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advanced bioinformatics methodologies. Network science has gained popularity in

modeling genetic interactions thanks to its structural characterization of large numbers
of entities and their complex relationships. However, little has been done on
functionally interpreting statistically inferred epistatic interactions using networks.

Results: In this study, we propose to characterize gene functional properties in the
context of interaction network structure. We used Gene Ontology (GO) to functionally
annotate genes as vertices in a statistical epistasis network, and quantitatively
characterize the correlation between the distribution of gene functional properties and
the network structure by measuring dyadicity and heterophilicity of each functional
category in the network. These two parameters quantify whether genetic interactions
tend to occur more frequently for genes from the same functional category, i.e. dyadic
effect, or more frequently for genes from across different functional categories,

i.e. heterophilic effect.

Conclusions: By applying this framework to a population-based bladder cancer
dataset, we were able to identify several GO categories that have significant dyadicity
or heterophilicity associated with bladder cancer susceptibility. Thus, our informatics
framework suggests a new methodology for embedding functional analysis in network
modeling of statistical epistasis in genetic association studies.
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Background

The goal of genetic association studies is to identify heritable genetic factors that can help
explain common human diseases and phenotypic traits [1-3]. Recent rapid development
of sequencing technologies enables genotyping thousands to millions of single nucleotide
polymorphisms (SNPs) for testing their phenotypic associations and thus brings the
genetic association studies to a new era [4, 5]. Although studies have uncovered numer-
ous disease susceptibility loci over the years [1, 6, 7], the majority of them were only
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able to find limited associations between individual genetic factors and disease risks with
commonly used main-effect based methods [8]. The non-linear interaction effect among
multiple genetic attributes has been realized to play an important role explaining the
missing heritability [9, 10]. This interaction effect, also defined as epistasis, describes the
departure of independence among multiple genetic attributes associated with a particu-
lar phenotypic outcome [11-14]. Epistasis holds great potentials and has become a new
focus of genetic association studies [15-17]. However, it also poses great statistical and
computational challenges due to the high dimensionality and computational demands of
interaction analysis [18, 19].

Network science has gained popularity in biological sciences thanks to its ability of
modeling complex relationships among a large number of entities [20, 21]. A network
is generally defined by a collection of vertices joined in pairs by edges. It has been
used to study biological systems at multiple levels of organization including metabo-
lisms [22], protein-protein interactions [23], genetic regulatory networks [24], and food
webs [25]. It also provides a very suitable framework for epistasis studies since it allows
for a structural representation of a large number of genetic attributes and their interaction
relationships [26]. A number of genetic association studies have used networks to char-
acterize epistatic interactions and have seen successful applications to various human
diseases and traits [27-29].

Most existing epistasis network methodologies construct genetic interaction networks
by assigning vertices as genetic attributes, e.g. SNPs or genes, and linking pairs of ver-
tices if significant interaction relationships are detected, either biologically or statistically.
Then vertices with outstanding network properties are identified as key vertices includ-
ing hubs, i.e. vertices with a significantly larger number of neighbors than average, or
bottlenecks, i.e. vertices with high centralities that hold essential positions on informa-
tion transmission flows between all pairwise vertices in a network. Annotation of these
key vertices is then used to prioritize particular functional categories, such as pathways,
with high disease/phenotype association and to propose hypothesis for further biological
validations [30—32]. In this study, we take a different route incorporating functional anno-
tation in genetic interaction networks by analyzing the distribution of vertex functional
characteristics in the context of network structure.

In most complex networks, besides contributing to the network topology, vertices may
possess various characteristics, for instance individual education level in social networks
or biological functions in protein-protein interaction networks [24]. The distribution of
these vertex characteristics may not be random in the networks but likely correlated with
the underlying network structure. There are, in fact, many empirical observations that
vertices with similar characteristics tend to be linked together or vice versa [33]. However,
not much analytical methodologies have been proposed to quantify such correlations.
A recent study by Park et al. [34] proposed using two parameters, dyadicity and het-
erophilicity, to quantify such interplay between the distribution of vertex properties and
the network structure. Their method was applied to complex networks including protein-
protein interaction network and mobile service network, and proved effective using these
two parameters to quantify the dyadic and heterophilic effects of the distribution of vertex
properties.

In this study, we adopted the dyadicity and heterophilicity measurements to character-
ize gene-gene interactions in the context of epistasis networks. Previously we developed
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the framework of inferring large scale genetic interactions using Statistical Epistasis Net-
works (SEN) in disease association studies [27, 35, 36]. We constructed a gene-gene
interaction network based on the SEN methodology and investigated the distribution
of Gene Ontology functions of genes in such an interaction network. This analysis was
expected to help elucidate the varying properties of gene-gene interactions for different
functional categories, and thus help us to better understand the underlying biology of
statistical genetic interactions.

Methods

Bladder cancer dataset

We used a population-based bladder cancer dataset in this study. Bladder cancer cases
were from residents of New Hampshire identified in the State Cancer Registry. The cancer
patients are of ages 25 to 74 years, diagnosed from July 1, 1994 to June 30, 2001. Healthy
controls of age under 65 were selected using population lists from the New Hampshire
Department of Transportation, and those of age 65 and above were chosen from data files
provided by the Centers for Medicare & Medicaid Services (CMS) of New Hampshire.
More than 95 % of the population were of Caucasian origin. Each participant provided
informed consent and all data collection procedures and study materials were approved
by the Committee for the Protection of Human Subjects at Dartmouth College.

In the genotyping process, DNA was isolated from peripheral circulating blood lym-
phocyte specimens using Qiagen genomic DNA extraction kits (QIAGEN inc., Valencia,
CA). All DNA samples of sufficient concentration were genotyped using the GoldenGate
Assay system by Illumina’s Custom Genetic Analysis service (Illumina, Inc., San Diego,
CA). Ninety nine point five percent of the submitted samples were successfully geno-
typed, and samples repeated on multiple plates yielded the same call for 99.9 % of the
SNPs. SNPs with more than 5 % missing data were removed from our analysis, and the
remaining missing genotypes were imputed using alleles of the highest frequencies across
the population. The final dataset includes 1422 SNPs from 396 cancer susceptibility genes
from 491 bladder cancer cases and 791 healthy controls. More details of this dataset were
discussed in [37, 38].

Gene interaction network

We previously developed a framework of Statistical Epistasis Networks (SEN) to infer the
global structure of interactions among a large set of genetic attributes in genetic associ-
ation studies [27]. First, all the pairwise epistatic interactions were measured using the
information theoretic metric of information gain [39, 40]. Specifically, given a pair of
SNPs A and B, the amount of information each of them explains on the phenotypic out-
come C was measured using mutual information I(A; C) and I(B; C). When joining A
and B, I(A, B; C) captured the total association of A and B together on C. Subtracting
the individual associations of I(4; C) and I(B; C) from I(A, B; C), i.e. the information gain
IG(A; B; C), provided the gain of information on C by combining A and B together, and
served as the measure of epistatic interaction between A and B on C.

Then networks were built by including pairs of SNPs as connected vertices if their
epistatic interaction strengths were stronger than a theoretically derived threshold. We
used global network properties, including the size of the network, the size of the giant
connected component and vertex degree distribution, and permutation testing to derive
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a threshold for including SNP pairs when the network built from the real data showed the
most distinguishing topological properties than permuted data networks. Such statistical
epistasis networks were able to capture the global interaction structure of a large set of
SNPs.

The SEN framework was successfully applied to the population-based bladder cancer
dataset, and we were able to identify a SNP interaction network that had a significantly
larger giant connected component and a distinguishing heavy-tail degree distribution,
compared to all permuted data networks built using the same pairwise interaction thresh-
old [27]. The finding of such a network proposes an important hypothesis of the existence
of a large connected structure of complex interactions among bladder cancer associated
SNPs, and calls for further validations and investigations.

In the current study, we used Gene Ontology to assign function annotation of each
gene and look into the characterization of vertex properties in the epistasis interac-
tion network. Therefore, we built a gene-gene interaction network from the previously
identified SNP-SNP interaction network of bladder cancer. In the gene interaction net-
work, each vertex represented a gene, and two genes were connected by an edge if there
existed at least one pair of SNPs, one from each gene, that were connected in the iden-
tified SNP-SNP interaction network. Transforming the SNP-SNP interaction network to
the gene-gene interaction network allowed functional categorizing directly on genes as
vertices in the network since the Gene Ontology annotation is on the gene level.

Gene ontology annotation

We used the Database for Annotation, Visualization and Integrated Discovery
(DAVID) [41] to functionally annotate the 185 genes in our epistasis network based on
Gene Ontology. The FAT level was used for biological process (BP), cellular component
(CC), and molecular function (MF) annotations. GO categories were considered signif-
icantly enriched in our network if their enrichment significances were higher than the
conventionally used threshold 0.05. We set the gene-in-category count threshold to 3, i.e.,
we included GO terms in the annotation analysis only if they had at least three genes from
our 185 network genes.

Distribution of vertex properties in networks

Networks have been used to model interactions in complex systems in various areas from
biological sciences, engineering, to social science. In most real complex networks, ver-
tices themselves also possess functional characteristics, and observing the distribution of
vertex characteristics in the context of network structure provides insights into whether
vertices with similar functions tend to connect to each other. A recent study on complex
networks [34] proposed a quantitative approach to depicting the interplay between vertex
properties and the structure of the underlying network. They proposed two parameters,
dyadicity and heterophilicity, to measure to what degree the vertex characteristics are
correlated with the network structure.

Given a network with known vertex characteristics, dyadicity and heterophilicity can
be used to describe the statistical distribution of vertex characteristics in the network.
Assuming that each vertex is characterized by a property that takes two values, 1 or 0, in
the context of gene interaction networks, a gene contributing to a specific GO term (1)
or not (0), n1 (np) denotes the total number of vertices that take value 1 (0) for the given
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property. In the network, there exist three types of dyads, defined as a pair of vertices
and the edge linking them, 1) an edge and its two end vertices that both have value 1,
2) an edge and its two end vertices that take each of the values 1 and 0, and 3) an edge and
its two end vertices that both have value 0. The numbers of such three types of dyads in
the network are denoted by m;1, mi0, and mqo respectively. Note that n; + ngp = N and
mi1 + mig + moo = M, where N is the total number of vertices and M is the total number
of edges in the network. With a given number 73, if the property is distributed randomly
among N vertices, i.e. each vertex has an equal chance of either having or not having such
a property, the expected number of (1-1) and (1-0) dyads are

-1
Wll = (7121> Xp= 7711(”12 )p, (1)

i = (1’111) (ﬂf) x p=mN —m)p, (2)

where p = % calculates the average probability that two vertices are connected.
Significant departures from such expected numbers of dyads indicate that the property is
not randomly distributed in the network. Therefore, the dyadicity (D) and heterophilicty

(H) can be defined as [34]
mig

D= > (3)
mii

H=210 @
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where m1;1 and m are observed numbers of dyads in the network. If a significant D > 1
is observed, the vertex property is dyadic in the network, meaning that more vertices with
such a property tend to connect to each other than expected for a random configuration.
A significant H > 1 indicates that the property is heterophilic, meaning that vertices with
such a property have more connections to vertices without the property than expected
randomly (Fig. 1). Note that it is possible that a node property in a network is both dyadic
and heterophilic when nodes with value 1 are mostly hub nodes and are well connected to
one another. In this scenario, both the numbers of (1-1) dyads and (1-0) dyads can be sig-
nificantly greater than null distributions. The significance level of an observed D (H) can
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Fig. 1 Examples of dyadic and heterophilic distributions of vertex properties in a network. A vertex can either
have (value 1) or not have (value 0) a given property. For a given number of vertices with the property
(n1 = 5in this example), if there are more similar connections among them, e.g. (1-1 edges), than expected
randomly this property is dyadic in the network (a), and if there are more connections between vertices with
and without the property, e.g. (1-0 edges), than expected randomly the distribution is heterophilic (b)
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be estimated using permutation testing, where the assignment of vertices’ property values
are randomly shuffled while the the total number of vertices taking value 1, i.e. 73, is fixed.
We adopted these two parameters in our study to quantify whether genetic interactions
happen more among genes contributing to the same GO functional category or across dif-
ferent functional categories. Also note that the analyses on dyadicity and heterophilicity of
different vertex properties, or functional categories, are independent of each other. That
is, vertex properties, or functional categories, are not required to be mutually exclusive.

Results

Gene interaction network of bladder cancer

In our previous study on the statistical epistasis network of bladder cancer, we identified
a network consisting of 319 SNPs as vertices and 255 edges that had significantly higher
connectivity and a more distinguishing degree distribution than expected randomly [27].
In the current study we mapped these 319 SNPs to 185 genes and built a gene-gene inter-
action network, where each vertex was a gene and two genes were connected if they had
at least one pair of underlying SNPs that were connected vertices in the SNP-SNP statis-
tical epistasis network. As shown in Fig. 2, the gene-gene interaction network of bladder
cancer had 185 vertices and 174 edges including 1 self-loop. The network was comprised
of 25 connected components and the largest connected component included 134 genes.
The average number of neighbors of vertices was 1.87.

Enriched gene functional categories

Gene Ontology annotation using DAVID returned 808 GO terms as significantly enriched
functional categories for our set of 185 network genes. The category of the largest gene-
in-category count was GO_MF_FAT nucleotide binding that had 48 genes, followed
by GO_BP_FAT response to organic substance (45 genes), GO_CC_FAT cell fraction
(45 genes), and GO_CC_FAT membrane-enclosed lumen (45 genes). We then used these
enriched 808 GO terms as vertex properties to perform the analysis on the distribution of
vertex characteristics in the network.

Dyadicity and heterophilicity of enriched GO categories
Each of the enriched GO terms was set as a vertex property, and we assigned each vertex
a value of 1 for the property if the represented gene was in the GO category and 0 if not.
The dyadicity (D) and heterophilicity (H) values were then calculated for each of the 808
GO categories. A 100,000-fold permutation test was used to estimate the significance of
observed D and H, by shuffling the assignment of vertex property values. The p-value was
calculated as the number of D (H) values of permuted networks that were greater than or
equal to the observed values of the real network.

Table 1 lists the 12 GO categories that had either significant dyadicity or heterophilicity
using a p-value threshold of 0.05. The number of genes in these categories ranged from
30 (nucleoplasm) to 3 (regulation of phagocytosis, nucleotide-excision repair, DNA gap
filling, regulation of sterol-transport, and regulation of cholesterol transport). See Fig. 2
color coding for genes that mapped to significantly dyadic categories (pink), heterophilic
categories (blue), or both categories (yellow). A significant dyadicity indicated that genes
from such categories tend to interact more with genes from the same functional categories
than expected randomly. The category with the most significant dyadicity was negative
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Fig. 2 The gene interaction network of bladder cancer. Each vertex represents a gene, and two genes are
connected by an edge if there exist at least one pair of SNPs, one from each gene, that have strong and
statistically significant interaction associated with bladder cancer and appear as connected vertices in the
previously identified statistical epistasis network [27]. The network includes 185 vertices and 174 edges.
Colors code for genes mapped to GO categories with significant dyadicity (pink), significant heterophilicity
(blue), or both types (yellow). This graph was rendered using Cytoscape [45]

regulation of DNA binding (D = 19.676, pp = 0.006). Given the structure of the network,
it was shown highly significant that two pairs of genes were connected within the total 5
genes in this functional category. A significant heterophilicity, on the opposite, indicated
that genes from such categories tend to interact more with genes from different functional
groups than random. The most significant heterophilic category was response to estrogen
stimulus with a H = 1.630 and a py = 0.015. Figure 3 depicts the graph of the dyadicity
and heterophilicity of these 12 significant GO categories. Note that, 8 out of these 12
significant GO terms are from the BP category, including all 5 terms that have significant
heterophilicity observations.

Discussion
In this article, we proposed the methodology of analyzing the distribution of gene
functional properties in the context of statistical epistasis networks. The gene interaction
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Table 1 Dyadicity and heterophilicity analysis results of the bladder cancer gene interaction network

Gene Ontology terms Ny M oM My Mg D H po PH
Nucleoplasm 30 9 38 4422 47265 2035 0804 0.042 0954
Identical protein binding 27 1 56 3568 43362 0280 1291 0977 0.026
Response to estrogen stimulus 10 1 29 0457 17788 2.186 1630 0401 0.015
Transcription, DNA-dependent 9 2 25 0366 16101 5466 1553 0062 0.036
RNA biosynthetic process 9 2 25 0366 16.101 5466 1.553 0.064  0.036
Steroid binding 8 2 12 0285 14393 7027 0834 0.042 0.776
Axon 6 2 7 0.152 10917 13118 0.641 0.013 0952
Negative regulation of DNA binding 5 2 11 0102 9148 19676 1202  0.006 0301
Regulation of phagocytosis 31 7 0.030 5550 32794 1261 0.045 0.260
Nucleotide-excision repair, DNA gap filling 3 0 12 0030 5550 0 2162 1 0.037
Regulation of sterol-transport 31 5 0.030 5550 32794 0901 0.047 0616
Regulation of cholesterol transport 31 5 0.030 5550 32794 0.901 0.048 0618

A 100,000-fold permutation testing was used to estimate the significance levels of the calculated D and H, and the p-values less
than the threshold 0.05 were noted in bold font

network was constructed by first identifying the network of strong and significant pair-
wise SNP epistatic interactions and then building gene network on top of the SNP interac-
tion network. After annotating genes as vertices based on their functional Gene Ontology,
dyadicity and heterophilicity analysis was performed for each GO term to investigate to
what degree the vertex characteristics correlate with the underlying interaction network
topology. Using a population-based bladder cancer dataset and its previously identified
SNP statistical epistasis network, we performed the dyadicity and heterophilicity anal-
ysis on enriched GO terms for the genes in the gene interaction network associated
with bladder cancer. We were able to find 12 GO categories with significant dyadicity or
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data points are on top of each other in the graph. Dashed lines represent D = 1 and H = 1, expected from
random distributions, for a visual guidance
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heterophilicity, which indicated the differential interaction patterns among genes from
various functional categories, i.e. some functional categories tend to have genes interact-
ing with each other within the same categories whereas genes from some other functional
categories tend to interact more with genes from other categories.

This study complements our previous framework of statistical epistasis networks by
constructing gene interaction networks and further analyzing the distribution of gene
functional characteristics in the networks. Network science has become very powerful in
modeling epistatic interactions in genetic association studies. It is capable of representing
and analyzing complex interactions among a large number of genetic attributes. How-
ever, less has been done on incorporating functional properties of genetic attributes in
the context of interaction networks. Our work analyzed the interplay between functional
properties and network topology and provides important insights into the interpretation
of the interactions and better understandings of the etiology of the associated diseases.

The bladder cancer gene interaction network had a large connected giant component.
This indicates the complex genetic architecture underlying bladder cancer. A total of 808
functional categories were enriched across the 185 genes in the gene interaction network
using GO functional annotation analysis. Seven GO terms were significantly dyadic and
five others were significantly heterophilic. These different interaction properties of GO
categories provide useful insights in understanding various functional components in the
etiology of bladder cancer. For instance, note that the functional category nucleotide-
excision repair, DNA gap filling was enriched in our set of network genes and was shown
possessing significantly high heterophilicity (H = 2.162, py = 0.037). DNA repair
genes were previously found to be associated with bladder cancer susceptibility [37].
The current study demonstrates that these genes contribute to bladder cancer suscep-
tibility through epistatic interactions, and their interaction effect is heterophilic, which
could indicate that, rather than depending on each other, DNA repair genes would be
more likely to interact with genes from other functional categories. SNPs that lead to an
increase in the level of DNA damage, (i.e. by increasing the bioactivation of toxins to reac-
tive intermediates), could synergize with impaired DNA repair mechanisms, leading to a
greater than additive increase in cancer risk.

Also note that regulation of cholesterol transport (D = 32.794, pp = 0.048) and regu-
lation of sterol transport (D = 32.794, pp = 0.047) that included genes APOA2, BZRP,
and LEP in the network, were enriched and found highly dyadic in the gene interac-
tion network. A growing body of literature suggests increased risk of cancers, including
bladder, is associated with high intake of dietary cholesterol [42]. Recent studies have
identified the role of cholesterol homeostasis as potential targets for cancer therapeutics
[43]. It has been well accepted that excess cholesterol and intermediates of the cholesterol
biosynthesis pathway are needed for cancer cells to maintain a high level of proliferation,
and the cholesterol and sterol transport mechanisms could be used as potential targets
for cancer drug design [44]. Our results suggest that the interaction effects of choles-
terol and sterol transport regulation genes, mostly dyadic, contribute to the susceptibility
of bladder cancer, and might be useful for future identification of cancer drug targets.
We also speculate that the dyadic interaction effect could be the indication that choles-
terol transport molecules must bind to cholesterol and to each other to move cholesterol
through the body since it is insoluble in blood and many of them exhibit feedback regula-

tion. Therefore regulation of cholesterol and sterol transports have more protein-protein
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interactions among themselves that are reflected as statistical epistasis interactions in
relation to bladder cancer than with other functional groups.

Our methodology itself has great application potential in genetic association studies. It
can be used to analyze and interpret the gene-gene interactions for a wide range of phe-
notypes or diseases. In the current study, we adopted GO annotation with the limitations
including that the categorizations are assigned based on current knowledge but many
change as new scientific discoveries are made, and that categories are sometimes subsets
of one another. In future extensions and applications, we are interested in using other
functional annotation methods, such as pathways, drug-, and environment-associations,
to look into how these different methods of functional categorization interplay with the
vertex property distribution in the gene interaction networks.
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