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Computer-aided diagnosis of
cervical dysplasia using
colposcopic images

Jing-Hang Ma, Shang-Feng You, Ji-Sen Xue, Xiao-Lin Li,
Yi-Yao Chen, Yan Hu* and Zhen Feng*

First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University,
Wenzhou, China
Background: computer-aided diagnosis of medical images is becoming more

significant in intelligent medicine. Colposcopy-guided biopsy with pathological

diagnosis is the gold standard in diagnosing CIN and invasive cervical cancer.

However, it struggles with its low sensitivity in differentiating cancer/HSIL from

LSIL/normal, particularly in areas with a lack of skilled colposcopists and access

to adequate medical resources.

Methods: the model used the auto-segmented colposcopic images to extract

color and texture features using the T-test method. It then augmentedminority

data using the SMOTE method to balance the skewed class distribution. Finally,

it used an RBF-SVM to generate a preliminary output. The results, integrating

the TCT, HPV tests, and age, were combined into a naïve Bayes classifier for

cervical lesion diagnosis.

Results: the multimodal machine learning model achieved physician-level

performance (sensitivity: 51.2%, specificity: 86.9%, accuracy: 81.8%), and it

could be interpreted by feature extraction and visualization. With the aid of

the model, colposcopists improved the sensitivity from 53.7% to 70.7% with an

acceptable specificity of 81.1% and accuracy of 79.6%.

Conclusion: using a computer-aided diagnosis system, physicians could

identify cancer/HSIL with greater sensitivity, which guided biopsy to take

timely treatment.

KEYWORDS

Cervical dysplasia, colposcopy, computer-aided diagnosis, multi-modal machine
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Introduction

With 570,000 new cases and 311,000 cases of death in 2018,

cervical cancer accounts for the highest morbidity of gynecologic

malignancies in women worldwide (1). However, the progress of

the disease is slow, which can be prevented by detecting human

papillomavirus (HPV) infection and precancerous changes (2).

Cervical precancerous changes are also known as cervical

intraepithelial neoplasia (CIN); according to the extent of

lesion involvement, it is classified in grades: CIN1 (mild),

CIN2 (moderate), and CIN3 (severe) (3). Patients with high-

grade squamous intraepithelial lesion (HSIL; CINII/CINIII) are

likely to progress to invasive cervical cancer and require further

treatment, whereas patients with low-grade squamous

intraepithelial lesion (LSIL; CINI) have a high probability of

regressing (4). In clinical practice, it is crucial to differentiate

cancer/HSIL from LSIL/normal to take timely treatment.

The standard screening methods for cervical cancer include

ThinPrep cytologic test (TCT), human papillomavirus (HPV)

tests, and colposcopy (5). TCTs are effective but require a

laboratory and pathologists to evaluate the samples, and they

suffer from low sensitivity in detecting cancer/HSIL (6). The

HPV tests have high sensitivity in detecting cancer/HSIL but

suffer from a high false-positive rate, especially in young women

(6, 7). Colposcopy is a diagnostic procedure for patients with

abnormal TCT or/and HPV tests. Colposcopists use a camera to

take photographs of the cervix (cervicograms), with visual

inspection applying 3%–5% acetic acid solution (VIA) and

Lugol’s iodine (VILI) to improve visualization of the abnormal

areas, which are used to guide biopsy for pathological

confirmation of cervical abnormalities. Reversible coagulation

in nuclear proteins and cytokeratin was caused when applying

acetic acid to the cervix. Due to the high nuclear protein content

in lesion areas, whitening and mosaic-textured features can be

seen while normal cervix regions remain a light pink color (8).

Normal cervical epithelial cells are glycogen rich, which takes up

Lugol’s iodine and turns dark brown, while lesion areas are

glycogen deficient, which appear pale (8). Colposcopy-guided

biopsy with pathological diagnosis is the gold standard in

diagnosing CIN and invasive cervical cancer; however, due to

the lack of well-trained colposcopists, the poor correlation

between visual and pathological diagnosis and disagreement

among experts (9, 10) as well as the sensitivity and the

specificity of colposcopy is not desirable enough, especially in

the developing country (11–13).

Computer-aided medical diagnosis can successfully complete

a variety of medical tasks by efficiently exploring the essence of a

large amount of clinical data. The colposcopy-guided cervical

biopsy is essential for detecting CIN in cervical cancer screening,

but there are difficulties with increasing sensitivity globally. Pilot

studies used the k-nearest neighbor (K-NN) algorithm (14) and

the opacity index (15) to observe the aceto-white patterns in the
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VIA screening to distinguish between normal and abnormal

cervices. Statistical analysis was used to characterize the degree

of cervical lesions with color (16, 17) or texture features (18–21).

The extracted features from time-lapsed VIA images were

combined using a graph convolutional network with edge

features (22). Deep learning networks were also used to

complete the tasks, but the predictive power was limited by the

small training sets (about 100 patients) (23, 24). Another deep

network-based literature had a sizable dataset, but its labels were

based on the physician’s subjective diagnosis rather than the

ground truth (25). In addition, the black box of the models

hardly helps with cervical biopsy guidance.

These aforementioned algorithms shared a common

drawback. They were not resistant to noises using just VIA

images. The result was lack of diagnostic confidence due to the

imaging quality and normal epithelium shades. Compared to

VIA alone, co-testing with VILI appeared to boost performance

(26). A neural network architecture for the combination of VIA

and VILI images was suggested (27), and a feature extraction-

based machine learning algorithm was developed (28). TCT,

HPV tests, and some clinical data, in addition to information

from the VIA and VILI images, help identify cervical lesions

from various angles. They have the potential to be fully utilized

by a diagnosis system to identify cervical lesions.

In this work, we collected VIA and VILI images and clinical

information from each of the 1361 patients, and the gold

standard of pathologic diagnosis was used as the ground truth.

The model used an SVM with radial basis function kernel (RBF-

SVM) to generate a preliminary output after extracting color and

texture features from the cervical regions that were automatically

segmented. The output of the first stage was passed on to the

second stage input, which combined the TCT, HPV test, and age,

to build a naïve Bayes algorithm for cervical lesion diagnosis.

This model’s performance was compared to that of colposcopists

and other machine learning models. The visualized interpretable

features help with biopsy by identifying potential lesion sites.
Methods

Dataset

We gathered clinical data, TCTs, HPV tests, and cervical

images of colposcopy (TR6000C) from 1,361 patients (ages

ranged from 16 to 83) at the First Affiliated Hospital of

Wenzhou Medical University in China during the period from

1 August to 31 November 2020 for this study. Each patient

signed a consent authorizing colposcopy with biopsy. The

colposcopy examination was carried out by nine physicians

with specialized knowledge, including one chef physician, four

attending physicians, and four resident physicians. Physicians

made a diagnosis for each patient based on the cervigrams. The
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pathological result of cervical biopsy served as the ground truth

to identify the degree of cervical lesions.

Among 1,361 patients, we eliminated 229 patients with

blurred images or unclear exposed cervix portion (such as

cervix obscured by instrument, contraception tail wire, and

blood or cervix obscured by vaginal sidewalls and speculums

greater than 25%), 71 patients with a history of hysterectomy or

cervical operation (such as cryotherapy, laser therapy, loop

electrosurgical excision procedure (LEEP), or cold knife

conization (CKC)), and 75 patients with information loss (i.e.,

no TCT or HPV tests, no biopsy). After filtering the images, the

study included a total of 986 patients and 1,972 cervical images

(each patient had one VIA image and one VILI image). These

patients were categorized into normal (288,29.2%), LSIL

(561,56.9%), HSIL (124,12.6%), and cancer (13,1.3%)

according to pathological results. The training set consisted of

701 patients from the first 3 months, and the test set consisted of

the additional 285 patients from the fourth month.

HPV tests used in this study were HPV DNA Test

(Tellgenplex HPV 27 Genotyping Assay). The results of HPV

tests were divided into positive (885, 89.8%) and negative (101,

10.2%). HPV positive was subdivided into three classes (1): HPV

16/18 positive (2), high-risk (non-16/18) HPV positive, and (3)

low-risk HPV positive. Multiple positive options were permitted

for patients who had multiple HPV infections. The Bethesda 2014

classification was used to divide the TCTs into six categories (29).

Table 1 displays the distribution of TCT and HPV tests.
Colposcopic image segmentation

We defined the region of interest with a minimum rectangle in

the vaginal wall around the cervix and conducted a further

investigation because vaginal sidewalls and speculums affected the

identification of cervical lesions. We used the transfer learning

technique to pretrain the weights of five different deep learning

architectures (DenseNet-169, ResNet-50, ResNet-101, VGG-16,

and Xception). Four neurons representing width, height, and the

coordinates of the left-bottom endpoint were used in place of the

classification head. Physicians annotated 200 original VIA and 200

original VILI images with bounding boxes around the cervix to
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serve as the ground-truth labels, and they were divided into

training, validation, and test sets with a 120/30/50 split, respectively.

In order to assess the performance of the five deep learning

models, we calculated the mismatch loss of the 50 images

between the predicted regions and the ground truth in the

testing stage. According to the mean and standard deviation of

loss, the four models highlighted in bold in Figure 1A and

Table 2 show comparably good results. Further reviewing the

performance from a medical standpoint, physicians found that

ResNet-50 performed best for VIA image segmentation because

it more accurately detected the cervix. Similar to that, VGG-16

worked well for segmenting 200 labeled VILI images, with the

results displayed in Table 2.

All VIA and VILI images were segmented using the two

well-trained deep learning models. Physicians then double-

checked them and made any necessary corrections to those

with a significant deviation (more than about 10%). In fact, only

4.45% VIA and 2.50% VILI images were altered by physicians,

confirming the models’ validity. Pixels were used to measure the

width and height of each image. The cropped images have an

average size of (905 ± 66) × (866 ± 101) for the original images

(sized 144 × 1,080).
Color features

The lesion localization is determined mainly according to

the VIA and VILI images. A crucial diagnostic tool for cervical

dysplasia is color features. In order to fully characterize the color

features of an image, a color space is used to represent color that

can be reproduced on an image. The most popular color space is

RGB, but it completely ignores the environment’s lighting and

the camera’s sensitivity, taking the pixels in a digital image at

face value. With its foundation in hue, saturation, and lightness,

the hue–saturation–value (HSV) space is more perceptually

relevant and intuitive. A grayscale is a color space that displays

an RGB image’s luminance data. A fairly logical way to arrange

colors is from black to white (luminance: Ll),green to red (La),

and blue to yellow (Lb) (CIELAB). In this space, colors that are

separated by the same amount appear to have approximately

equal differences. Luminance, Chroma blue, and Chroma red

(YCbCr) occupy a different space, where Luminance (the Y

component) denotes the color’s brightness and Cb and Cr

denote the blue and red components, respectively, in relation

to the green component (30).

We calculated the statistical dispersion with the standard

deviation and identified central tendency with the mean, median,

and mode in order to investigate the statistical characteristics of

each color channel. To automatically determine a threshold value

and reduce the weighted within-class variance, we also used the

Otsu thresholding algorithm (31). To describe each VIA and VILI

image, a total of 65 color features were extracted.
TABLE 1 The distribution of HPV tests and TCT tests in the 986
patients.

HPV N% TCT N%

HPV 16/18 positive 27.7% NILM 51.6%

High-risk (non-16/18) 65.8% ASCUS 24.1%

HPV positive ASC-H 3.8%

Low-risk HPV positive 10.4% LSIL 15.2%

HPV negative 10.2% HSIL 4.4%

AGC 0.9%
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Haralick texture features

An image’s texture is defined as the regular distribution of

patterns and colors. When acetic acid is applied to a cervix with

lesions, different abnormal epithelium textures, such as textured

mosaicism, punctation, and vascular structures, are frequently

visible (20). Haralick texture, a second-order statistical technique

for calculating the spatial relationship, searches for pairs of

adjacent pixel values in an image using the gray-level co-

occurrence matrix (GLCM) and records them across the entire

image (32, 33).

The pixel pair distance offsets of 1, 5, 10, and 15 pixels were

used to compute the GLCMs before arriving at the four features

within each offset. The GLCM’s default adjacency calculation

was done from left to right (0 in degree), but the texture features
Frontiers in Oncology 04
actually tended to be dispersed throughout all directions.

Additionally, we took note of the other three pixel-pair

directions (diagonal, vertical, and anti-diagonal, or 45°, 90°,

and 135° in degree) and averaged them to determine the

features. Six Haralick features—angular second moment

(ASM), contrast, correlation, dissimilarity, energy, and

homogeneity—were extracted from these GLCMs in each pixel

offset, resulting in 24 texture features for each image. The

characteristics were formulated mathematically:

Contrast:olevels−1
i,j=0 Pi,j(i − j)2

Dissimilarity:olevels−1
i,j=0 Pi,jji − jj

Homogeneity:olevels−1
i,j=0

Pi,j
1 + (i − j)2
FIGURE 1

A schematic representation of the training procedure of our model. (A) Loss analysis of five segmentation algorithms was presented, and one
sample was visualized. Each color attribute represented a different algorithm, and the white rectangular outline showed the ground truth of
segmentation. (B) Color and texture features in segmented VIA/VILI images were selected and were further extracted using t-test. (C) The H-
group was augmented using the SMOTE algorithm and were then fed into an RBF-SVM for training. (D) Six features went into the naïve Bayes
classifier to perform the final classification, which was compared with the pathological result.
FIGURE 2

Feature selection and feature distribution visualization. (A) The combination of five VIA and five VILI features achieved the maximum macro-
averaged F1 score. Statistical distribution of the selected features in VIA (B–F) and VILI (G–K) training samples.
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P is the GLCM value, and P[i, j, d, q] indicates the number of

times that gray-level j occurs at a distance of d an angle of q from
gray-level i.
Performance metrics

Sensitivity measures the percentage of cancer/HSIL (H-

group) patients who are correctly identified, and specificity is

the extent to which LSIL/normal (LN-group) ones are correctly

identified as such. Accuracy calculates the correct prediction

percentage all over samples. In binary, unbalanced classification

tasks, the area under the precision-recall curve (AUPRC) is

frequently used. The macro-averaged F1 score, which can be

calculated as follows, is the arithmetic mean of the per-class F1

scores and balances sensitivity and specificity:

F1Macro =
1
No

N

i=1

2� Seni � Speci
Seni + Speci

where Seni and Speci are the sensitivity and specificity for the

ith class.

The macro-averaged F1 score equally weighs each class’s

sensitivity and specificity. It is an appropriate metric for

thoroughly assessing model performance. Sensitivity is set as

one of the key performance metrics because it is of the utmost

clinical importance to identify patients with severe

cervical lesions.
Feature selection

A single VIA or VILI image yielded 24 Haralick texture

features and 65 color features. Due to redundancy and a greater

emphasis on noise in machine learning algorithms, an excessive

number of features resulted in a failed classification, though. To

identify features that significantly differed between the means of

the two classes, a T-test was used. We used the T-test to analyze

the features in 701 VIA training images, and then we sorted

them according to their adjusted P-values. Similar to that, VILI

image features were also sorted. We used various combinations
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of the top-ranked features to feed the model, and we used the

entire training process described in subsection 2.7. To assess all

performance metrics and choose the best VIA and VILI feature

combination, the macro-averaged F1 score was used.
Multimodal machine learning for
identifying cancer/HSIL patients

It was common that H cases (cancer/HSIL) were much fewer

than LN ones (LSIL/normal), and in this work, H cases

accounted for 137 out of 986. The machine learning algorithm

would have a tendency to predict the majority in a skewed class

distribution. Undersampling reduces the majority samples and

achieves a balanced class proportion, wasting valuable medical

data in the process. By duplicating minority data, the

oversampling technique increases the sample size of the

minority class (34). Despite being balanced, the class

distribution adds no fresh data or variation to the model. A K-

NN algorithm is used in the oversampling technique variant

known as Synthetic Minority Oversampling Technique

(SMOTE) to generate artificial data. The parameter k was set

to 2 in this work to create synthetic samples (35).

Using a support vector machine (SVM) classifier, which

maps data onto points in a high-dimensional space and finds an

ideal hyperplane to divide data into classes, we increased the H

cases to achieve a similar proportion of LN ones. Using the

balanced augmented data, we trained an SVM with the radial

basis function (RBF) kernel. The kernel was expressed as follows:

exp(−g∥ x−x′ ∥2) where g was 0.72. The other parameter, C, was

set to 0.12 as a compromise between the training samples’

misclassification and the simplicity of the decision surface.

The class probability estimates were produced by the RBF-

SVM as the initial classification results. Together with the HPV,

TCT, and patient age, a second diagnosis was made. Therefore,

using the six input features listed in Table 3, we built a naïve

Bayes classifier to perform the final classification.
Results

Feature extraction and feature selection

Figure 1 depicts a schematic diagram of our model’s training

process. The ResNet-50 and VGG-16 deep learning algorithms

automatically segmented the original VIA and VILI images.

Sixty-five color features and 24 Haralick texture features were

extracted from the cropped VIA or VILI image, and these

features were then ranked in ascending order based on their p-

values from T-test analysis. Table 4 contains the top 10 features

from VIA and VILI images, where VIA features were made up of

four color features and six texture features while VILI features

were all color-related. This result is consistent with the findings
TABLE 2 Loss analysis of five deep learning algorithms for image
segmentation.

VIA VILI

DenseNet-169 0.13 ± 0.05 0.14 ± 0.06

ResNet-50 0.10 ± 0.05 0.20 ± 0.07

ResNet-101 0.11 ± 0.05 0.15 ± 0.05

VGG-16 0.12 ± 0.05 0.13 ± 0.06

Xception 0.12 ± 0.05 0.13 ± 0.06
Bold-type values indicated algorithms with relatively low loss.
The underlined had an optimal clinical performance.
Sample size: 120/30/50 (training/validation/test set)
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that Lugol’s iodine only contributes to color contrast while acetic

acid causes both texture modification and color contrast (8).

We calculated the average of the macro-averaged F1 score

over more than five entries to determine the ideal number of

features extracted from VIA and VILI images using various

combinations of the top-ranked features and clinical data as

input to our multimodal machine learning model. The

maximum macro-averaged F1-score of 0.67 was attained by

the combination of five VIA features and five VILI features, as

shown in Figure 2A.

In Figures 2B–K, we also showed how the training data’s

feature distribution was distributed. For VIA, the dissimilarity

feature had a noticeable difference with 15- and 10-pixel offsets.

It remained high in the H–group, indicating a high contrast in

the area with the most severe lesions. The three color channels’

standard deviations (Lb, S, and Cb) were significantly higher in

the H–group, which resulted in more fluctuations in the group’s

blue-difference chroma signals and saturation components. For

VILI, the four color channels (Lb, Cb, La, Cr) had significantly

higher standard deviations in the H–group, which indicated

more fluctuations in the blue- and red-difference color

components. Additionally, the Otsu threshold of CIELAB-Lb

showed that the H–groups were more likely to contain more

yellow components and fewer blue ones. We used one LN case

and two H cases as examples to visualize the VIA (Figures 3A, B)

and VILI features for better interpretation (Figure 3C).
Experimental results

The test set included all 285 patients with pathologic

diagnoses as the ground truth that had never been trained.

The multimodal model generated the preliminary output by

applying feature extraction and RBF-SVM optimized by the

SMOTE algorithm to the VIA and VILI images. The multimodal

model then concatenated the HPV, TCT tests, and age to the

naïve Bayes classifier for cervical-lesion diagnosis. A case entered

our model’s final output and was categorized into the H–group

or the LN–group, as shown in Figure 1.
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Our model achieved a sensitivity of 51.2% with accuracy

81.8%, specificity 86.9%, and AUPRC 0.882 ± 0.014. To assess

the performance, we ran a number of in-depth experiments.

Features were used as the input when creating machine learning

classifiers like random forest, neural network (NN), and 1D-

convolutional neural network (CNN). RBF-SVM algorithms

were also performed with three input configurations—VIA

images only, VILI images only, and VIA and VILI images.

Additionally, the SMOTE algorithm could be integrated in

RBF-SVMs to balance the skewed class distribution.

All of the machine learning models mentioned above were

optimized. The Gini impurity was used by the random forest

classifier as the splitting criterion, and 100 decision trees were

used to generate the out-of-bag predictions. Neural networks

used the Adam optimization algorithm and the three-layer 10–

25–2 configuration with tanh activations. The predictive

threshold was indicated by the number in parenthesis after

NN. A 1D-convolution layer with 64 1 × 8-sized feature maps,

a max-pooling layer, and two fully connected layers made up the

1D-CNN.

Modern CNN architectures like ResNet-50 and VGG-16

were frequently utilized to carry out image classification tasks.

We used transfer learning to train the classification head of the

ResNet-50/VGG-16 models for VIA/VILI images to identify H-

group patients because these two models showed excellent

performance in identifying the cervix. For further diagnosis,

we also fed the naïve Bayes classifier the output and clinical data.

We implemented five models with the best parameter

configurations for each of the 15 algorithms listed above, and

we averaged the results in Table 5.

Eighty-eight (8.9%), 558 (56.6%), and 340 (34.5%) out of the

986 patients had diagnoses from the chef physicians, attending

physicians, and resident physicians, respectively. Their

performance and the number of diagnosed cases are listed in

Table 5. Besides, in an effort to create comparable experimental

conditions, we evaluated the physicians’ diagnostic performance

for the same test set. In general, physicians’ sensitivity for

cancer/HSIL detection ranged from 53.7% to 60.0%. Our

model effectively and efficiently combined VIA and VILI

images and clinical data to produce predictions with the power

comparable to that of physicians.

According to Figure 4A, this model and physicians

distinguished between various patients in the H–group,

demonstrating that the algorithm could identify the

characteristics of severe cervical lesions that were challenging

to find with the naked eyes. We introduced a computer-aided

diagnosis system in colposcopy to further improve the

identification of H–group patients: a patient was classified into

the H–group if the model or physician diagnosed them with

cancer/HSIL. The sensitivity was increased from 53.7% to 70.7%

using this simple strategy, as shown in Figure 4B, with a

respectable specificity of 81.1% and an accuracy of 79.6%. This

could aid colposcopy diagnosis and biopsy in clinical practice.
TABLE 3 Summary of features for the naïve Bayes classifiers.

Feature Type Range

1 SVM output Numerical [0, 1]

2 Age Numerical [16,83]

3 HPV-11 Categorical 0,1

4 HPV-22 Categorical 0,1

5 HPV-33 Categorical 0,1

6 TCT Categorical 1,2,3,4,5,6 4
1:HPV 16/18 positive; 2: high-risk (non-16/18) HPV positive; 3: low-risk HPV positive.
4 : 1: NILM; 2: ASCUS; 3: ASC-H; 4: LSIL; 5:HSIL; 6:AGC.
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Discussion

In this study, we presented an algorithm for diagnosing

cervical dysplasia using VIA and VILI images and clinical data of

age, TCT, and HPV tests. The multimodal machine learning

algorithm extracted the color and texture features to implement

a SMOTE-based RBF-SVM model. Combining the clinical

information, the algorithm achieved a sensitivity, specificity,

and accuracy of 51.2%, 86.9%, and 81.8%, respectively, and

physicians’ sensitivity, specificity, and accuracy were on

average 53.7%, 89.8%, and 84.6%, respectively. The

performance of the algorithm was comparable to physicians.

In recent high-quality studies, the sensitivity and specificity to

detect HSIL varied greatly, ranging between 33%–93% and 53%–

95%, respectively (36–40), which was comparable to the result of

our study.

We combined the cervical images of VIA and VILI to

enhance the ability to recognize cervical lesions in comparison

to earlier studies on cervical image analysis (19, 20, 22, 23, 27,

28). To increase sensitivity and accuracy, we added TCT, HPV

tests, and age, which brought the diagnosis process closer to

that of a physician. We took pathology as the ground truth,
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which had greater clinical significance. Additionally, the

sensitivity of cancer/HSIL detection increased with the joint

diagnosis of physicians and the algorithm, which was higher

than with physicians or the algorithm alone. It makes sense in

clinical practice to avoid unnecessary invasive operation

(biopsy and diagnostic surgery) and contributes to the

popularization of colposcopy in local hospitals without

sufficient professionals.

The skewed class distribution made training and testing

difficult, which always made the machine learning algorithms

like the aforementioned random forest, neural network, and

SVM to predict the majority of outcomes. Traditional

oversampling techniques only replicated the minority data,

which prevented the machine learning model from receiving

any new data or variation. The K-NN algorithm was used by

the SMOTE strategy to generate artificial data from the

minority and balance the classes. Thus, as shown in Table 5,

the sensitivity was enhanced. TCT, HPV tests, and the ages of

the patients were significant reference indices in colposcopy.

They were properly integrated with VIA and VILI

image features by the naïve Bayes algorithm, which

produced the physician-level diagnosis. A naïve Bayes
TABLE 4 Top-ranked VIA/VILI features between H– and LN– groups.

VIA feature H (N = 96) LN (N = 594) P-value

Dissimilarity (15)z 12.80 ± 3.54 11.36 ± 2.67 2.33 ×10-4

Dissimilarity (10) z 10.59 ± 2.94 9.46 ± 2.29 5.07 × 10-4

Std (Lb) z 6.85 ± 2.31 5.99 ± 1.63 7.44 × 10-4

Std (S) z 26.01 ± 10.83 22.12 ± 6.17 8.61 × 10-4

Std (Cb) z 6.31 ± 2.14 5.55 ± 1.48 1.01 × 10-3

Contrast (15) 486.72 ± 265.95 392.07 ± 181.19 1.12 × 10-3

Std (La) 4.93 ± 1.77 4.33 ± 1.22 2.09 × 10-3

Homogeneity (15) 0.11 ± 0.02 0.12 ± 0.02 2.31 × 10-3

Contrast (10) 373.02 ± 198.80 307.16 ± 148.59 2.50 × 10-3

Dissimilarity (5) 8.01 ± 2.22 7.28 ± 1.81 2.92 × 10-3

VILI feature H (N=96) LN (N=594) P-value
Std (Lb) z 12.72 ± 3.53 9.89 ± 3.20 2.45 × 10-11

Std (Cb) z 12.38 ± 4.13 9.21 ± 3.40 9.97 × 10-11

Otsu (Lb) z 103.39 ± 8.10 109.13 ± 7.41 1.96 × 10-9

Std (La) z 6.61 ± 2.59 4.87 ± 2.06 7.22 × 10-9

Std (Cr) z 8.51 ± 2.79 6.64 ± 2.18 7.59 × 10-9

Otsu (Cb) 151.56 ± 8.73 145.74 ± 7.63 1.10 × 10-8

Otsu (La) 135.73 ± 5.06 132.34 ± 4.61 1.13 × 10-8

Mean (Lb) 105.88 ± 11.33 12.39 ± 8.76 4.42 × 10-7

Mean (Cb) 149.10 ± 11.29 142.67 ± 8.30 4.42 × 10-7

Otsu (Cr) 112.64 ± 6.12 115.84 ± 5.22 4.10 × 10-6
fron
z: Features are used in our model, that is, five top-ranked features.
The pixel pair distance offsets or the color channel is inside the parentheses.
Sd, standard deviation; Otsu, Otsu thresholding.
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classifier outperformed more complex models with smaller

datasets because medical images are scarce and expensive.

Besides, the model learned to recognize potential lesion sites

through the 10 visualized features in our model that were

extracted from VIA and VILI images, which helped

guide biopsy.
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This study has several limitations, including the following: first,

because the cervical canal is not visible in cervical images, the

algorithm is unable to accurately identify lesions in patients with

lesions in the canal; second, the imbalance of data distribution (H:

LN ≈ 1:7) affected the sensitivity to some extent; third, the estimated

probability in the naïve Bayes classifier is inaccurate to some extent
FIGURE 3

Visualization of the extracted five top-ranked features of VIA and VILI images. LN-group: L1; H-group: H1, H2. (A) Three color features and (B)
two texture features were for VIA images. (C) Five color features were for VILI images.
FIGURE 4

(A) Two hundred eighty-five patients in the test set were made wrong predictions only by physicians (red) or model (yellow). (B) The confusion
matrix of our model, the physician diagnosis, and the model-aided physician diagnosis.
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because of the naïve assumption; and fourth, the system is evaluated

on the data from one single hospital, since the colposcope’s

illumination characterization and imaging specifications vary with

each individual colposcope equipment or environment.
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TABLE 5 Experimental results of different machine learning algorithms and performance of physician diagnoses.

VIA VILI Clin. Smo. Sensitivity Accuracy Specificity

Ours * * * * 51.2% 81.8% 86.9%

Random forest * * 5.4% 84.0% 97.0%

NN(0.5) * * 7.3% 85.3% 97.5%

NN(0.8) * * 12.2% 82.1% 94.7%

1D-CNN * * 2.4% 85.0% 99.0%

RBF-SVM * 3.9% 85.0% 98.9%

RBF-SVM * 4.9% 81.0% 94.2%

RBF-SVM * * 13.2% 85.0% 97.0%

RBF-SVM * * 20.0% 75.0% 84.9%

RBF-SVM * * 8.3% 78.0% 89.3%

RBF-SVM * * * 25.9% 81.0% 80.8%

ResNet-50 * 7.30% 80% 92.20%

ResNet-50+NB * * 17.10% 81.10% 91.80%

VGG-16 * 7.32% 86.30% 99.60%

VGG-16+NB * * 24.40% 86.00% 96.30%

ResNet-50+VGG-16+NB * * * 29.30% 80% 88.50%

Chef physicians (88) * * * 60.0% 85.2% 88.5%

Attending physicians (558) * * * 59.0% 85.8% 90.2%

Resident physicians (340) * * * 55.1% 86.2% 91.4%

Physicians-test set (285) * * * 53.7% 84.6% 89.8%

Ours+Physicians * * * * 70.7% 79.6% 81.1%
fro
*: The model or physicians used this kind of training data. Clin, Clinical information; Smo, Smote.
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14. Acosta-Mesa HG, Cruz-Ramıŕez N, Hernández-Jiménez R. Aceto-white
temporal pattern classification using k-NN to identify precancerous cervical lesion
in colposcopic images. Comput Biol Med (2009) 39:778–84. doi: 10.1016/
j.compbiomed.2009.06.006

15. Li W, Venkataraman S, Gustafsson UP, Oyama JC, Ferris DG, Lieberman
RW. Using acetowhite opacity index for detecting cervical intraepithelial neoplasia.
J Biomed Optic (2009) 14: 14020. doi: 10.1117/1.3079810

16. Srinivasan Y, Hernes D, Tulpule B, Yang S, Guo J, Mitra S, et al. A
probabilistic approach to segmentation and classification of neoplasia in uterine
cervix images using color and geometric features. Med Imaging 2005: Imag
Process (Internat Soc Optic Photon) (2005) 5747:995–1003. doi: 10.1117/
12.597075

17. Xu T, Zhang H, Xin C, Kim E, Long LR, Xue Z, et al. Multi-feature based
benchmark for cervical dysplasia classification evaluation. Pattern Recogn (2017)
63: 468–75. doi: 10.1016/j.patcog.2016.09.027

18. Ji Q, Engel J, Craine E. Classifying cervix tissue patterns with
texture analysis. Pattern Recogn (2000) 33:1561–73. doi: 10.1016/S0031-3203(99)
00123-5
19. Mehlhorn G, Kage A, Muenzenmayer C, Benz M, Koch MC, Beckmann
MW, et al. Computer-assisted diagnosis (CAD) in colposcopy: evaluation of a pilot
study. Anticancer Res (2012) 32:5221–6. doi: 10.1159/000341546

20. Song D, Kim E, Huang X, Patruno J, Muñoz-Avila H, Heflin J, et al.
Multimodal entity coreference for cervical dysplasia diagnosis. IEEE Trans Med
Imaging (2014) 34:229–45. doi: 10.1109/tmi.2014.2352311

21. Novitasari DCR, Asyhar AH, Thohir M, Arifin AZ, Mu’jizah H, Foeady AZ.
Cervical cancer identification based texture analysis using glcm-kelm on
colposcopy data (2020) (Accessed International Conference on Artificial
Intelligence in Information and Communication (ICAIIC)).

22. Li Y, Chen J, Xue P, Tang C, Chang J, Chu C, et al. Computer-aided cervical
cancer diagnosis using time-lapsed colposcopic images. IEEE Trans Med Imaging
(2020) 39:3403–15. doi: 10.1109/TMI.2020.2994778

23. Kudva V, Prasad K, Guruvare S. Automation of detection of cervical cancer
using convolutional neural networks. Crit Reviews™ Biomed Eng (2018) 46:135–45.
doi: 10.1615/CritRevBiomedEng.2018026019

24. Sato M, Horie K, Hara A, Miyamoto Y, Kurihara K, Tomio K, et al.
Application of deep learning to the classification of images from colposcopy. Oncol
Lett (2018) 15:3518–23. doi: 10.3892/ol.2018.7762

25. Xu T, Zhang H, Huang X, Zhang S, Metaxas DN. Multimodal deep learning
for cervical dysplasia diagnosis. Int Conf Med Imag Comput Comput-assist
Intervent (2016) 9901:115–23. doi: 10.1007/978-3-319-46723-8_14

26. Mueller JL, Lam CT, Dahl D, Asiedu MN, Krieger MS, Bellido-Fuentes Y,
et al. Portable pocket colposcopy performs comparably to standard-of-care clinical
colposcopy using acetic acid and lugol’s iodine as contrast mediators: an
investigational study in peru. BJOG. Int J Obstetric Gynaecol (2018) 125:1321–9.
doi: 10.1111/1471-0528.15326

27. Yu Y, Ma J, ZhaoW, Li Z, Ding S. MSCI: A multistate dataset for colposcopy
image classification of cervical cancer screening. Int J Med Inf (2021) 146:104352.
doi: 10.1016/j.ijmedinf.2020.104352

28. Asiedu MN, Simhal A, Chaudhary U, Mueller JL, Lam CT, Schmitt JW, et al.
Development of algorithms for automated detection of cervical pre-cancers with a
low-cost, point-of-care, pocket colposcope. IEEE Trans Biomed Eng (2018) 66:
2306–18. doi: 10.1101/324541

29. Nayar R, Wilbur DC. The pap test and Bethesda 2014. Cancer Cytopathol
(2015) 123:271–81. doi: 10.1002/cncy.21521

30. Kaur A, Kranthi BV. Comparison between YCbCr color space and CIELab
color space for skin color segmentation. Int J Appl Inf Syst (2012) 3:30–3. doi:
10.1109/ngct.2015.7375244

31. Otsu N. A threshold selection method from gray-level histograms. IEEE
Trans Syst Man Cybernet (1979) 62–6. doi: 10.1109/TSMC.1979.4310076

32. Hall-Beyer M. GLCM texture: A tutorial v. 3.0 (2017) 9. doi: 10.11575/
PRISM/33280.

33. Bai B, Liu PZ, Du YZ, Luo YM. Automatic segmentation of cervical region
in colposcopic images using k-means. Australas Phys Eng Sci Med (2018) 41:1077–
85. doi: 10.1007/s13246-018-0678-z

34. Ma JH, Feng Z, Wu JY, Zhang Y, Di W. Learning from imbalanced fetal
outcomes of systemic lupus erythematosus in artificial neural networks. BMC Med
Inf Decis Mak (2021) 21:1–11. doi: 10.1186/s12911-021-01486-x

35. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. Smote: synthetic
minority over-sampling technique. J Artif Intell Res (2002) 16:321–57. doi:
10.1613/jair.953

36. Nessa A, Wistrand C, Begum SA, Thuresson M, Shemer I, Thorsell M, et al.
Evaluation of stationary colposcope and the gynocular, by the swede score
systematic colposcopic system in VIA positive women: a crossover
randomized trial. Int J Gynecolog Cancer (2014) 339–345 doi: 10.1097/
IGC.0000000000000042

37. Nessa A, Roy J, Chowdhury M, Khanam Q, Wistrand C, Thuresson M, et al.
Evaluation of the cervical swede score method and the gynocular by colposcopy
trained VIA nurses: A cross-over randomised trial: FC10. 06. Bjog: Int J Obstetric
Gynaecol (2014) e005313. doi: 10.1136/bmjopen-2014-005313
frontiersin.org

https://doi.org/10.1117/12.2080871
https://doi.org/10.1136/bmj.38663.459039.7C
https://doi.org/10.7326/310 0003-4819-155-10-201111150-00376
https://doi.org/10.7326/310 0003-4819-155-10-201111150-00376
https://doi.org/10.1016/j.ijgo.2005.01.009
https://doi.org/10.1136/bmj.39196.740995.BE
https://doi.org/10.1097/AOG.0b013e31816baed1
https://doi.org/10.1097/lgt.0b013e31819308d4
https://doi.org/10.1002/ijc.11245
https://doi.org/10.1258/td.2009.090085
https://doi.org/10.1016/j.ijgo.2009.11.025.
https://doi.org/10.1016/j.ijgo.2009.11.025.
https://doi.org/10.1016/j.compbiomed.2009.06.006
https://doi.org/10.1016/j.compbiomed.2009.06.006
https://doi.org/10.1117/1.3079810
https://doi.org/10.1117/12.597075
https://doi.org/10.1117/12.597075
https://doi.org/10.1016/j.patcog.2016.09.027
https://doi.org/10.1016/S0031-3203(99)00123-5
https://doi.org/10.1016/S0031-3203(99)00123-5
https://doi.org/10.1159/000341546
https://doi.org/10.1109/tmi.2014.2352311
https://doi.org/10.1109/TMI.2020.2994778
https://doi.org/10.1615/CritRevBiomedEng.2018026019
https://doi.org/10.3892/ol.2018.7762
https://doi.org/10.1007/978-3-319-46723-8_14
https://doi.org/10.1111/1471-0528.15326
https://doi.org/10.1016/j.ijmedinf.2020.104352
https://doi.org/10.1101/324541
https://doi.org/10.1002/cncy.21521
https://doi.org/10.1109/ngct.2015.7375244
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.11575/PRISM/33280
https://doi.org/10.11575/PRISM/33280
https://doi.org/10.1007/s13246-018-0678-z
https://doi.org/10.1186/s12911-021-01486-x
https://doi.org/10.1613/jair.953
https://doi.org/10.1097/IGC.0000000000000042
https://doi.org/10.1097/IGC.0000000000000042
https://doi.org/10.1136/bmjopen-2014-005313
https://doi.org/10.3389/fonc.2022.905623
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2022.905623
38. Mueller JL, Lam CT, Kellish M, Peters J, Asiedu M, Krieger MS, et al.
Clinical evaluation of a portable pocket colposcope for cervical cancer screening in
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