
Citation: Uldry, A.-C.; Maciel-

Dominguez, A.; Jornod, M.; Buchs,

N.; Braga-Lagache, S.; Brodard, J.;

Jankovic, J.; Bonadies, N.; Heller, M.

Effect of Sample Transportation on

the Proteome of Human Circulating

Blood Extracellular Vesicles. Int. J.

Mol. Sci. 2022, 23, 4515. https://

doi.org/10.3390/ijms23094515

Academic Editors: Michele Costanzo,

Marianna Caterino and Lucia

Santorelli

Received: 24 March 2022

Accepted: 9 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Effect of Sample Transportation on the Proteome of Human
Circulating Blood Extracellular Vesicles
Anne-Christine Uldry 1,2 , Anabel Maciel-Dominguez 1,2, Maïwenn Jornod 1,2, Natasha Buchs 1,2,
Sophie Braga-Lagache 1,2, Justine Brodard 3 , Jovana Jankovic 3, Nicolas Bonadies 2,3 and Manfred Heller 1,2,*

1 Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR),
University of Bern, 3008 Bern, Switzerland; anne-christine.uldry@dbmr.unibe.ch (A.-C.U.);
anabel.macield@gmail.com (A.M.-D.); maiwenn.jornod@gmail.com (M.J.);
natasha.buchs@dbmr.unibe.ch (N.B.); sophie.lagache@dbmr.unibe.ch (S.B.-L.)

2 Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland; nicolas.bonadies@insel.ch
3 Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital,

University of Bern, 3010 Bern, Switzerland; justine.brodard@insel.ch (J.B.);
jovana.jankovic@students.unibe.ch (J.J.)

* Correspondence: manfred.heller@dbmr.unibe.ch; Tel.: +41-31-684-04-82

Abstract: Circulating extracellular vesicles (cEV) are released by many kinds of cells and play an
important role in cellular communication, signaling, inflammation modulation, coagulation, and
tumor growth. cEV are of growing interest, not only as biomarkers, but also as potential treatment
targets. However, very little is known about the effect of transporting biological samples from the
clinical ward to the diagnostic laboratory, notably on the protein composition. Pneumatic tube
systems (PTS) and human carriers (C) are both routinely used for transport, subjecting the samples to
different ranges of mechanical forces. We therefore investigated qualitatively and quantitatively the
effect of transport by C and PTS on the human cEV proteome and particle size distribution. We found
that samples transported by PTS were subjected to intense, irregular, and multidirectional shocks,
while those that were transported by C mostly underwent oscillations at a ground frequency of
approximately 4 Hz. PTS resulted in the broadening of nanoparticle size distribution in platelet-free
(PFP) but not in platelet-poor plasma (PPP). Cell-type specific cEV-associated protein abundances
remained largely unaffected by the transport type. Since residual material of lymphocytes, mono-
cytes, and platelets seemed to dominate cEV proteomes in PPP, it was concluded that PFP should be
preferred for any further analyses. Differential expression showed that the impact of the transport
method on cEV-associated protein composition was heterogeneous and likely donor-specific. Correla-
tion analysis was nonetheless able to detect that vibration dose, shocks, and imparted energy were
associated with different terms depending on the transport, namely in C with cytoskeleton-regulated
cell organization activity, and in PTS with a release of extracellular vesicles, mainly from organelle
origin, and specifically from mitochondrial structures. Feature selection algorithm identified proteins
which, when considered together with the correlated protein-protein interaction network, could be
viewed as surrogates of network clusters.

Keywords: circulating extracellular vesicles; pneumatical tube system transport; acceleration forces;
vibration; label-free proteomics; clinical blood samples

1. Introduction

Extracellular vesicles (EV) are spherical particles that are derived from shedding
parts of intracellular compartments or plasma membrane through endosomal or ectosomal
pathways, respectively [1]. They are enclosed by a lipid bilayer membrane and stabilized
by membrane-associated proteins. EV contain a variety of cellular components including
metabolites, proteins, and polynucleotides. Essentially all cells produce EV, which act as
inter-cellular transport vehicles that convey highly active biological molecules on a variety
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of biological systems, for instance in the context of cancer [2], plant-microbe interactions [3],
inflammation [4], and coagulation [5]. EV that are shed from tissues and cells with access
to the circulating blood become cEV and have the potential to accumulate in the peripheral
blood (PB). The multiplicity of cell origins and production sites means that the pool of cEV
in PB is an extremely heterogeneous mixture containing a variety of biological effectors,
which are involved in tissue regeneration or regulation of the tumor microenvironment [1,6].
cEV are, therefore, increasingly recognized as potential biomarkers and targets for treatment
in human diseases.

The poorly understood influence of pre-analytical factors as well as the application
of a variety of down-stream read-outs, including analytical methods based on fluorescent-
activated cell sorting, RNA expression, vesicle size distribution, or coagulation all challenge
the establishment of standardized protocols for cEV isolation in a clinical context [7–9].
Some of us (Heller, Braga, and Buchs) have previously developed an untargeted approach
of label-free proteomics using nanoflow liquid chromatography coupled to tandem mass
spectrometry (nLC-MS2) for the semi-quantitative protein profiling of cEV in human PB.
By this means, correlations of cEV quantity and their protein content with arteriogenesis in
the human heart muscle were identified [10]. Moreover, by characterizing cEV-associated
proteins based on gene ontology terms, known cellular location and cell type specificity,
we demonstrated that quantitative proteomics enables profiling of the cell origin of cEV,
that a single freeze/thaw cycle of blood samples activates coagulation, and the method
of freezing of blood samples causes damage to cEV integrity, as indicated by increasing
losses of cytosolic proteins between slow freezing at −80 ◦C and snap-freezing in liquid
nitrogen [11].

Many pre-analytical conditions influence the interpretation of blood analyses. These
include mainly patient-based factors but also procedural factors, such as the devices that
are used, skills of medical staff, lag time, and temperature [12]. Mechanical forces that
are associated with PB transport can have a relevant impact on diagnostic tests as well.
Most hospitals are fitted with a pneumatic tube system (PTS) which guarantees a fast and
efficient delivery of samples from the clinics to the laboratory. However, the pre-analytical
impact that is associated with mechanical forces has to be investigated for all potentially
susceptible laboratory tests [13] before samples are transported by PTS [14–16]. As exam-
ples, Kocak and colleagues could not find any statistically significant impact on blood cell
counts or erythrocyte sedimentation and standard coagulation tests between samples that
were transported by PTS or human carrier (C) [17]. Correspondingly, Phelan et al. did not
detect any influence on hemolysis [18]. In contrast, acceleration forces had a relevant impact
on platelet aggregometry [19,20], thromboelastometry, and thrombin generation [21], for
which reason samples have to be transported by C for these tests. Due to the biological inter-
connection of platelets with the coagulation system, it is important to investigate whether
the transport mode influences the cEV proteome. Only few groups have systematically
addressed this question [22–24]. They reported an increase in procoagulant activity, along
with an increase of annexin-V positive vesicles. However, rather artificial conditions were
used, such as extensive stair walking by a carrier or strong agitations on orbital shakers. To
close this gap, we set out to investigate the impact of transport by PTS and C on the cEV
proteome in a representative clinical context, by untargeted label-free mass spectrometry
and recording of the energy levels that were impacted on the blood samples.

2. Results
2.1. PTS and C Exhibit Substantially Different Transport Metrics

The visual examination of the 3D accelerations that were measured during the
transport of the 12 donors’ samples revealed important differences between C and PTS
(Supplementary Materials Figure S1 for one representative example). The acceleration sig-
nal of all PTS transports exhibited irregular patterns with several peaks of large amplitude
and short duration, which occurred in any possible direction. In contrast, the C samples
showed more gentle patterns, regular but complex oscillatory signatures that were typical
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of a walker (Supplementary Tables S2 and S3). There were three metrics integrating the
acceleration signal over time that were calculated for each transport event (see Section 4.2
and Methods section of Supplementary Materials): mean Teaker–Kaiser operator (TK), root
mean square (RMS), and vibration dose value (VDV). A boxplot of those transport metrics
is shown in Figure 1. Transportation through PTS lasted on average less than half as long
as by C (2.4 ± 0.3 min compared to 5.5 ± 0.5 min). PTS subjected probes to substantially
higher accelerations than C, with maximum amplitudes per journey > 17 g in PTS and
<2.4 g in C. Moreover, PTS signals exhibited a significantly skewed distribution towards
higher g-forces with a mean of 116 shocks having an amplitude >2.5 g. Transport metrics
TK, RMS, VDV were significantly higher by approximately one order of magnitude in
PTS compared to C (Supplementary Table S3 and Figure S1). In spite of this, the median
accelerations of both modes of transport through the transport event time were in a similar
low range (0.1–0.4 g). Since the same carrier transported all the samples, it was not too
surprising that the ground frequencies in C were all very similar at 3.98 ± 0.07 Hz. This
ground frequency appears to be characteristic of the gait and speed of the walker, as tests
that were performed with two other carriers gave 2 Hz and 4.3 Hz, respectively (not shown).
In summary, transport metrics were substantially different between PTS and C, with low
intensity, regular oscillations for C compared to very high, irregular, and multidirectional
accelerations of short duration for PTS, respectively.
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Figure 1. Boxplot representation of the transport metrics. The 12 C values were compared to the
12 PTS values for each transport metrics TK (a), RMS (b), and VDV (c) with C on the left and PTS on
the right of each graph. The mean of Teaker–Kaiser operator for C ranged from 0.008 to 0.032 g2. All
three metrics showed highly significant differences between C and PTS with Welch’s t-test p-values
of 3.5 × 10−9 for mean of Teaker–Kaiser operator, 1.5 × 10−13 for root mean square, and 1.2 × 10−13

for vibration dose value, respectively.

2.2. PFP Centrifugation Protocol Isolates Pure cEV

A total of two plasma preparation procedures were considered in this work (see Ma-
terials and Methods), namely platelet-poor (PPP) and platelet-free plasma (PFP). While
our laboratory has shown earlier that the applied centrifugation protocol does successfully
isolate cEV from PFP [11], the concept behind the use of PPP is that it contains cell frag-
ments, an indicator of differential cell damage in case one transportation mode is more
damaging to cells than the other. The demonstration by Braga-Lagache et al. [11] that the
centrifugation protocol applied to PFP does indeed isolate cEV was based on mathematical
vesicle sedimentation modelling and transmission electron microscopy imaging; it was
shown that larger vesicles of diameters >500 nm are almost entirely removed by the short
high-speed centrifugation of PPP, and part of the smallest vesicles (<200 nm) are lost due to
their low sedimentation speed. Here, the same operator applied the exact same cEV isola-
tion procedure using the same centrifuges as in Braga-Lagache et al. In order to confirm



Int. J. Mol. Sci. 2022, 23, 4515 4 of 24

that the conclusions that were drawn earlier [11] still apply here, we reprocessed the 400 µL
PFP data, consisting of 12 healthy donors, with the same data interpretation pipeline as
described here in the Materials and Methods section and made a correlation analysis of
the log2-transformed median protein intensities of proteins that were quantified at least
three times in both datasets (N = 1009, Supplementary Figure S2). The squared correlation
coefficient (R2) of 0.49 of the cell surface protein class was poor, but the serum/plasma, cell
part, and cell membrane proteins scored with R2 of 0.70, 0.77, and 0.75, respectively. The cell
surface protein class contained the least members (N = 70) and had three extreme outliers
in form of isoform 2 of ficolin-3, hornerin, and platelet factor 4 variant-1. By excluding
these three proteins, the R2 value increased to 0.75.

Due to the large number of overlapping proteins showing a good correlation of their
intensities with Braga-Lagache et al. data [11], we can conclude that the particles that were
isolated from PFP in this study are true and pure cEV.

2.3. Nanoparticle Size Distribution Is Influenced by Transport in PFP

The particle size distribution of all samples was measured in order to characterize
the potential differences that were conferred by plasma preparation and/or transport
method. Visual inspection revealed that most of the donor samples had a particle size
distribution peaking in the range of 70–130 nm (Supplementary Figure S3). We note that
this is somewhat lower than the 200 nm that was determined in an earlier study [11] using
cryo-transmission microscopy imaging of isolated cEV. We also note in Figure S3 that in
PFP increased irregularities were seen in PTS compared to C in PFP. Figure 2 presents an
overview of features that were extracted from the ZetaView® distributions. Inspection of
the AUC per donor showed that we identified consistently less particles in the PPP samples
compared to the PFP, with the exception of donor BE351, who generated the two outliers
in the PPP AUC plot. Generally, we found more differences between the transportation
methods using PFP (upper row of Figure 2) compared to PPP (lower row of Figure 2).
In PFP the particle size distribution in PTS compared to C was (figures in brackets are
mean ± standard deviation) (i) wider (113 ± 14 vs. 66 ± 10 nm), (ii) less skewed (1.7 ± 0.4
vs. 2.7 ± 0.9 nm), and (iii) peaking at a larger size (116 ± 21 vs. 84 ± 7 nm). In PFP,
PTS also had a larger median particle size distribution than C (134 ± 13 vs. 100 ± 5 nm).
Again, healthy donor BE351 was an exception with similar medians in both transportation
methods. The particle numbers were not significantly different (8 × 1012 ± 2 × 1012 vs.
6 × 1012 ± 3 × 1012), although we observed in PFP a trend towards more particles in PTS
compared to C. No significant differences of the ZetaView® metrics were identifiable in the
PPP samples.

In summary, using a nano-particle detection method, we detected counter-intuitively
higher numbers of particles in PFP compared to PPP. We also saw a wider size distribution
in PTS compared to C, but this transport effect on the cEV particle distribution is only
detectable in PFP. We concluded that non-cEV plasma constituents are a pre-analytical
confounding factor for nano-particle detection technology.

2.4. cEV Isolated from PPP Are Contaminated by Platelet, Lymphocyte and Monocyte Remnants

A total of 2216 protein groups were identified by mass spectrometry when combining
all PFP and PPP samples together; 2144 of them were detected in at least two out of the
three technical replicates of at least one donor and were further considered for analysis.
In general, the number of quantified protein groups were lower in PFP compared to PPP
(Supplementary Table S4). The only exception was donor BE140, for whom we could
quantify 209 more proteins in PFP. An overview of the number of protein groups that
were found in each protein class and category is shown in Table 1a, while Table 1b gives
the numbers per cell type; the complete annotated protein list is in Supplementary File
proteinGroups_DE_test.xlsx. We observed that the total number of cell type specific markers
is very similar in PFP and in PPP, and so is the number of serum/plasma proteins. However,
PPP had a markedly higher number of cellular class proteins (membrane, cell part, cell
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surface) than PFP. In total, there were 52 protein groups that were exclusively quantified in
PFP (unique-to-PFP) and 456 in PPP (unique-to-PPP). We found 12 platelet-specific proteins
in the unique-to-PFP and 393 in the unique-to-PPP set, resulting in a much higher ratio for
platelet-specific proteins in PPP (393/456 = 86.2%) compared to PFP (12/52 = 23.1%). A
further confirmation of the prevalence of platelet remnants in PPP is that four out of the
six unique-to-PPP markers were of platelet origin (CD93, CD224, CD244, and CD274) [25],
while only one out of the six unique-to-PFP markers was with a platelet annotation (CD81,
as listed in Supplementary File proteinGroups_DE_test.xlsx).
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Table 1. Number of protein groups quantified in all cEV isolates.

(a) Classification by origin and category

Protein Origin Protein Category Combined Data

PFP PPP Plasma

C PTS C PTS unique-
to-PFP

unique-
to-PPP

Cellular

Cell membrane 772 561 570 746 750 16 179

Cell part 1030 723 752 991 992 23 248

Cell surface 138 106 110 129 129 7 26

Total cellular 1940 1390 1432 1866 1871 46 453

Serum/plasma

Apolipoprotein 19 19 19 18 19 0 0

Coagulation factor 23 23 23 23 23 0 0

Complement factor 26 26 26 26 26 0 0

Immunoglobulin 75 73 74 69 71 4 1

Other 58 56 56 56 56 2 2

Total serum/plasma 201 197 198 192 195 6 3
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Table 1. Cont.

Unknown 3 3 3 3 3 0 0

Total 2144 1590 1633 2061 2069 52 456

(b) Cell type specific proteins (markers) *.

Cell Origin Combined Data

PFP PPP Plasma

C PTS C PTS unique-
to-PFP

unique-
to-PPP

T Cell 41 37 38 37 38 3 3

B Cell 36 32 33 32 33 3 3

NK cell 30 27 28 27 28 2 2

Dendritic cell 18 16 16 15 16 2 2

Monoc./Macroph. 50 44 45 44 46 4 5

Granulocyte 35 31 32 31 33 2 3

Platelet 34 33 33 34 34 0 1

Erythrocyte 13 13 13 12 12 1 0

Endothial cell 39 36 36 35 35 4 3

Stem/Progenitor 32 30 30 28 28 4 2

Total markers 70 63 64 62 64 6 6

* Most proteins have more than one cell type specificity.

Additional information regarding the cell origin of differentially abundant cEV was
gained by comparing PFP_C, PFP_PTS, PPP_C, and PPP_PTS iTop3 intensities of a choice
of proteins that can be regarded as cell-type specific (Table 2 and Figure 3). The top row
of Figure 3 shows the markers that are enriched in PFP compared to PPP, the bottom row
those that are enriched in PPP compared to PFP; we note that the enrichment in each
case is significant for both transport modes. The top row consists of specific markers
for erythrocytes (CD233), macrophages (CD14), endothelial cells (HSPG2), and exosomes
(CD81). The markers in the second row can be catalogued as platelets (CD41, CD62P), as
well as lymphocytes and monocytes (CD40, CD102). We noted no significant intensity
difference between PTS and C, neither in PFP nor in PPP; this subject is treated in the next
section. Although this was not confirmed by nanoparticle tracking, one can assume that,
independently of the mode of transport, larger vesicles that are derived from cell damage
were present in PPP, but had been removed in PFP by the second centrifugation step. We
can therefore interpret any transport-independent increase in PPP as stemming from cell
fragments, while an increase in PFP can be seen as originating from actual cEV.

Table 2. cEV-associated cell-type specific proteins that were used to assess cell-type specific damage
by way of transport.

CD GN nTPM, Cell Type * Functional Annotation Excerpt from uniport.org

CD14 CD14 Mp = 653
Mc = 285 Mediates the innate immune response to bacterial lipopolysaccharide (LPS)

CD40 CD40
Mc = 242
Bc = 148
Ec = 62

Transduces TRAF6- and MAP3K8-mediated signals that activate ERK in Mp
and Bc, leading to induction of immunoglobulin secretion

CD41 ITGA2B
Pl

Gc = 65
Ec = 2

Part of receptor for fibronectin, fibrinogen, plasminogen, prothrombin,
thrombospondin and vitronectin
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Table 2. Cont.

CD GN nTPM, Cell Type * Functional Annotation Excerpt from uniport.org

CD62P SELP

Pl
Ec = 52
Tc = 9
Gc = 8

Mediates the interaction of activated Ec or Pl with Lc

CD81 CD81

Ec = 345
Mp = 278
Dc = 267
Tc = 137
Bc = 88
Gc = 82

Structural component of specialized membrane microdomains known as
tetraspanin-enriched microdomains, which act as platforms for receptor

clustering and signaling.

CD102 ICAM2

Nk = 114
Ec = 109
Tc = 60

Mp = 57
Bc = 48
Mc = 26

Mediates adhesive interactions important for antigen-specific immune
response, NK-cell mediated clearance, lymphocyte recirculation, and other

cellular interactions important for immune response and surveillance

CD233 SLC4A1 Ery = 1623 Major integral membrane glycoprotein of the erythrocyte membrane

HSPG2 HSPG2 Ec = 323 Role in vascularization, basement membrane localization

* Normalized mRNA expression levels in single cells (nTPM) as published on the Human Protein Atlas organi-
zation website accessed on 26 December 2021 (https://www.proteinatlas.org/) in combination with informa-
tion from the Human Cell Differentiation Molecules organization (hcdm.org). Bc = B-cells, Dc = dendritic cells,
Ec = Endothelial/Epithelial cells, Ery = Erythrocytes, Gc = Granulocytes, Mc = Monocytes, Mp = Macrophages,
Nk = natural killer cells, Pl = Platelets, Tc = T-cells.
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together. The top row of plots presents cells that were enriched in PFP with erythrocytes represented
by CD233, macrophages by CD14, endothelial cells by HSPG2, and CD81 being a more ubiquitous
marker that is generally considered to represent exosomes. The cell-types that are represented in the
second row of plots is platelets with CD41 and CD62P, and lymphocytes and monocytes with CD40
and CD102, respectively.

In summary, we can conclude that (i) cEV that are isolated from PPP contain more
platelet remnants and lymphocyte/monocyte components compared to PFP, independently
of the transport method, and (ii) the increased intensity in PFP of erythrocyte (CD235a),
endothelial cell (HSPG2), macrophage (CD14), and the exosomal marker CD81 indicates
an enrichment of true cEV proteins in PFP. Overall, our data let us conclude that further
analyses should be focused on the purer PFP-derived cEV.

2.5. Non-Consistent Impact of Transport Method on Individual cEV Protein Compositions

We had hypothesized that the differential cell damage that is caused by the modes
of transports would be detected in the cEV proteome and be interpretable as different
formations of cell debris or stimulations of blood cells (especially platelets). However, the
differential protein quantification analysis of PFP samples showed, in all donors except
BE351, only very few significant differences between PTS and C (Supplementary File
proteinGroups_DE_test.xlsx and summarized in Supplementary Table S4). There was
just one, albeit different, protein that was enriched in C of BE354 (healthy) and BE363
(secondary AML), and five that were enriched in PTS of BE354; the case of the outlier BE351
is discussed in Supplementary Results. We then looked in more detail at the behavior of the
detected CD markers; their relative PTS to C changes (log2 fold change) is shown, per donor,
in Supplementary Figure S4. The plots revealed that PTS transport enriched for erythrocyte-
derived cEV (CD233) in half of the donor samples, independently of the plasma preparation.
No other trend seemed to emerge from any other markers. Interestingly however, the
platelet markers CD41 and CD62P appeared well correlated: if one marker was enriched,
respectively depleted, for one donor, the other marker was enriched, respectively depleted
as well.

While very few changes in protein abundance turned out to be significant, there were
nonetheless a number of proteins that were not detected in either C (median of 21, range
6–271) or PTS (36.5, 8–584) (Supplementary Table S4). A vast majority of those on-off
proteins were detected only once (92% in PTS with a total of 487 on-off proteins, and 73%
in C with 575 proteins), and 7% and 24% detected twice, respectively (excluding BE351).
The fact that those on-off proteins were randomly occurring between the donors and did
not reach statistical significance indicates low intensities, therefore can be considered as
being missed by chance during mass spectrometric analysis.

As BE351 and BE140 were identified as outliers by particle size distributions and
enrichment of proteins in PFP or PTS, we argue (Supplementary Results) that cEV damages
in these two cases occurred during blood collection or processing of the sample. For this
reason, we decided to remove these samples from the subsequent analysis.

In summary, no consistent statistical protein differential expression could be detected
in PFP between PTS and C.

2.6. Blood Cell Counts and Nanoparticle Features Do Not Correlate with cEV-Associated
Protein Intensities

A question of interest is whether cEV-associated protein intensities, aggregated by rele-
vant subclasses or annotations, are able to predict the number of nanoparticles, hemoglobin
concentrations, or blood cell counts as determined by Sysmex and ZetaView®. To this
purpose, Spearman’s rank correlations were calculated between all these quantities, in-
cluding transport metrics as well, based on the 10 remaining donor values and focusing
exclusively on PFP (Supplementary Table S5). The result, in the form of an unsupervised
cluster of correlation coefficients, is shown in Figure 4. Anti-correlations are colored blue,
positive correlations range from green to red as the coefficient increases. There are four
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distinct clusters of various sizes that are discernible in this picture. The largest cluster
(top right corner) was formed by cell-derived protein classes and cell markers. Leukocyte
and granulocyte cell markers correlated weakly, respectively not at all, with cell part, cell
membrane, cell surface, and exosome protein abundances. Platelet markers on the other
side showed good to very good correlations with these features, indicating that a large part
of cEV were probably of platelet origin. Interestingly, coagulation factors were part of this
cluster too; they correlated with platelet markers, suggesting that such factors are indeed
associated with platelet-derived cEV. We additionally noted that the cEV-associated protein
intensities did not correlate with blood cell count or nanoparticle features.
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each donor went into the correlation analysis: ZetaView® nanoparticle tracking numbers (original
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The second largest cluster (lower left to center) was formed by blood cell counts,
including hemoglobin (HBG), and surprisingly by apolipoproteins intensities that were
determined by our proteomics approach. Apolipoproteins correlated with all cell type
counts except granulocytes (Gc) and monocytes (Mc). Erythrocyte (Ec) cell counts correlated
weakly with the erythrocyte cell markers that were quantified by proteomics.

The small 2 × 2 cluster on the lower left corner consisted of proteins that were
annotated with the GO term “blood microparticles” and immunoglobulins. The small size
of this cluster comes as a surprise, as one would expect more correlations with “blood
microparticles” in this context.

The last cluster (middle of lower left quadrant) was formed by a sub-cluster of the
transport metrics and a sub-cluster of values that were derived from the nano-particle
tracking system. Interestingly, the two sub-clusters were fused via the calculated particle
volume, which significantly correlated with the transport metrics VDV, RMS, and TK,
while the particle concentration also correlated with the VDV metric. This corroborates
somehow our observation that PTS transport does lead to a widening of particle size, hence
transport mode can have an influence on particle volume in PFP as stated above (Figure 2,
Supplementary Figure S3).

Furthermore, particle concentrations showed a correlation with “other plasma pro-
teins”, which included serum albumin and alpha-2-macroglobulin, as two examples with
high proteomics determined intensity and of larger molecular weight. Additionally, the
original particle volume correlated with the proteomics-derived apolipoprotein intensities
and lymphocyte cell counts. While the latter is difficult to explain, the apolipoprotein and
other plasma protein correlations do indicate that they may play a role as a confounding
factor in nanoparticle tracking measurements as already indicated in above Section 2.3. We
also noted that keratin did not correlate with any other features, which supports the notion
that keratins may be contaminants rather than products that are released into cEV.

In summary, we concluded that a significant proportion of cellular proteins in the cEV
fraction of PFP is originating from all blood cell types, but with the exception of erythro-
cytes there is no general correlation between cell counts in blood and the corresponding
proteomics-based cell enumeration in cEV.

2.7. Transport Metric Correlations and Lasso Reveal Specific Effects on cEV Proteome

While no statistically significant groups of proteins emerged from the differential
analysis between PTS and C, consistent abundance changes correlating with transport
metrics can provide insight into the impact of transport on the cEV proteome. Spearman’s
rank correlation tests were, therefore, performed between the transport metrics (TK, RMS,
and VDV) and all the detected protein intensities. The number of protein groups correlating,
or anti-correlating significantly with either one, two or three transport metrics is reported in
Table 3. C and PTS results were at first pooled together (C+PTS), then considered separately.
We noticed indeed that by considering C and PTS together we had three to five times
less correlations than by looking at C or PTS individually, an indication that C and PTS
followed distinct patterns. Another observation was that in C a high number of proteins
correlated concurrently with all the transport metrics, while in PTS two distinct groups of
proteins were seen, one correlating only with VDV and another one with both TK and RMS.
The same applied to the negatively correlating proteins, albeit with much fewer proteins
involved. We established three ranked lists for GO term enrichment analyses (see the
Methods section), containing the proteins correlating (i) in C with all three metrics TK, RMS,
and VDV (C_TK/RMS/VDV); (ii) in PTS with both TK and RMS (PTS_TK/RMS); and (iii) in
PTS with VDV alone (PTS_VDV). The resulting unique GO term list with the calculated
p-values and the numbers of proteins/gene products is given in Table 4. Based on these GO
terms, it appeared that increased oscillations associated with C induced an increased level
of cEV-associated proteins which regulated the cytoskeleton and were involved in cellular
organization (including cell projections and anchoring junctions). An increase of shocks, as
recorded by TK and RMS during PTS transport, appeared on the other hand to induce an
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increased level of cEV from organelle origin, and of cEV that is involved in the metabolism
of proteins and nucleic acids. High vibration doses (VDV) during PTS transport seemed
to have a specific impact on mitochondrion-associated cellular respiration, together with
increased membrane assembly by cell junction proteins.

Table 3. Correlations of protein group intensities with transport metrics. The numbers of protein
groups significantly correlating (p ≤ 0.05) with transport metrics are reported on the left for positive
correlation, and on the right for anti-correlation. C and PTS were both pooled (C + PTS) and
considered separately.

Positive Correlations Negative Correlations

Transport Metrics C + PTS C PTS C + PTS C PTS

TK only 14 43 31 1 3 2

RMS only 1 3 15 0 2 3

VDV only 10 7 158 2 1 20

TK + RMS 12 12 144 5 4 16

RMS + VDV 0 6 0 1 2 0

TK + VDV 8 36 32 0 4 0

TK + RMS + VDV 27 181 4 2 11 0

Total TK 61 202 194 8 19 20

Total RMS 40 202 163 8 19 19

Total VDV 45 230 194 5 18 20

Table 4. Significantly enriched GO terms in correlating transport metric lists. The network color code
refers to Figures 5–7.

Network
Color Biological Process p-Value # of

Genes
Network

Color Cellular Component p-Value # of
Genes

C_TK/RMS/VDV

1 regulation of cellular
component organization 1.3 × 10−6 82 7 plasma membrane

bounded cell projection 9.8 × 10−7 63

2 cytoskeleton organization 3.8 × 10−7 52 8 anchoring junction 2.1 × 10−10 59

3 establishment of
localization in cell 3.7 × 10−8 51 9 actin cytoskeleton 1.2 × 10−9 44

4 nitrogen compound
transport 1.2 × 10−4 40 10 myofibril 2.6 × 10−7 19

5 cell cycle 9.5 × 10−5 23 11 chromosome 1.1 × 10−4 15

6 actin filament-based
process 2.2 × 10−7 43 12 cluster of actin-based cell

projections 1.9 × 10−4 12

PTS_TK/RMS

1 organelle organization 5.0 × 10−5 56 4 organelle envelope 6.7 × 10−5 31

2
nucleobase-containing
compound metabolic

process
6.9 × 10−5 22 5 ficolin-1-rich granule 1.2 × 10−4 16

3 proteasomal protein
catabolic process 3.5 × 10−5 9 6

endoplasmic reticulum
protein-containing

complex
1.0 × 10−4 11
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Table 4. Cont.

Network
Color Biological Process p-Value # of

Genes
Network

Color Cellular Component p-Value # of
Genes

PTS_VDV

1 cellular localization 2.8 × 10−5 63 5 intrinsic component of
membrane 8.3 × 10−6 76

2 intracellular signal
transduction 4.8 × 10−5 37 6 cell junction 7.9 × 10−5 64

3 cellular respiration 2.2 × 10−6 19 7 organelle sub
compartment 2.5 × 10−4 35

4 mitochondrial
transmembrane transport 5.6 × 10−5 12 8

mitochondrial
protein-containing

complex
3.9 × 10−8 21

9 catalytic complex 2.9 × 10−4 19

The least absolute shrinkage and selection operator (Lasso) algorithm was applied
in order to select EV-associated proteins that could classify the transport type. Although
the leave-one-out misclassification error was high (Supplementary Figure S5), the global
response (predictor) provided a good separation between C and PTS, in particular with the
pure Lasso approach. Between the pure Lasso and the elastic net approaches, we identified
altogether 12 proteins that could be used as classifiers (Supplementary Table S6); five had a
positive (CFHR1, KRT1, FLOT1, HRG, SERPINC1) and seven a negative (CORO1A, ATP5PF,
ST6GAL1, HSPA1A, EFEMP1, OIT3, C4BPB) coefficient. Complement factor H-related
protein 1 (CFHR1), histidine-rich glycoprotein (HRG), and antithrombin-III (SERPINC1) are
proteins that are adherent to the extracellular matrix and secreted. SERPINC1 is localized
in the endoplasmatic lumen and a inhibitor of coagulation, HRG acts as a versatile adaptor
protein regulating, amongst others, cell adhesion processes, and CFHR1 is involved in the
complement regulation. KRT1 (keratin type II cytoskeletal 1) and FLOT1 (flottilin-1) are
associated with cellular membranes, with FLOT1 cooperating in the process of caveolae-like
vesicle formation, while KRT1 may regulate the activity of kinases via binding to integrin
beta-1. Among the proteins with a negative coefficient, Coronin-1A (CORO1A) is part of the
cytoskeleton that is involved in the invagination or protrusion of plasma membrane, and
mitochondrial ATP synthase-coupling factor 6 isoform 2 (ATP5J or ATP5PF) is part of the
ATP-synthase complex at the inner membrane of mitochondria, respectively. Oncoprotein-
induced transcript 3 (OIT3), C4b-binding protein beta isoform 2 (C4BPB), beta-galactosidase
alpha-2,6-sialyltranferase 1 (ST6GAL1), and EGF-containing fibulin-like extracellular matrix
protein isoform 2 (EFEMP1) are annotated as being secreted, but are also found with the
following cellular association: the extracellular matrix for C4BPB and EFEMP1, the Golgi
apparatus for ST6GAL1, and the nucleus envelope for OIT3, respectively.

The elastic net method retained only three proteins, two of which, ST6GAL1 and SER-
PINC1, had already been selected by the pure Lasso procedure. The remaining one, HSPA1A
(heat shock 70 kDa protein 1A), is a multi-functional protein located at many sites within a
cell, namely the cytoplasm, cytoskeleton, microtubule organizing center, and centrosome.
CORO1A and FLOT1 were also proteins significantly correlating in C with all transport
metrics (C_TK/RMS/VDV) or in PTS with the vibrational dose values (PTS_VDV).

In summary, the Lasso proteins directed towards an association of cellular organelles
with transport metrics, supporting the correlation analysis between protein intensity and
the transport metrics as shown above.

2.8. Protein-Protein Interaction Network Conclusions

A STRING network analysis was then performed in order to study the interactions
between the proteins of interest that were identified by the correlation analysis and the
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Lasso algorithm. The Lasso proteins were added to each of the three correlation lists
C_TK/RMS/VDV, PTS_TK/RMS, and PTS_VDV and the three completed lists were sub-
mitted to the STRING database. A first impression that was given by all three networks
was that the Lasso proteins were distributed throughout the network in different clusters.
In order to highlight this fact, the three STRING networks, which were based on combined
confidence score levels ≥ 0.70, are visualized in Figures 5–7 after the application of the
GLay community clustering algorithm [26]. When separated in clusters by this algorithm,
we noted that apart from SERPINC1 and HRG, who are known interactors, the Lasso
proteins were indeed spread out through different community structures of the networks.
The Lasso proteins were identified in the figures by a red border, and all the proteins were
annotated with a selected minimal GO term list, as explained in the Methods section (color
coded as given in Table 4). The clusters often had a dominant set of GO terms/colors, and
most clusters integrated at most one, in some cases up to three Lasso proteins. Proteins
with no interaction partners were omitted; this was the case for the Lasso proteins OIT3,
C4BPB, ST6GAL1, and EFEMP1. CORO1A, CFHR1, and KRT1 only have interactions in
the PTS_VDV network, while SERPINC1-HRG, ATP5PF (aka ATP5J), HSPA1A, and FLOT1
were part of all three networks.
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Figure 5. STRING protein-protein interaction network composed of proteins that were significantly
correlating with all C transport metrics (C_TK/RMS/VDV) and the Lasso proteins. Edges represent
a STRING combined score ≥ 0.7; they are drawn thick within community clusters, and thin across
community clusters. The Lasso proteins are marked with a red border (gray otherwise). Node colors
at the bottom right refer to GO terms given in Table 4, with 1–6 standing for biological process and
7–12 cellular component.
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Figure 6. STRING protein-protein interaction network composed of proteins that were significantly
correlating with the PTS metrics TK and RMS (PTS_TK/RMS) and the Lasso proteins. Edges represent
a STRING combined score ≥ 0.7; they are drawn thick within community clusters, and thin across
community clusters. Lasso proteins are marked with a red border (gray otherwise). Node colors at
the bottom right refer to GO terms given in Table 4, with 1–3 standing for biological process and
4–6 cellular component.
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Figure 7. STRING protein-protein interaction network composed of proteins that were significantly
correlating with the PTS transport metric VDV (PTS_VDV) and the Lasso proteins. Edges represent
a STRING combined score ≥ 0.7; they are drawn thick within community clusters, and thin across
community clusters. Lasso proteins are marked with a red border (gray otherwise). Node colors at
the bottom right refer to GO terms given in Table 4, with 1–4 standing for biological process and
5–9 cellular component.
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In the C_TK/RMS/VDV network, SERPINC1-HRG were attached to a cluster dom-
inated by anchoring junction proteins (color 8); ATP5J was part of a small cluster of
regulation of cellular component proteins (color 1); HSPA1A sat in a cluster with many
establishment of localization in cell (color 3) and nitrogen compound transport proteins
(color 4); and FLOT1 and CORO1A were both linked independently to a multi-component
cluster of regulation of cellular component organization (color 1), cytoskeleton organization
(color 2), actin filament-based process (color 6) and actin cytoskeleton proteins (color 9).

In the PTS_TK/RMS network, SERPINC1-HRG were not attached to any further
proteins; ATP5J formed a hub between organelle envelope proteins (color 4); HSPA1A was
integrated in a cluster that was dominated by organelle organization (color 1); FLOT1 was
connected to a single protein annotated to the latter term.

In the PTS_VDV network, SERPINC1-HRG as well as FLOT1 were attached to a clus-
ter that was dominated by cell junction proteins (color 6), although the connection by
SERPINC1-HRG is made through a non-distinct subunit of intrinsic components of mem-
brane proteins (color 5); CFHR1 was also linked to a predominantly cell junction cluster of
which CORO1A was also part of (color 6), and KRT1 to a predominantly intrinsic compo-
nent of membrane cluster (color 5); ATP5J was associated to clusters of many mitochondrial
protein-containing complex (color 8) and cellular respiration proteins (color 3); HSPA1A
was included in a cluster that was dominated by cellular localization proteins (color 1).

In summary, the Lasso algorithm identified a set of proteins that can be regarded as rep-
resenting the community clusters that were extracted from the protein-protein interaction
networks created from the transport metric correlation analyses.

3. Discussion

To the best of our knowledge, only a few studies have investigated the influence of
transport on cEV integrity and composition, with important limitations in the applied
experimental design. Lacroix et al. [22] attempted to measure the impact of carrier trans-
portation. They studied five modes of transportation: (i) gentle tube conversion, (ii) strong
agitation by rotating the tubes for two hours on a wheel, and human carrier transport three
floors down in tubes, (iii) unsupported, (iv) horizontally, or (v) vertically fixed in a box. All
the tubes were incubated for two hours at room temperature before centrifugation, which
is not standard clinical practice and might have introduced a bias in the study results. They
measured an increase in annexin-V positive microvesicles (analyzed by flow cytometry)
and an increased procoagulant activity in the case of strong agitation and carrier transport,
except when the tubes were kept fixed in a vertical position. Gyorgy et al. simulated
transport by 50 Hz amplitude on an orbital shaker for one hour at 37 ◦C [23] and Baek et al.
used 450 rpm for one hour at RT [24]. Gyorgy et al. also found increased annexin-V-positive
microvesicles by flow cytometry and a significant increase of vesicles by agitation in cit-
rated blood, similar to Lacroix et al. Baek and colleagues used a protein microarray-based
analysis platform, which detects exosomes based on binding to several cluster of differenti-
ation markers and annexin-V. They determined a not statistically significant tendency of
increased exosome binding with citrated blood after agitation. Overall, all these studies
had a very artificial design with long blood incubation times and application of forces and
oscillation frequencies that are not occurring during routine clinical transport scenarios.

A more comprehensive and clinically appropriate study is presented here. Blood
samples from twelve donors, six of which with hematological disorders, were transported
from the identical collection point to the wet lab both by either a foot carrier (C) or by the
pneumatic tube system (PTS) of the hospital. The transport forces were measured and
recorded. Both PPP and PFP plasma types were prepared so as to investigate the impact of
transportation on cEV on both plasma preparation methods. Nanoparticles were analyzed
by ZetaView® and the protein profile was determined with a semi-quantitative, label-free
proteome approach. We discuss in the following some of the caveats of the methods that
were considered and the conclusions drawn from the study.
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The isolation of cEV can be a difficult task, as blood contains other sorts of nanoparti-
cles or large protein complexes which are difficult to separate from the cEV by physical
means. For this aim, we chose an earlier established centrifugation protocol [11], where we
have shown that several consecutive washing steps in PBS are suitable for cEV isolation
and subsequent proteome analysis; the procedure, however, does not eliminate some major
plasma protein contaminations such as lipoproteins, coagulation, or complement factors as
well as immunoglobulins. Size exclusion chromatography (SEC) has been recommended
as an alternative isolation option with good recoveries of EV [7]. We have tested SEC
and compared the resulting cEV proteomes with the ones that were achieved with our
centrifugation-based method (see Supplementary Methods and Results). We found that
SEC did not result in more specific cEV isolation. Furthermore, the reproducibility was also
compromised, when compared with our centrifugation protocol (Supplementary Figures
S6–S8). For these reasons we used our earlier developed protocol for this study, although
one might ask whether it makes any sense to analyze differences that are caused by trans-
port accelerations, when the samples are later subjected to much higher accelerations in the
centrifuge. We must remember, however, that centrifugation generates a mostly constant
and unidirectional acceleration; this is qualitatively completely different to transporta-
tion, where the samples are shaken and hit from any possible direction. Perhaps more
importantly, while it can be possible that centrifugation does alter the size distribution and
eventually the cEV composition, all the samples experienced the same treatment, hence the
impact on cEV integrity during the centrifugations was the same for all the samples.

As suspected, the measurement of mechanical forces during transport revealed ex-
tremely different patterns depending on the transport mode: C samples were subjected to
regular oscillations of moderate amplitude, while PTS samples were subjected to successive
shocks of high amplitude. The relatively rough transport of blood specimens through the
PTS has been known to affect thrombin activation [21]. Otherwise, only little is known
about the molecular impact on other blood components. The gentler transportation by
a human courier appears as the more adequate way of transporting blood from bedside
into laboratories for subsequent molecular characterization, which was advocated in the
past by different laboratories that were interested in the analysis of cEV. One interesting
point, however, should be noted: in our study we observed a higher relative variabil-
ity of the mechanical forces in C compared to PTS (relative standard deviation RSD in
Supplementary Tables S2 and S3), meaning that the impact on cEV-associated proteins is
relatively more variable in C than in PTS. PTS would, therefore, be the preferable choice in
the context of using the cEV proteome composition in biomarker discovery projects. The
RSD that was obtained here was of course conditioned by the design of this study, with
blood samples all sent along the same path each time.

Based on our nanoparticle tracking results, we concluded that strong transport forces
occurring during PTS induced the spreading of the cEV size distribution towards both
smaller and larger particles, with a shift of the median size to larger values (Figure 2). This
observation can be explained by the destruction of some vesicles, which end up forming
smaller fragments, together with the concomitant formation of larger aggregates due to
the possible activation of thrombin [21]. The significant correlation between all three
calculated transport metrics with the particle volume that was derived from nanoparticle
tracking measurements underlines that the formation of particle aggregates might be the
biological phenomenon that could explain this finding (Figure 4). Other observations were
that (i) PTS-induced particle spreading in PFP could not be detected in PPP, (ii) the area
under the curve increased in PFP compared with PPP (Figure 2, Supplementary Figure S3),
and (iii) there exists a correlation between the original particle concentration that was
determined by ZetaView® and apolipoproteins and other plasma proteins (Figure 4). The
increase of the measured number of particles when the plasma contaminations are actually
partially removed by additional centrifugation indicates that confounding factor(s) in
plasma suppress(es) the detectability of nanoparticles (see also Supplementary Figure S8).
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Particles that were removed by additional centrifugation are most likely lipoproteins and
aggregates of plasma proteins.

We showed with our label-free proteomics approach that the different modes of
transportation do not have an impact on the plasma membrane-embedded cell type-
specific cEV-associated proteins, but rather on proteins from subcellular structures, such
as organelles, their membranes, and the cytoskeleton. However, the individual patterns
were highly heterogeneous and distinct between different donors. The GO term analysis
revealed an increase in the cytoskeleton-regulated plasma membrane and cell organization
activity that was caused by gentle oscillatory forces during C, in contrast to the release of
intracellular vesicles from organelles, including mitochondrial structures, that was caused
by the high energy vibration dose during PTS transports.

It is generally assumed that mechanical forces induce activation of platelets. One could,
therefore, expect that the number and intensity of platelet-derived proteins correlate with
the recorded energy impacting on blood during PTS transportation. However, we could
not confirm such a trend (Figures 3 and 4, Supplementary Figure S4, and Supplementary
File proteinGroups_DE_test.xlsx). Moreover, we did not measure a significant correlation
between the cellular protein intensities and the platelet numbers, neither in cEV that
were isolated from PFP (Figure 4), and more intriguingly not in PPP (not shown), where
more platelet fragments are present (Figure 3). In fact, we could only find a significant
correlation between the proteome-based quantification of erythrocyte origin, based on
erythrocyte-specific cell surface proteins, and erythrocyte numbers that were measured in
whole blood, which might indicate that cell type-specific proteins from cEV do not reflect
the concentration of cell types in blood, with the exception of erythrocytes (Figure 4).

On the other hand, existing cEV might be destroyed by higher energy that is associated
with harsher transport conditions, resulting in a decrease of cellular proteins in the cEV
fraction of blood. With the cell origin profiling, we found no generalizable pattern between
the blood samples from the twelve donors. We, therefore, conclude that transport-related
forces do not have a consistent impact on cEV composition, and that cEV integrity is an
individual trait. Additionally, there might be other underlying factors that we do not yet
fully understand, as for instance the aggregation of cEV that is induced by freeze-thawing
of PFP and during isolation by centrifugation, as observed earlier [11].

4. Materials and Methods
4.1. Study Design, Study Participants, Blood Sampling and Ethics Approval

This is a monocentric, exploratory study using peripheral blood (PB) that was trans-
ported either by the hospital pneumatic tubing system (PTS) or a human courier (C).
Platelet-poor (PPP) or platelet-free (PFP) plasmas were subsequently prepared and the
nanoparticle size distribution and protein composition of the isolated cEV were analyzed
for each of the four combinations of plasma type and transport mode PPP_C, PPP_PTS,
PFP_C, and PFP_PTS.

A total of six hematologically healthy volunteers (three females and three males
between age 39 and 56, mean of 46) and six patients with myeloid malignancies (one
female and five males between age 31 and 82, mean of 60) were included in this study
(Supplementary, Table S1). The PB of each donor was drawn by venipuncture at the same
ward in the hospital and collected into four 4.3 mL S-Monovette 3.2% citrated tubes, plus
one 4.3 mL S-Monovette EDTA tube (Sarstedt, Germany). Of these, two of the citrated
S-Monovettes were immediately sent to the proteomics laboratory through PTS, including a
sensor unit that was fixed within the transport tube. The same sensor unit was subsequently
attached to a recipient rack holding the two remaining citrated and the EDTA S-Monovettes
in an upright position. The same carrier walked the samples with the attached sensors to
the proteomics laboratory following the same route as much as possible. Immediately after
transportation, the EDTA sample was used for blood cell counting with a Sysmex XN-1000
instrument (Sysmex Suisse AG, Horgen, Switzerland). Clinical data were collected on the
Swiss Myelodysplastic Syndromes (MDS) Registry/Biobank platform, where patients with
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MDS, acute myeloid leukemia (AML), and healthy volunteers were included. MDS patients
were risk-stratified according to IPSS-R using a cut-off between 4 and 4.5 points for lower
and higher risk disease [27].

4.2. Determination of Transport Metrics

A sensor unit consisting of a Raspberry Pi Zero mini-computer that was equipped
with a SenseHat (RPi0-SH) add-on board was used for the acceleration measurements. The
acceleration events over time during transport of a sample can be summarized by different
metrics. There are three transport metrics that are commonly used in the context of shocks
and vibrations that were extracted (detailed in the Methods section of Supplementary Ma-
terials): (i) mean Teaker–Kaiser operator (TK), a measure of the mean energy of the signal;
(ii) root mean square (RMS), a measure of the mean acceleration; and (iii) vibration dose
value (VDV), a quantifier for the sum of vibration events. Further transport features were
determined, such as duration, ranges, and distribution of signals. Since the C transports
exhibited several periods of regular, sustained oscillations, a period of 0.5–3 min duration
was chosen for each C transport and the corresponding signal Fourier-transformed in order
to extract the ground frequency. The calculations were performed using base R functions
(version 3.6.3) as well as caTools, e1071 and signal packages. There are two sensor limitations
that have to be noted. Firstly, the sampling rate of the sensors is such that no frequency
higher than 12 Hz can be measured. Tests with a different accelerator of higher sampling
rate did not, however, detect substantial Fourier components in the 15–32 Hz range (not
shown). Secondly, the peak values that were measured during PTS were at the upper
limit of the detection power of the accelerometer, and therefore, higher accelerations may
have occurred.

4.3. Reagents, Software and Data

All the reagents were of analytical purity grade. Dithiothreitol (DTT), iodoacetamide
(IAA), and LC-MS grade acetonitrile were purchased from Fluka (Buchs, Switzerland);
urea, trifluoroacetic acid (TFA), and formic acid from Merck (Zug, Switzerland); TRIS and
acetone from Sigma (Buchs, Switzerland); and sequencing-grade endoproteinase LysC
and porcine trypsin from Promega (Dübendorf, Switzerland). Phosphate-buffered saline
solution was from Gibco (Life Technologies, Zug, Switzerland) and sterile filtered through
0.2 µm pore size membrane (Millipore, Zug, Switzerland).

Normalization, imputation, statistical tests, and Spearman rank correlations were
calculated using base R with following additional packages: vsn, MSnbase, and limma. All
protein expression data are provided in the Supplementary File proteinGroups_DE_test.xlsx.
Lasso feature selection was performed using the R package glmnet (version 4.0-2). Commu-
nity clustering was calculated by the GLay app [26] from Cytoscape [28]. Graphics art were
designed in Photoshop using figures that were produced with R, Excel, and Cytoscape.

4.4. Preparation of Platelet-Poor (PPP) and Platelet-Free Plasmas (PFP)

We prepared plasma samples as PPP and PFP from both citrated S-Monovettes that
were transported either by C or PTS. All the samples were centrifuged in a swing out rotor
(Labofuge 400R function line) at 1500 g for 10 min at room temperature to separate the
plasma from the cell fraction. PPP was carefully extracted, without disturbing the cellular
fraction, leaving 0.5 cm of liquid above the buffy coat. The collected PPPs from the two
S-Monovettes deriving from the same transport type were mixed, aliquots of 400 µL were
taken, and the remaining volume was distributed in 2mL tubes with a volume of 1.8mL
per tube and further centrifuged for 2 min at 16,000g (Eppendorf, centrifuge 5415 R). After
this second centrifugation step, the PFP was carefully removed, leaving 50–100 µL back in
the tube, mixed, and dispersed into 400 µL aliquots. The PPP and PFP aliquots were frozen
at −80 ◦C until further use.
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4.5. Nanoparticle Tracking Analysis

Nanoparticle tracking was performed on a ZetaView® (Particle Metrix, Inning am
Ammersee, Germany) instrument using an embedded laser (488 nm) and a CMOS camera
with the following settings: autofocus on, camera sensitivity at 85, shutter 100, scattering
intensity 4, and cell temperature at 25 ◦C. PPP and PFP were diluted in sterile filtered PBS
using a 0.22 µm membrane. Several dilutions were made targeting at least 1000 particle
traces. The tracing videos were analyzed by ZetaView® software (version 8.05.05 SP2)
limiting the particle size range to 10–1000 nm with a minimum particle brightness of 30.
Particle counts and concentrations were averaged from several dilution measurements and
the original particle volume was calculated by the particle volume that was corrected by
the dilution factor used to dilute the plasma samples before nanoparticle tracking. All
distribution features (such as mean particle size, distribution width etc.) were calculated
using base R functions and the caTools package on the binned particle concentration curve.
The total amount of particles was defined as the area under the curve (AUC) by applying
the trapezoidal integration rule.

4.6. Isolation of cEV and Protein Digestion

Isolation of cEV and protein digestion were performed as previously reported [11].
Briefly, PFP or PPP aliquots of 400 µL were slowly defrosted on ice, then centrifuged for
40 min at 16,000× g and 20 ◦C followed by three washing cycles of the resulting pellets
with 250 uL PBS and centrifugation for 20 min at 16,000× g and 20 ◦C. The final pellets
containing cEVs were dissolved in 10 µL 8 M urea/100 mM Tris*HCl pH 8.0, reduced
with DTT, alkylated with IAA, and double digested by a combination of LysC and trypsin
protease (100 ng each). From each donor, both transport types, as well as PFP and PPP
samples, we isolated cEVs from three different aliquots (technical replicates) resulting in a
total of 144 cEV samples for mass spectrometry analysis.

4.7. Mass Spectrometry and Label-Free Protein Profiling

Shotgun nLC-MS2 was used in a data-dependent acquisition (DDA) mode. Pep-
tide sequencing was performed on an Orbitrap Fusion LUMOS mass spectrometer that
was coupled with a Dionex Ultimate 3000 nano-UPLC system (ThermoFischer Scientific,
Reinach, Switzerland) as described elsewhere [29]. Each protein digest was run two times
by loading 5 µL onto the pre-column. The mass spectrometry data of all runs (288 files)
were processed with MaxQuant/Andromeda (version 1.6.6.0) searching against the con-
catenated forward and reversed SwissProt human protein database (release 2019_07) with
the following parameters: Mass error tolerance for parent ions of 10 ppm and fragment
ions of 0.4 Da, strict trypsin cleavage mode with 3 missed cleavages allowed, static car-
bamidomethylation on Cys, variable oxidation on Met and acetylation of protein N-termini.
The match-between-runs option in MaxQuant was allowed only within PFP, respectively
PPP samples, by allocating non-consecutive fraction numbers for PFP and PPP. Otherwise,
the default MaxQuant settings were used. Identification results were filtered on the peptide
spectrum match, peptide, and protein identification level to a 1% false discovery rate
(FDR). In addition, only the protein groups that were identified with at least two distinct
peptides were accepted. All mass spectrometry data are available via ProteomeXchange
(identifier PXD033117).

4.8. Protein Classification

The identified proteins were manually classified using information that was retrieved
from the Uniprot database in the following manner: transmembrane or intramembrane
annotations in conjunction with subcellular location were considered first; if not conclusive
or not present, GO:CC terms were considered next, then GO:BP terms; if still no determining
terms could be extracted, then either tissue specificity, keywords, or protein description
were used instead.
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All but three proteins could be attributed to either one of the following protein classes:
(1) association with cell membranes, (2) being part of the intracellular compartment of
cells (organelles and cytoplasm), (3) attached to the cell surface (equivalent to extracellular
matrix), or (4) serum or plasma, respectively. Proteins of the latter class were furthermore
ascribed, whenever possible, to either one of the serum or blood plasma factor apolipopro-
tein, coagulation, complement, or immunoglobulin. The protein origin was, therefore,
either cellular or serum/plasma, and a protein category was given directly by the class for
classes 1–3, and by the serum/blood plasma factor for class 4.

The cluster of differentiation (CD) annotation was used as a surrogate for the cell origin
of cEV for proteins of the cell membrane category. Annotations were decided according to
the Human Cell Differentiation Molecules organization (hcdm.org), and the normalized
mRNA expression levels in single cells from the human protein atlas (www.proteinatlas.org)
accessed on 26 December 2021. Basement membrane-specific heparan sulfate proteoglycan
core protein (HSPG2) was added as an endothelial cell-specific marker.

A special focus in our study was on platelets, as they are regarded as the most
vulnerable cells to mechanical forces. The platelet proteome that was published by
Burkhart et al. [25] was, therefore, used to annotate separately the possible origin of
cEVs from platelets. An additional set of annotations were keratin (potential contaminant),
blood microparticle, and exosome GO annotation. All annotations are provided in the
Supplementary File proteinGroups_DE_test.xlsx.

4.9. Differential Protein Abundance Testing

Label-free protein abundances were calculated from the sum of the intensities of the
three most intense peptides of each protein group (Top3 approach), after summing two
injections (mass spectrometry replicates) and normalizing the peptide intensities by vari-
ance stabilization (vsn R package). PFP and PPP plasma types were considered as different
experimental sets and normalized independently for most of the study, except when com-
parisons were made between the two preparation methods, in which case all the samples
were normalized together. The missing peptide intensities were imputed in the following
manner: if at least two values were missing in one group of technical replicates, then these
values were replaced by drawing random numbers from a Gaussian distribution of width
0.3 × sample standard deviation and centered at the sample distribution mean minus
2.5 × sample standard deviation; otherwise the missing value was replaced by the method
of maximum likelihood estimation (MLE, MSnbase R package). The imputed Top3 protein
intensities were called iTop3 in all accompanying documents. Differential abundance tests
between each patient’s C and PTS samples of same plasma type were performed using
empirical Bayes statistics (limma R package) on log-2 transformed iTop3 intensities, pro-
vided the protein groups were detected at least in one sample triplicate. Protein abundance
differences were reported as the difference between the log2-transformed iTop3 intensities
(log2fc), and adjusted p-values accounting for multiple testing were calculated using the
FDR-controlled Benjamini and Hochberg correction (R base function p.adjust). Significance
of the differential expression was defined by the combined criteria of |log2fc| ≥ 1 and
adjusted p-value ≤ 0.05, such that the adjusted p-value must be zero for |log2fc| = 1
and 0.05 for asymptotically large fold changes. The curvature of the significance curve in
between the extrema was determined by the overall variance. In order to overcome the
stochasticity that was introduced by imputation, the imputation and significance test were
repeated 20 times. Only those protein groups that were consistently reported as signifi-
cantly differentially expressed throughout the imputation cycles were accepted as truly
significant. The protein groups that were reported by MaxQuant as being identified only by
site were excluded from statistical testing and downstream data evaluation. Contaminants
of non-human origin were subsequently discarded. For comparisons between PPP and
PFP, the post-hoc ANOVA tests were performed [30] with the Tukey’s honestly significant
difference test using R base function TukeyHSD.

www.proteinatlas.org
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4.10. Functional Analysis of Proteins

For functional analyses, we collapsed the protein groups representing the same gene
product (proteins annotated with same gene name in Uniprot) into one entry by summing
their corresponding iTop3 intensities, provided there was at least one detection in the
replicate group. The median of the log2 of the aggregated intensities of the three technical
replicates was then used in the rest of the analysis and, where it could be determined, a
corresponding median intensity value for each donor, mode of transport, and plasma type.
Furthermore, an intensity that was representative of each protein subclass was calculated
as the average of the log2 iTop3 intensities of the protein members. The same was done for
the additional set of annotations.

Spearman’s rank correlations were calculated between a set of features including these
representative intensities and transport metrics, blood count, and ZetaView® measurements.
The correlation coefficient rho was recorded only if the test p-value was ≤ 0.05, otherwise
it was set to 0; the matrix of resulting correlation coefficients was used to perform an
unsupervised clustering analysis.

Spearman rank correlations between the gene product intensities and the transport
metrics TK, RMS, and VDV were then calculated separately for the PFP_C and PFP_PTS
groups. A correlation coefficient rho was returned only if there were at least three gene
product intensity values that were available in this group and considered significant if
p-value ≤ 0.05. For each plasma type/transport group and transport metric, the gene
products were ranked by 1 minus p-value, multiplied by the sign of the rho correlation, so
that the proteins highly correlating with the transport metric were at the top of the list, and
those most strongly anti-correlating at the bottom. For those lists where more than one
transport metric was included, the lowest transport metric rank value was used for each
gene product. The ranked lists were submitted to a statistical enrichment test of the gene
ontology (GO) terms biological process and cellular component using the online PANTHER
classification system [31], applying a 1% FDR control for multiple testing correction. The
GO term lists were filtered by preferring those terms with the smallest p-values and highest
number of significantly correlating gene products. Furthermore, only GO terms that were
unique to one enrichment test were kept. To account for redundancy, we filtered the GO
terms to the smallest possible list explaining all the involved gene products. With the
resulting gene product lists, protein interaction network analyses were performed on the
STRING database (string-db.org).

4.11. Defining EV-Associated Protein Transport Markers by Feature Selection Method

The least absolute shrinkage and selection operator (Lasso) algorithm was applied [32]
in order to determine the selection of cEV proteins whose intensities discriminate the best
between PTS and C. The calculations were performed in R using the glmnet package [33],
both with an elastic net penalty of 0 (pure Lasso), in order to find a shortest selection, as
well as with 0.5 (elastic net), in order to account to some extent for correlated variables. The
optimal overall strength of the coefficient penalty, the parameter lambda, was determined
by the “leave-one-out” cross validation method, whereby the model was calculated on n-1
samples, and the miss-classification error on the remaining sample. The process is repeated
n times, and the optimized lambda was determined from the minimum mean error. The
response function aimed to take either the value of 0 for C, or 1 for PTS. The starting data
set was, as for the functional analysis, all gene products with their corresponding median
intensity per donor, and transport mode; here however, only the complete data (no missing
intensities anywhere) were considered, so that a total of 349 gene products were retained
for the analysis.

5. Conclusions

We can summarize that mechanical forces occurring during human carrier transport
might affect the composition of cEV proteome profile by influencing plasma membrane
reorganization and release of EV by an ectosomal pathway from blood cells. In contrast, PTS
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rather activated endosomal pathways due to the transport metric correlations with proteins
of organelle origin. However, these processes might be biased by the cEV composition
and stability of each person, which seems to be a consequence of health condition, other
individual traits, and pre-analytical impacts during blood sample procurement.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ijms23094515/s1. References [11,34] are cited in the Supplementary Materials.
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