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Abstract: The memristor is the fourth fundamental element in the electronic circuit field, whose
memory and resistance properties make it unique. Although there are no electronic solutions based
on the memristor, interest in application development has increased significantly. Nevertheless, there
are only numerical Matlab or Spice models that can be used for simulating memristor systems, and
designing is limited to using memristor emulators only. A memristor emulator is an electronic circuit
that mimics a memristor. In this way, a research approach is to build discrete-component emulators
of memristors for its study without using the actual models. In this work, two reconfigurable
hardware architectures have been proposed for use in the prototyping of a non-linearity memristor
emulator: the FPAA (Field Programing Analog Arrays) and the FPGA (Field Programming Gate
Array). The easy programming and reprogramming of the first architecture and the performance,
high area density, and parallelism of the second one allow the implementation of this type of system.
In addition, a detailed comparison is shown to underline the main differences between the two
approaches. These platforms could be used in more complex analog and/or digital systems, such as
neural networks, CNN, digital circuits, etc.

Keywords: memristor emulator; electronic circuit; FPAA; FPGA

1. Introduction

To date, three fundamental passive elements have been used to design electronic
circuits: resistors, capacitors, and inductors. In 1971, Leon Chua from the University of
California at Berkeley reasoned from symmetry arguments that there should be a fourth
fundamental element, which he named memristor [1]. This element is named a memristor,
as it combines the behavior of a memory and a resistor. A Memristor is a two-terminal
element whose resistance depends on the magnitude, direction, and duration of the applied
voltage [2].

In theory, its memory capacity should be infinity, but even if it is not capable of storing
energy, it can be used to store information indirectly.

The most important feature is that this device lets us store information in an analog
way, leaving us with the possibility to develop applications that we could not even imagine
some years ago. Since the fabrication of the Hewlett Packard (HP) memristor [3], interest
in memristor research has increased [4]. Several people have started to take advantage
of the memristor capacities in different fields, such as analog applications [5–10], digital
circuits and memories [11–13], and the neuromorphic field because of its analog storing
capability [14–26].

Although there is a commercial memristor now available [27], research based on this
device in the market has been rare [28], probably due to cost and technical issues, such as
voltage and current limitations, measurement, and others [29]. In this sense, the research
continues, overall, on circuit modeling [30–32] or numerical modeling [33] only to simulate
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memristor behavior. The modeling and simulation phases are very important for the design
of a system or a device [34], but they also need to verify and validate the model in the
physical world.

Therefore, there is a need for a physical module that works like a real memristor, that
is, a memristor emulator. This memristor emulator is an electronic circuit that mimics a
memristor. Hardware implementations of the memristor emulator have been developed,
and different models have been proposed. Some of them use digital and analog mixed
circuits [35], where a microcontroller acquires the voltage applied to the memristor; it
calculates and updates the resistance value by setting the digital potentiometer to obtain
the required resistance value. This model is relatively simple to implement, but the time
response and resolution of the memristance are limited by the A/D and D/A converters
and the digital potentiometer. It has also been implemented as a pure analog model [5],
which follows pretty fine the memristor behavior, the connection with other circuit elements
is difficult, and the memristance is not guaranteed for a long time. Another emulating
circuit [14] shows the features of the memristor; it keeps the memristance constant and
stable over a long period of time, and it is compatible with other circuit devices. It has a
small variation range of the memristance and a limited ratio between the maximum and
minimum values of memristance. Additionally, electrical devices, such as light-dependent
diodes [36], light-dependent resistors [37], and junction field effect transistors [38], have
been used for this type of implementation despite their small memristance variation range.

Moreover, recent trends in hardware design have seen a strong increase in the use of
programmable devices [39], such as CPLDs and FPGAs [40,41], and more recently, field
programmable analog arrays (FPAA) [42]. Programmable devices can provide flexible and
efficient platforms. These devices satisfy the performance, cost, and power requirements of
most hardware prototyping architectures [43]. Reconfigurable architectures combine some
of the flexibility of software with the high performance and speed of hardware.

In this paper, we propose a completely different method to emulate the memristor, an
analog reconfigurable hardware architecture based on FPAA, and a digital reconfigurable
hardware architecture based on FPGA. These include some important features of any
memristor emulator [14]. The easy programming and reprogramming of the first hardware
architecture and the performance, high area density, and parallelism of the second one
allow the implementation of this type of system [44,45].

The principal difference when compared to ordinary hardware emulator implemen-
tation is the ability to make substantial changes. It is possible to adapt the hardware
during runtime by “loading” a new circuit on the reconfigurable architecture, and there is a
significant increase in the number of emulated devices.

Additionally, knowing that there are different models of memristors with an analog
pure architecture, completely different circuits for each model must be built to test them.
Moreover, with microcontroller-based architecture, it is easier to obtain by changing the
software; however, the speed, accuracy, and number of emulated devices are always limited
by the rest of the electronic components.

Then, the use of this technology will allow an increase in design complexity while
allowing a decrease in the amount of time spent debugging, wiring, and other hardware
implementation problems.

2. Materials and Methods
2.1. Memristor Overview

The conception of memristor as the fourth fundamental component in circuit theory
creates a new approach to nonlinear circuit design. As is known, circuit elements (Figure 1)
reflect relationships between pairs of the four electromagnetic quantities of charge, current,
voltage, and magnetic flux [46].
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Figure 1. Electronic components relationship.

Resistance relates voltage and current (dv = Rdi), capacitance relates charge and
voltage (dq = Cdv), and inductance relates flux and current (dϕ = Ldi), respectively [47].

The memristor keeps the last resistance value when it is turned off and retrieves the
value when it is turned back on. Memristor has several interesting properties, including
pinched hysteresis and dynamic negative resistance, which can have a significant impact
on nanoelectronics [2].

A memristor is characterized by its memristance (M) and memductance (W). These
are described by the charge-dependent and flux-dependent equations, respectively, as
follows [10]:

M(Q) =
d∅(q)

dq
(1)

W(∅) =
dq(∅)

d∅ (2)

This property is similar to the fundamental element resistor, which is characterized
by its resistance R [48]. It may be noted that memristance is similar to variable resistance.
A nonlinear version of Ohm’s law can be expressed as a current-controlled memristive
system [49]:

Vm(t) = M(x, Im, t)Im(t) (3)

dx
dt

= f (x, Im, t) (4)

where x is a vector representing n internal state variables, Vm(t) and Im(t) denote the voltage
and current across the device, and M the memristance. Similarly, a voltage-controlled
memristive system [49]:

Im(t) = G(x, Vm, t)Vm(t) (5)

dx
dt

= f (x, Vm, t) (6)

where G is the memductance.
One important aspect to keep in mind about the memristor is its dependence on the

“state” variable x. The state variable describes how the system “looks” inside [13].
A memristor, which is a two-terminal circuit element, will provide hysteresis loops

in an i–v plot when subject to an alternating voltage signal [48]. The hysteresis loops are
very valuable when memristive systems are to be identified, and the loops normally run
through the origin in an I–V plot (Figure 2).
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Figure 2. Typical behavior of memristors.

In the case of linear elements in which M is a constant, memristance is identical to
resistance, and thus, it is not of special interest. However, the most valuable functions
of circuits are attributable to their non-linear characteristics. If M is itself a function of q,
yielding a nonlinear circuit element, then the situation becomes more interesting [3]. The
compatibility of memristors with integrated circuits could provide new circuit functions at
extremely high two-terminal device densities [2].

In Different published, mathematical memristor models are used as a baseline to
research device features [32].

Memristors exist in various types depending on how they are built; moreover, there are
systems that exhibit properties of memristors and so are called “memristive systems” [2].

If we consider a flux-controlled memristor described by Equation (2), where q(∅) is a
smooth continuous cubic function of the form [10]:

q(∅) = −α·∅+ β·∅3 (7)

With α, β > 0. As a result, in this case, the memductance W(∅) is provided by the
following expression:

W(∅) =
dq(∅)

d∅ = −α + 3·β·∅2 (8)

Since ∅(t)
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nonlinearity is [49]:

im(t) =

(
−α + 3·β·

(∫
vm(t)dt

)2
)
·vm(t) (9)

However, a certain methodology for how to experiment with the calculation of the
memristance function and obtain the memristor flux-charge characteristic has not been
defined [50,51]; therefore, there is a need to calculate its memristance. One method might
be applying a DC or AC voltage, measuring its current and voltage, and then, by taking
the integration of its current, its charge or memristance, as a function of the current, can be
calculated [52,53].

2.2. Circuit Implementation

Numerical simulation plays an important role in analyzing systems and predeter-
mining design parameters prior to their physical realization [54]. Before implementa-
tion, a memristor model was constructed in a Matlab environment. The backward Euler
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method [55] was used for numerical integration in which the incoming sample was multi-
plied by the sampling time and added to the last result of the integrator as follows:

dy
dt

= f (t, y) ; y(t0) = y0 (10)

yn+1 = yn + h f (tn+1, yn+1) (11)

As, ∅
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vm(t) we can rewrite Equation (10) as follow:

∅n+1 = ∅n + h f (tn+1) (12)

the term yn+1 disappears because the equation only depends on the function in time;
therefore, the problem is limited to solving the integral of the input voltage, squaring the
result, and calculating the current.

After testing and tuning, the numerical simulation results (Figure 3) can be used as
a reference for real implementation. Notice the unrealistic values of the current; for that
reason, the set of equations requires rescaling in the physical implementation.

Figure 3. Memristor time response simulation. v(t) = 1sin(2πft), f = 60 Hz, h = 0.05, α = 0.677 × 10−3,
β = 0.029 × 10−3.

2.2.1. FPAA Emulator

The Field-Programmable Analog Array is an integrated circuit that can be configured
to implement various analog functions [39]. This is the analog equivalent of FPGA [56].
This electronic device has a feature that can be used to programmatically change com-
ponent values and interconnections; in other words, it can be dynamically reconfigured.
Additionally, FPAA provides more efficient and economical solutions for analog dynamic
system designs [45].

The most important elements in an FPAA are the Configurable Analogue Blocks
(CAB), which manipulate the signals and the interconnecting routing network. Each
element contains configurable modules (CAMs) [39].

The analogue blocks have parameters that can be programmed to accommodate
according to the application [39].

The device used is the anadigm AN221E04 (Figure 4), which is composed of four
programmable blocks. The dynamic range of the signals in the FPAA device is bounded by
physical constraints [56]. In effect, the FPAA device has ±3 V saturation level, so the signal
magnitude has to be scaled according to a previous numerical simulation.
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Figure 4. Anadigm AN221E04 Architecture.

The complete system (Figure 5) is composed of a gain inverter, two analog multipliers,
and two sum-filter modules (Table 1).

Figure 5. Schematic of FPAA memristor emulator.
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Table 1. FPAA emulator parameter settings.

Name Options Parameters Clocks

Multiplier 1
(Multiplier v1.2.2)

Anadigm (Approved)

Sample and Hold Off
Y Input Full Scale 3 Volts Multiplication Factor 1.00 Clock A 125 kHz (Chip Clock 3)

Clock B 2 MHz (Chip Clock 0)

Multiplier 2
(Multiplier v1.2.2)

Anadigm (Approved)

Sample and Hold Off
Y Input Full Scale 3 Volts Multiplication Factor 1.00 Clock A 125 kHz (Chip Clock 3)

Clock B 2 MHz (Chip Clock 0)

SumFilter 2
(SumFilter v1.1.3)

Anadigm (Approved)

Output Changes On Phase 2
Input 1 Non-inverting
Input 2 Non-inverting

Input 3 Off

Corner Frequency [kHz] 12.5
Gain 1 (Upper Input) 0.870

Gain 2 (Lower Input) 0.0676
Clock A 125 kHz (Chip Clock 3)

G1
(GainInv v1.1.4)

Anadigm (Approved)

Gain 0.0100 Clock A 2 MHz (Chip Clock 0)

SumFilter 2
(SumFilter v1.1.3)

Anadigm (Approved)

Output Changes On Phase 1
Input 1 Non-inverting
Input 2 Non-inverting

Input 3 Off

Corner Frequency [kHz] 100.0
Gain 1 (Upper Input) 1.00

Gain 2 (Lower Input) 0.0500
Clock A 1 MHz (Chip Clock 2)

The first stage of the system is the gain inverter G1, by applying an input voltage vm,
its output v is:

v = − vi
100

(13)

The sumfilter module Si has and output x1 described as:

x1 =
.
x1 + hv (14)

Notice that
.
x1 refers to the last value of x1. Then, similar to Equation (10), it is possible

to convert Equation (14) to:

x1
∼=
∫

v dtx1 =
∫

− vi
100

dt = − 1
100

∫
vi dt (15)

After the first multiplier M1, we can obtain x2,

x2 = x1·x1 =
1

1002

(∫
vi dt

)2
(16)
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Now, at the output of the second multiplier M2, we have x3,

x3 = x2·vi =
1

1002

(∫
v
)2

·vi (17)

Finally, the sum filter module S1 gives the following result:

S = G1·x3 + G2·v (18)

With G1= 0.87 and G2 = 0.0677, and by arranging the terms, we can obtain:

S = 0.87· 1
1002 (

∫
vidt)2·vi − 0.0677·

( vi
100
)

= 0.087 × 10−3·(
∫

vi dt)2·vi − 0.0677 × 10−3·vi

S =
(
−0.677 × 10−3 + 3·0.029 × 10−3·(

∫
vi dt)2

)
·vi

(19)

By replacing parameters similar to [5], α = 0.677 × 10−3, β = 0.029 × 10−3 and vi = vm
on Equation (19), the result is as follows:

im(t) =

(
−α + 3·β·

(∫
vm(t)dt

)2
)
·vm(t)

By applying a sinusoidal signal v(t) = vo· sin(2π f t) with f = 60 Hz, vo= 1 V, we can obtain
the vm and im plots and it’s clear that this element really has memristor behavior (Figure 6).

Figure 6. FPAA memristor emulator response.

Since AN221E04 performs analog “calculations” at a certain clock frequency, the values
of all settings are limited to a range of values determined by the clock frequency. However,
the values can be adjusted by a minimum of 0.01 units, which is acceptable for our needs.
Moreover, there are only four CABs for each chip; consequently, an emulator uses almost
50% of the device’s available resources.
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2.2.2. FPGA Implementation

The second implementation was based on FPGA architecture. Traditionally, analog
computers use operational amplifiers to implement basic operations (addition, subtraction,
multiplication) and compute time-integral functions [57]. All of these operations can
be performed on the FPGA, except computing time integrals. To solve this problem, a
device called a Digital Differential Analyzer (DDA) was created to simulate the integral
function digitally.

A Terasic DE4-320 Development Board (Figure 7) was chosen for this implementation.
The board is equipped with an Altera Stratix IV GX EP4SGX230 FPGA that provides
about 228,000 logic elements (LEs), 91,200 adaptive logic modules (ALMs), 14.283-Mb
embedded memory, and eight phase-locked loops. The DE4 Development Board provides
the ideal hardware platform for system designs that demand high performance, serial
connectivity, and advanced memory interfacing [41]. Developed specifically to address the
rapidly evolving requirements in many end markets for greater bandwidth, improved jitter
performance, and lower power consumption [58].

Figure 7. Altera DE4-320 FPGA Development Board.

A fixed-point version of the DDA was implemented with 32-bit number representation.
Bit 32 is the sign bit, and the binary point is between bits 16 and 17 (with bit zero being the
least significant) (Table 2). The number range is thus −32,768 to +32,768, and the smallest
value to be represented is 1.5259 × 10−5.

Table 2. Fixed-point 32-bit number representation.

Number Binary Hexadecimal

1.0 0_000000000000001.0000000000000000 “00010000”

0.025 0_000000000000000.0000011001100110 “00000666”

The device is composed of three principal modules (Figure 8): the function generator,
which contains the input signal, the memristor solver that describes the memristor behavior
and the NIOS2 IP core, which is used for control and configuration.
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Figure 8. FPGA memristor emulator general diagram.

The hardware implementation is associated with VHDL programming. The “ieee
proposed” HDL package [59] was used to obtain a synthesizable fixed-point unit (FPU).

The package allows float and fixed-point operations to be performed by adding,
subtracting, and multiplying. The VHDL multiplier is easily implemented; it has three
inputs, one of which can be used for scaling. The adding and subtracting operations were
calculated directly. The forward Euler method was used for the integration steep; the
step size used was 0.005. The function generator (Figure 9) is used to provide various
waveforms, such as square wave, triangle wave, sine wave, etc. These waves are generated
and stored in a 32 × 256 Ram memory. Intermediate values were interpolated at an 8 MHz
sampling rate.

Figure 9. FPGA memristor emulator RTL schematic.

The memristor solver (Figure 10) consists of an FSM that solves Equation (6). It takes
four cycles of its 8 MHz clock to solve each sample; other parameters are set by default and
could be changed by the Nios 2 core.
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Figure 10. FPGA-based memristor solver: (a) Memristor solver block diagram; (b) Memristor solver
FSM flowchart.

With parameters similar to [5] α = 0.677 × 10−3 and β = 0.029 × 10−3, a signal frequency
of 60 Hz, and a sampling frequency of 2 MHz, we can obtain the vm vs. im plots (Figure 11);
clearly, the results show the memristive behavior of the system.

Figure 11. FPGA memristor emulator response.

The EP4SGX230KF40C2 FPGA chip place and route process statistics (Table 3) give us a
general idea of the resources used and the potential capacity of this kind of implementation.
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Table 3. FPGA chip statistics, including the full system.

FPGA Resource Used Resources

Combinational ALUTs 10,345

Total Registers 10,345

DSP Block 18-bit Elements 118

Total Block memory bits 4,434,148

Logic utilization 9%

Since the memristor solver is independent, it means that it can work by itself; it is
possible to have more memristors managed by the same NIOS 2 core. This gives the
possibility of significantly increasing the number of memristors because used resources
(Table 4) decrease considerably.

Table 4. FPGA chip statistics memristor solver only.

FPGA Resource Used Resources

Combinational ALUTs 1298

Total Registers 16,105

DSP Block 18-bit Elements 118

Total Block memory bits 100,352

Logic utilization 1%

3. Results and Discussion

The results (Figure 12) show waves similar to those of the simulation, except for an
attenuation factor. Losses are due to the switched capacitor technology, and filtering within
the FPAA provides a reduction of 99.65%. Otherwise, the FSM within the FPGA integrates
1/4 of the total samples because it needs 4 clock cycles, resulting in an attenuation of 96%
with respect to the original wave. In both cases, the attenuation can be used as the scaling
factor needed to obtain current values according to the reality of the electronic circuits. This
factor can easily be modified to suit the requirements of the external peripherals in any
memristor-based circuit implementation.

Figure 12. Memristor emulators’ current: (a) Current vs. Time plot; (b) Voltagevs. Current plot.

The time for one integration step depends on the main clock frequency on the FPAA,
and on the sampling clock on FPGA at 4 MHz and 2 MHz, respectively (Table 5).
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Table 5. Time performance comparison.

Fs One Period Time
MHz Nro Samples Time

Matlab 8 133,366 64.6 ms

FPAA 4 66,667 16.7 ms

FPGA 2 32,347 16.7 ms

Notice that, on simulation, the time for one period is proportional to the number
of samples. On the other hand, in the case of hardware implementation, the total time
depends on the signal period (Table 5). It is possible to increase the number of samples
by increasing the sampling frequency while the time remains. However, the maximum
sampling frequency is limited by the physical constraints, overall, on the FPAA device.

4. Conclusions

In this work, two different emulator models were proposed. First, a simple FPAA
programmable analog circuit has replaced dozens of standard discrete components. It has
become an effective solution to problems of rapid prototyping and has simplified the task
of designing similar electronic circuits. However, resources are limited, and at most, it is
possible to obtain two emulators for each CI. Likewise, a powerful tool called DDA has
given us the possibility of performing a digital integrator on an FPGA, allowing a relatively
high number of elements regarding the occupied area density; however, analog interaction
is not possible directly, and it will require additional features to obtain this capacity. The
next step is to use them as a part of more complex systems, such as chaotic oscillators,
voltage-controlled sources, or neural network circuits. Finally, since the discovery of the
memristor, researchers have used mathematical models, simulations, and emulators of
memristors and, more recently, commercial memristors in their experiments. Simulations
are useful but do not consider all factors, especially physical ones; emulators mimic real
memristor behavior; however, they are not practical to use in more complex systems such as
a neural network due to their design and physical proportions, while the new commercial
memristors are still too expensive and make their use difficult, especially when there are
budget limitations. Therefore, the memristor emulators proposed in this work become
viable alternatives, especially when the applications demand a large number of them.
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