess the adsorption efficiency, the affinity of the adsorbent for the adsorbate, and
whether the sorption system used is favorable or not.

The Redlich-Peterson isotherm was the best fit for the experimental points. This is
confirmed by the calculated coefficient of determination, which for this model has the
highest value: R2 = 0.975 (chromates ions) and 0.994 (phosphates ions). The error in fitting
the theoretical curve to the experimental data also reaches the smallest value (χ2 = 6.0 and
8.5, respectively) (Table 7). The parameters of this equation are, in the case of chromium
ions, respectively: KRP = 29.7 L·g−1, aRP = 1.13 L·mg−1 and B = 0.8. For phosphates ions,
the parameters assume the following values: KRP = 255 L·g−1, aRP = 40.3 L·mg−1 and
B = 0.8 (Table 7). The worst fit shows the Halsey isotherm, for which the value of R2 is <0.1
and the value of χ2/DoF is 520 (phosphates ions) and 4320 (chromates ions). The Halsey
model is used for multilayer adsorption on the heterogeneous surface [76], which does not
occur with the adsorption performed.
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Table 7. Isotherm parameters for the adsorbed phosphates and chromates ions.

Phosphates Ions Chromates Ions

Halsey isotherm

KH
[mgn+1·g−1·L−1] n R2 X2/DoF

KH
[mgn+1·g−1·L−1] n R2 X2/DoF

4·10−5 2·10−5 <0.1 520 8·10−4 1.2·10−4 <0.1 4320

Jovanovich isotherm

KJ
[L·mg−1]

qmax
[mg·g−1] R2 X2/DoF

KJ
[L·mg−1]

qmax
[mg·g−1] R2 X2/DoF

0.008 27.2 0.839 24.1 0.048 85.6 0.886 213

Langmuir isotherm

KL
[L·mg−1]

qmax
[mg·g−1] R2 X2/DoF

KL
[L·mg−1]

qmax
[mg·g−1] R2 X2/DoF

0.013 28.9 0.889 16.6 0.079 87.3 0.908 173

Freundlich isotherm

KF
[mg1−1/n·L1/n·g−1] n R2 X2/DoF

KF
[mg1−1/n·L1/n·g−1] n R2 X2/DoF

6.2 4.9 0.994 0.94 17.0 4.2 0.963 69.1

Redlich-Peterson isotherm

KRP
[L·g−1]

aRP
[L·mg−1] B R2 X2/DoF

KRP
[L·g−1]

aRP
[L·mg−1] B R2 X2/DoF

255 40.3 0.8 0.994 1.12 29.7 1.13 0.8 0.975 55.2

The 1
n parameter in the Freundlich isotherm characterizes the surface of the adsorbent.

The values should be between 0 and 1. The closer the value to 1
n is to 0, the more ideal

the adsorbent surface is. On the other hand, values of 1
n close to 1 define the surface as

heterogeneous. In the experiment, the value of n was determined at 4.2 (chromates ions)
and 4.9 (phosphates ions), and 1

n at 0.24 (chromates ions) and 0.20 (phosphates ions). To
predict whether sorption under certain conditions is favorable, the partition coefficient RL
can be calculated for each measuring point. RL is characteristic of systems described by the
Langmuir isotherm. When the RL is between 0–1, then adsorption on selected components
is favorable. If RL > 1, it means that the system has unfavorable sorption characteristics for
the phenomenon studied. The relationship is calculated based on the following equations:

RL =
1

1 + aLC0
(2)

aL =
KL

qmax
(3)

where:

RL—partition coefficient;
aL—the quotient of the equilibrium constant for the isotherm and the maximum area
coverage for the model.

For the analyzed adsorption system, a graph of RL = f (C0) was prepared (Figure 8). It
shows that the calculated parameter is in the range from 0 to 1. This means that the surface
phenomenon related to the removal of the examined ions is favorable.
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The Langmuir maximal adsorption capacity of Absodan Plus converted to phosphorus
is 9.46 mg P/g. It is rather a high capacity compared to other capacities obtained for natural
diatomites and ranges from 0.46–3.51 mg P/g (Table 7). The Absodan Plus adsorption
capacity converted to chrome is 39.1 mg Cr/g. It is a very good result compared to capacities
of calcined diatomite and raw Carpathian diatomite equal to 0.2 mg Cr/g and 0.12 mg
Cr/g respectively [48,49]. As shown in Table 8, the adsorption capacity of Absodan Plus is
satisfactory compared to unmodified diatomites. Various modifications lead to an increase
in the efficiency of removing of phosphates and chromates by the transformed surface
of the diatomite. A much higher removal capacity can be achieved by lanthanum oxide
modified diatomite [77] or MCM-41 composite with refined diatomite containing a higher
concentration of diatom frustules [50]. However, they are more advanced materials that
require special reagents to produce. It is also a mineral that effectively adsorbs phosphates
by surface complexation and precipitation [78–80]. As shown in Table 8 diatomite coated by
hydrous iron oxide and metallic iron/iron oxides are characterized by a significant increase
in the adsorption capacity of phosphates and chromates [27,28]. Other studies have shown
that hematite can adsorb chromates, especially in an acidic environment [81]. As shown by
the XRD analysis, Absodan Plus contains an admixture of hematite, which can support the
removal of chromium and phosphorus.

Table 8. The comparison of the adsorption capacity of Absodan Plus with capacities of various
diatomaceous sorbents.

Material Maximal Adsorption
Capacity, mg/g Ref.

P

diatomite 0.46 mg P/g [37]

diatomite 0.60 mg P/g [28]

diatomite 3.51 mg P/g [27]

hydrous Fe oxide modified diatomite 5–25 mg P/g [28]

diatomite coated by Fe0 and Fe oxides 37.0 mg P/g [27]

La oxide modified diatomite 58.7 mg P/g [77]

Absodan Plus 9.46 mg P/g present study

Cr

calcined diatomite 0.20 mg Cr/g [47]

diatomite 0.12 mg Cr/g [75]

Fe oxide modified diatomite 6.10 mg Cr/g [47]

diatomite-MCM-41 composite 70.9 mg Cr/g [50]

Absodan Plus 39.1 mg Cr/g present study
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3.3. The Adsorption Kinetics

When the adsorbent surface is saturated with molecules of the adsorbed substance, the
adsorption capacity deteriorates, and the process should be stopped. Changes in phosphate
ions concentration in solution and on the surface of the adsorbent during the adsorption
process are shown in Figure 9. During the adsorption process, there is an exponential
increase in the concentration of phosphate ions immobilized on the surface of the Absodan
Plus and a decrease in their concentration in the solution. The concentration of the tested
ions on the adsorbent surface initially increases rapidly, and after about 2 h, it practically
does not change. Initially, the decrease in the concentration of phosphate ions is significant,
then it is slowed down to a constant value after about 2.5 h. The situation is similar in the
case of chromate ions (Figure 9). The obtained results indicate that chromate ions had easier
access to the active centers of diatomite, which was confirmed by the size of the analyzed
ions (phosphate ions are higher than chromate ions).
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for chromates and phosphates ions on an Absodan Plus.

To investigate the mechanism and determine the rate of the adsorption process, pseudo-
first-order (PFO) and pseudo-second-order (PSO) kinetic models were developed (Table 9).
Both the adsorbent and the adsorbate molecules could participate in the adsorption of
chromates and phosphates ions on the diatomite. The analysis of pseudo kinetic curves
showed that they were not linear (the kinetic equation is not fulfilled). The pseudo-
second-order kinetic curves showed linear dependencies that go through the origin of the
coordinate system (Figure 9). The pseudo-second-order kinetic equation has been met, as
evidenced by a very good fit to the experimental data (R2 values equal to 1). Three factors
influence adsorption: the adsorbent, water, and the ions dissolved in it.
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Table 9. Kinetic PSO and PFO model constants and correlation coefficients for the sorption systems.

Parameter
Pseudo-First-Order (PFO) Pseudo-Second-Order (PSO)

Phosphates Ions Chromates Ions Phosphates Ions Chromates Ions

χ2/DoF 0.26 0.18 0.06 0.02
R2 0.953 0.979 0.989 0.993

k1 [min−1] 1.3·10−2 2.8·10−3 4.8·10−2 2.1·10−2

qe [mg·g−1] 5.5 5.7 4.2 4.9

To determine the rate-limiting stage of the adsorption process, the intraparticle dif-
fusion model developed by Weber and Morris [63] was used (Figure 10). The adsorption
process can be divided into two stages: surface diffusion and intraparticle diffusion (mass
transport takes place in each stage). The surface diffusion that occurs through the boundary
layer is characterized by a high rate. Then the substance migrates deep into the struc-
ture of the diatomite, slowly filling the available pores until it fills their entire volume.
The Weber model allows us to determine which of these stages affects the overall rate of
adsorption [63].
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Figure 10. Intraparticle diffusion model in the diatomite adsorption process: (a) chromates ions,
(b) phosphates ions.

The non-linear course of the entire adsorption process confirms that it is multistage.
For the linear fragments in the diagrams (Figure 10), additional graphs were prepared
and simple equations were determined. The slope values in the equations are equal to
the diffusion process rate constant (Table 10). The first segment in the graphs is assigned
to boundary layer diffusion, which is the main rate-limiting step for the entire process.
The higher the value of the intercept in the equation of these lines, the greater the effect of
boundary layer diffusion on the overall rate of the adsorption process. The second segment
shows intraparticle diffusion. The slope values in the simple equations fitted to this stage
correspond to the intraparticle diffusion constant (k1, k2), which in both cases is close and
almost equal to zero. This is because this adsorption step is almost a constant function and
does not significantly affect the rate of the entire process.
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Table 10. Values of the diffusion rate constants of the phosphates and chromates adsorption process.

The Type of the Process Line Equation
The Value of the Diffusion Rate

Constant
[mg/g·min1/2]

Boundary layer diffusion for chromates ions qt = 8·10−2·t 1
2 + 4.2 k1 = 8·10−2

Intraparticle diffusion for chromates ions qt = 2.7·10−15·t 1
2 + 4.9 k2 = 2.7·10−15

Boundary layer diffusion for phosphates ions qt = 8·10−2·t 1
2 + 1.4 k′1 = 8·10−2

Intraparticle diffusion for phosphate ions qt = 2.5·10−15·t 1
2 + 2.1 k′2 = 2.5·10−15

4. Conclusions

The Absodan Plus is a diatomite commercial material containing an amorphous phase
(33%) and also the crystalline phase of quartz, hematite, and grossite. The material is
macro and mesoporous and its specific surface area is about 30 m2/g. Its PZC is around
pH = 5.5–6.0 and in an acidic environment is able to adsorb the anions. The saturation of
the adsorbent surface with the adsorbed anions occurs after 2 h for chromates ions and
2.5 h for phosphates ions. The results obtained indicate that chromate ions had easier
access to the diatomite’s activity centers. Among the analyzed models of isotherms, the
Redlich-Peterson isotherm is the best fit for the experimental points (R2 = 0.975 and 0.994
for chromates and phosphates ions, respectively) showed. The rate-limiting stage of the
adsorption of chromates and phosphates ions on diatomite is diffusion in the boundary
layer. Intraparticle diffusion slightly affects the kinetics of the process. The maximum
adsorption capacity of Absodan Plus in terms of phosphorus and chromium amounts to
9.46 mg P/g and 39.1 mg Cr/g, respectively. The adsorption capacity of Absodan Plus is
satisfactory compared to unmodified diatomites. Various modifications lead to an increase
in the phosphate and chromate removal efficiency by the reshaped diatomaceous earth
surface. As shown by XRD analysis, Absodan Plus contains an admixture of hematite,
which can support the removal of chromium and phosphorus.
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