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ABSTRACT

Controller (C) proteins regulate the timing of the
expression of restriction and modification (R-M)
genes through a combination of positive and nega-
tive feedback circuits. A single dimer bound to the
operator switches on transcription of the C-gene
and the endonuclease gene; at higher concentra-
tions, a second dimer bound adjacently switches
off these genes. Here we report the first structure
of a C protein-DNA operator complex, consisting of
two C protein dimers bound to the native 35bp
operator sequence of the R-M system Esp1396l.
The structure reveals a role for both direct and indir-
ect DNA sequence recognition. The structure of the
DNA in the complex is highly distorted, with severe
compression of the minor groove resulting in a 50°
bend within each operator site, together with a large
expansion of the major groove in the centre of
the DNA sequence. Cooperative binding between
dimers governs the concentration-dependent acti-
vation-repression switch and arises, in part, from
the interaction of Glu25 and Arg35 side chains at
the dimer-dimer interface. Competition between
Arg35 and an equivalent residue of the ¢’° subunit
of RNA polymerase for the Glu25 site underpins the
switch from activation to repression of the endonu-
clease gene.

INTRODUCTION

Restriction—modification (R—M) systems play a pivotal
role in modulating the horizontal transfer of genes in
bacterial populations - a major factor in the transmission
of antibiotic resistance between bacterial species (1).
The emergence of multi-drug-resistant strains through

horizontal transfer of antibiotic resistance genes repre-
sents an increasing threat to world health. An
understanding of R—M systems, and of their regulation,
is thus of significant microbiological and biomedical
interest.

R-M systems encode a restriction endonuclease and
a DNA methyltransferase. The action of the DNA
sequence-specific methytransferase (M) protects the host
DNA from cleavage by an associated restriction enzyme
(R), and the specific methylation pattern of the host R—-M
system allows the discrimination of ‘self’ from ‘non-self’
DNA (2). This ancient form of innate immunity provides
a basis for the selective destruction of foreign DNA.
Clearly, expression of the endonuclease prior to protection
of the host DNA by the methyltransferase would be lethal.
Thus there are a variety of control mechanisms that ensure
the correct temporal expression of R—M genes. One
common mechanism employs a ‘controller’ (C) protein
encoded by a gene downstream of its own promoter,
which is co-transcribed with the endonuclease gene from
a common promoter (3—7). The C-protein binds to the
C/R promoter to regulate transcription of its own gene
and the associated endonuclease (R) gene (8).

Biochemical and biophysical analysis in recent years has
revealed the general features of this genetic switch (9,10).
X-ray crystallographic analysis of the controller protein
C.AhdI showed it to be a dimer consisting of two 74 aa
subunits, each containing a helix-turn-helix (HTH) motif,
and a weak dimer interface consistent with a relatively
high K4 (2.5uM) for dimerization (11). Low-level expres-
sion of the C-protein from a weak promoter leads to a
delay in transcription until sufficient protein accumulates
to form a functional dimer. The C-protein dimer activates
transcription of the C/R operon, forming a positive feed-
back loop, leading to an exponential increase in C-protein
expression; at higher concentrations, a second dimer is
recruited to the promoter, displacing RNA polymerase
and thereby repressing transcription of its own gene
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(and hence expression of the R gene) in a negative feed-
back loop (Figure 1).

This simple but elegant control circuit has been con-
firmed by in vitro transcription assays and has been suc-
cessfully modelled mathematically (12). A similar control
circuit is likely to apply to other C-protein-regulated sys-
tems, Pvull being the best studied of these (13). The time
delay in expression of the C and R genes, relative to the
M gene, when establishing a new R—M system has recently
been experimentally verified in vivo (14).
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Figure 1. The genetic switch regulating the timing and expression of
R-M genes. The -35 (green) and -10 (red) transcriptional signals are
indicated upstream of the C-gene (blue) and the R-gene (not shown).
C-protein dimers are shown in pink and the sigma subunit of RNA
polymerase in yellow. Low-level C-protein expression occurs from a
weak C-independent promoter (not shown). Occupation of the high
affinity Op, site by C-protein dimers stimulates transcription of the C-
gene via recruitment of RNA polymerase sigma subunit to the -35 site;
at higher concentrations of C-protein, occupation of the Og site dis-
places the subunit and down-regulates the C- and R-genes.
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Bioinformatic analysis of known and potential
C-protein binding sites has identified a repeating sym-
metrical consensus sequence consisting of four symmet-
rical ‘C-boxes” GACTnnnAGTCnnnnGACTnnnAGTC
upstream of the C/R genes (6,8). However, the degree of
sequence homology between species is moderate and the
internal symmetry between ‘C-boxes’ is far from perfect
(Figure 2A). The operator sequence includes binding sites
(denoted O and Og) for two C-protein dimers (9). The
left-hand operator sequence, Oy, is distal to the gene and
is believed to activate transcription through favourable
interactions with the ¢’° subunit of RNA polymerase,
bound at the -35 site that overlaps with Og. The right-
hand operator sequence, Og, is proximal to the gene and
binding of a second dimer to Og blocks 6’ binding to the
-35 site, thus switching off the C/R genes (9-11).

It is notable that the GT in the centre of the proposed
consensus sequence is more highly conserved than the
proposed tetranucleotide recognition sequences (13), but
clearly lacks dyad symmetry. The proposed 3 bp ‘spacers’
within the left and right operator sequences are equally
well conserved, the consensus being TAT. Within the sym-
metrical framework discussed above (Figure 2A), the two
TAT ‘spacer’ sequences are not related by dyad symmetry,
and nor do they have internal symmetry. If the protein
dimer were centred on this sequence, the dyad axis of
the dimer would pass through the central A.

However, we note that if the pseudo-dyad axis relating
the two operators is shifted by half a base (i.e. centred on
T rather than GT), then although the pseudo-dyad
between AGTC/GACT sequences is lost, instead there
would be perfectly symmetrical TATA sequences at the
centre of each operator (Figure 2B). In this case, the
dyad axis of each dimer would be located between
the central A and T bases of the TATA ‘spacer’.
Without structural analysis, it is not possible to predict
which of these symmetries is adopted by the nucleoprotein
complex.

Since these ‘spacer’ sequences are so strongly conserved,
they are likely to play an important structural role.

Or

A ATGTGACTTéTAGTCCGETGTGATTéTAGTCAACAT

B ATGTGACTTATAGTCCGTGTGATTATAG TCAAGAT

19
G-T-G-A-T-T-A-T-A-
c

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36
G C A-C T
-A-C-T-A-A-T-A-T-C-A-G-T-T-G-T-A

716 15 14 13 12 11 10 9 8 6 5 4 3 2 1

Figure 2. Pseudo-symmetry of the C.Esp13961 DNA binding site. (A) the original C-box symmetry with a pseudo-dyad centred on GT; (B) an
alternative symmetry centred on the central T, which is deduced from the structure of the nucleoprotein complex; (C) sequence of the DNA duplex
used to form nucleoprotein complexes for crystallography. In (A) and (B), the location of pseudo-dyad axes within operators (blue) and between
operators (red) are shown as dotted lines. In (C), nucleotides involved in DNA-protein interactions in the crystal structure of the complex are
indicated in blue. When discussed in the text, nucleotides on the lower strand are indicated with a prime ().
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Circular dichroism indicates that a large structural defor-
mation is induced in the DNA when each C.Ahdl dimer
binds to the operator (15). Circular permutation gel assays
show that binding of a C.AhdI dimer results in a sub-
stantial (~50°) bend in the DNA. It was proposed that
these structural distortions could arise from the TAT
(or TATA) ‘spacers’ since these sequences are frequently
found in bent DNA structures (15). However, in the
absence of detailed structural data, the precise nature of
the conformational changes in the DNA that are induced
by C-protein binding remain unknown.

To investigate the structure and symmetry of C-protein/
DNA complexes and provide insight into the structural
deformation of the DNA and relevant intermolecular con-
tacts, we are carrying out a systematic study of C-protein
complexes with a variety of DNA sequences. Here, we
investigate the DNA-binding properties of the controller
protein of the Esp13961 R—M system, and report the first
crystal structure of any C-protein—-DNA complex. In addi-
tion, we have used site-directed mutagenesis to elucidate
the role of key amino acid residues implicated in coopera-
tive binding between adjacent protein dimers on the DNA.
Our results reveal the mechanism whereby cooperative
binding of dimers to the DNA operator governs the
switch from activation to repression of the C and R genes.

MATERIALS AND METHODS
Protein and DNA purification

Large-scale cultures of Escherichia coli BL21 (DE3) cells
bearing the plasmid pET-28b/esp13961C were grown, har-
vested and disrupted by sonication. Cell lysates were pur-
ified by chromatography on a His-Trap HP column, the
His-tag removed by thrombin digestion, dialysed and the
protein re-applied to the His-Trap column. The final pro-
tein sequence following thrombin cleavage includes an
N-terminal tripeptide Glycine-Serine-Histidine in addition
to the native sequence. Site-directed mutagenesis was per-
formed as previously described (11) and mutant proteins
purified as above. DNA duplexes were prepared by
annealing equimolar quantities of each oligonucleotide
strand, and slowly cooling to room temperature; correct
formation of double-stranded DNA was confirmed by
native polyacrylamide gel electrophoresis.

Electrophoretic mobility shift assays (EMSAs)

Electrophoretic mobility shift assays were performed
using non-denaturing electrophoresis on 8% polyacryla-
mide gels as previously described (10). C.Esp13961
was incubated at various concentrations with 240 nM
y->*P-labelled DNA duplex at 4°C for a period of
30 min. Gels were run at 100 V for 90 min, dried and ana-
lysed on a phosphorimager. The 35 bpWT sequence cor-
responds to that in Figure 2C. Additional 35bp
oligonucleotide duplexes in which the right or left opera-
tor sequences have been mutated to a random sequence
(indicated in bold) were also used for EMSAs. The
sequences of these were as follows:

O1 (O mutated):
ATGTGACTTATAGTCCGTCTAGCCTAGCCTAGCCT

TACACTGAATATCAGGCAGATCGGATCGGATCGGA

Or (O mutated):
CTAGCCTAGCCTAGCCGTGTGATTATAGTCAACAT
GATCGGATCGGATCGGCACACTAATATCAGTTGTA

DNA bending assays

DNA bending assays were performed as described else-
where (15) using the native 35bp promoter (O + Og)
and an equivalent 35 bp sequence with the intact Oy and a
randomized Op (as defined above). Relative mobilities
(¥ = Rypound/Riree) Were plotted as a function of the posi-
tion of the binding site (x) and fitted to the quadratic
function y = ax®> — bx + ¢, where a = —b = 2¢(1 cos o),
from which the bend angle o could be determined (16).

Crystallization and data collection

Crystallization was carried out at the High Throughput
Crystallization Laboratory of the EMBL Grenoble
Outstation employing vapour diffusion sitting drops of
100 nl nucleoprotein solution and 100 nl mother liquor.
Pure C.Esp1396I protein (0.7 mg/ml) was mixed with pur-
ified double-stranded 35-mer DNA at a 4:1 molar ratio.
Crystals of dimensions 30 x 30 x 10um grew within
I month at 20°C in 50mM MES, pH 7.5, 25% MPD,
40mM MgCl,. The crystals were vitrified directly in
a cold N, gas stream at 100K from an Oxford
Cryosystems 700 series Cryostream (Oxford Cryosystems
Ltd., Oxford, UK). Data were collected at beamline
ID29at the ESRF, Grenoble, France, employing a
custom-designed pinhole (R. Ravelli & F. Felisaz,
EMBL Grenoble) producing a 25 um spherical low diver-
gence beam suitable for small crystals. A total of 100
1° oscillation images were collected at 0.9787 A wave-
length on an ADSC Q315R mosaic CCD detector.

Structure determination and refinement

Data were integrated and scaled using XDS and XSCALE
(17). Molecular replacement was performed with the pro-
gram Phaser (18) using a single chain from the C.Bcll
dimer (PDB entry 2B5A). Four monomers were placed
consecutively and, following solvent flattening and density
averaging using DM (19), the DNA chains were built
manually using COOT (20). Simulated annealing was
performed using PHENIX (21) and iterative refinement
using REFMACS (22) employing non-crystallographic
restraints and TLS parameterization. The final model
was refined to 2.8 A and contains four protein chains
with residues 2—77 (chains A and D) and residues 2-78
(chains B and C) together with the complete 35-mer
DNA duplex. There is a single tetramer—DNA complex
in the asymmetric unit with a solvent content of 69%.
There are no residues in disallowed regions of the
Ramachandran plot. DNA parameters were calcu-
lated using CURVES (23,24), contact analysis with
NUCPLOT (25) and all structure figures were produced
using PyMol (26).



Nucleic Acids Research, 2008, Vol. 36, No. 14 4781

4

T—> e L L L L
Fo>lom®w . PORRRRRAS seemcnses
wT o, OR

Figure 3. Analysis of binding to left and right operators by EMSA. The 35bp oligonucleotide duplexes (240 nM) containing the native operator
(WT), the left-hand operator only (Op) or the right-hand operator only (Or) were incubated with C.Esp13961 at 0, 1, 2, 3, 4, 5, 6, 7 and 8:1
protein:DNA ratios. F = free DNA; D = dimer-DNA complex; T = tetramer-DNA complex. The sequences of the mutated operator duplexes are

given in Materials and methods section.

RESULTS
Binding of C.Esp1396I to DN A operator sites

Previous studies on C.AhdI have shown the existence of
two operator sequences upstream of the C.AhdIl gene
(Op and Og). Occupation of the high-affinity distal site
(O1) leads to activation of transcription, and binding of
a second dimer to the weaker proximal site (Or) represses
the gene (9,10). C.AhdI was the first C-protein structure to
be determined, but we have been unable to produce sui-
table crystals of DNA-—protein complexes with C.AhdI to
date. We therefore turned to a study of the closely related
C-protein, C.Esp13961.

We first investigated by EMSA the interaction of
C.Esp13961 with 35bp DNA sequences corresponding to
the operator region upstream of the C/R gene. Titrating in
C.Esp1396I to the native operator DNA (Figure 3) shows
that tetrameric complexes predominate, as was the case
with the related protein C.AhdI (10). Mutation of the
Og operator results in the loss of tetrameric complexes
so that only dimeric complexes can form; mutation of
the O operator, however, results in complete loss of
DNA binding as the protein cannot bind to Og alone.
The binding of a second dimer to form tetrameric com-
plexes on the native operator DNA is highly cooperative,
since binding to the intrinsically low-affinity Og site
cannot occur unless a dimer is already bound to Oy.

DNA bending assays were used to see whether binding
of dimers and tetramers induced bending in the DNA. By
introducing the 35bp operator sequence into a plasmid
with a series of paired restrictions sites, the position of
the DNA binding site across a 1kb fragment can be
varied (15,27). Bending of the DNA results in decreased
mobility of complexes when the protein is bound in
the centre of the sequence, relative to the mobility when
bound at the end of the fragment. From an analysis of the
relative mobilities, the bend angle can be estimated (16).

Figure 4 shows the results of the bending assay for
dimeric and tetrameric complexes (the former using just
the Oy sequence and the latter using the intact operator,
Or + Og). Clear differential mobilities are observed in
both cases, but are more pronounced with binding of
the dimer. Fitting the data to the equation derived by
Ferrari et al. (16) leads to an estimate of a bend angle of
51° for the dimeric complex and 43° for the tetrameric
complex. As was the case for C.Ahdl, binding of two

0.88
([ Yol

0.84 OO, +0g

0.80

Rb / Rf

0.76

0.72

n 1 1 1 1 L I
0.0 0.2 0.4 0.6 0.8 1.0

Flexure displacement

Figure 4. DNA bending assay. For complexes with both the native
operator (Ogr + Op) and the distal operator Oy, relative mobilities
(¥ = Rv/Ry), were plotted against flexure displacement (x) and fitted
to the equation (18): y = ax’>—bx + ¢, where a = —b = 2¢(1 — coso).
For the former a = 0.445, b = —0.444, ¢ = 0.821 and for the latter,
a=0.732, b = —0.660, ¢ = 0.910, giving bend angles of 51° and 43°,
respectively.

dimers results in an overall bend angle less than that
for binding of a single dimer (15), implying that the
two dimers do not bind to the same face of the DNA
(as indeed is expected, since the centres of the two binding
sites are separated by 15bp). However, they cannot be on
exactly opposite sides of the DNA since the net bend angle
should then be close to zero. Indeed, this interpretation is
confirmed by the crystal structure (see below).

Crystal structure of the tetramer complex

In order to elucidate the structure of the tetrameric
(repression) complex, we crystallized a complex with the
native 35bp operator sequence (Figure 2C) using a 4:1
protein:DNA ratio. The best crystals diffracted to a reso-
lution of 2.8 A. Using molecular replacement, based on
the structure of the C.Bcll dimer (28), we solved the struc-
ture of the protein—DNA complex (Table 1). All the amino
acid residues in the protein can be seen in the electron
density map, with the exception of 1-2 residues at the
N- and C-termini, and all 35 bp of DNA could be located.
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Table 1. Data collection and refinement statistics

Tetramer—-DNA
complex (Native)

Data collection

Space group Pos
Cell dimensions
a, b, ¢ (A) 104.48, 104.48, 139.29
a B,y () 90, 90, 120
Resolution (A) 20.0-2.8 (2.9-2.8)
Rineas 4.6 (41.8)
I/ ol 33.7 (4.8)
Completeness (%) 98.5 (98.5)
Redundancy 6.3 (6.2)
Refinement
Resolution (A) 19.1-2.80
No. of reflections 21,157
Rwork/Rfree 0207/0239
No. atoms
Protein 2496
Ligand/ion 1431
Water 4
B-factors
Protein 94
Ligand/ion 96
Water 31
RMSDs i
Bond lengths (A) 0.007
Bond angles (°) 1.328

The tetramer complex was found to exist in two evenly
distributed orientations, related by the central pseudo-
dyad (Fig. 2B). The structure therefore represents an
average of two orientations. This crystallographic phe-
nomenon is well documented in pseudo-symmetric nucleo-
protein complexes (29) and is generally only apparent at
high resolution. Given the 2.8 resolution limit of our data,
the electron density is of high quality (Supplementary
Figure 1) and permits clear interpretation of the general
structural features of this complex. In addition, for the
20bp of the DNA that are related by dyad symmetry,
clear details of the protein—DNA interactions can be seen.

The protein structure is similar to that of C.AhdlI, con-
sisting of 5 a-helices, but with an extension of helix 5
resulting from the additional 10 residues at the C-terminus
(Supplementary Figure 2). The dimer interface includes a
network of inter-subunit hydrogen bonds involving the
side chain of Asn47, together with a number of main
chain interactions (Figure 5A), similar to those seen in
the free C.Ahdl dimer. However, the more extended
helix 5 allows more extensive contacts to be made at the
dimer interface (buried surface area, 1900 A%c.f. 1400 AZ
for C.Ahdl), consistent with the lower Ky (i.e. tighter
binding) of C.Esp13961 [K4y ~ 0.6uM, c.f. 2.5uM for
C.AhdI (9)].

The overall structure of the complex (Figure 5) com-
prises two dimers bound to the DNA, each centred on
the pseudo-dyad at the TATA sequence that is found at
the centre of each operator site. The two dimers are bound
to approximately opposite faces of the DNA, as antici-
pated from the DNA bending assays. The two dimers
are related by a 150° rotation and a 53 A translation

along the DNA helix, the latter being close to the expected
value for a separation of 15 bp between centres (Figure 6).
However, the 150° rotation, rather than 180°, implies a 30°
unwinding of the DNA between the two dimer binding
sites. The overall organization of the DNA—protein com-
plex is quite different to that of the tetrameric A CII com-
plex (30), where the protein dimers are on the same face of
the DNA helix, resulting in a large interaction interface
between dimers in the tetrameric complex.

Each subunit interacts with the DNA by inserting helix
3 of the classical HTH motif into the major groove of
DNA, either side of the central TATA within each opera-
tor. The two protein dimers are related by a dyad axis that
coincides with the pseudo-dyad axis lying within the cen-
tral T:A base pair of the 35 bp duplex.

As discussed earlier, previous predictions had placed the
pseudo-dyad at the centre of the conserved GT dinucleo-
tide step (G17-T18), since this conforms to the symmetry
of the idealized GACT—AGTC—GACT—AGTC repeat-
ing C-box sequence (6). However, this is clearly not the
case in the crystal structure of the C.Esp1396]-DNA com-
plex. Instead, the central pseudo-dyad at the T18/A18’
base pair relates the two TATA sequences by a two-fold
rotation (as in Figure 2B). It had previously been noted
(13) that the TAT element of this sequence was at least as
highly conserved between C-proteins as the GACT/AGTC
repeat (6,8). The structural basis for this conservation is
now clear. Moreover, the TG sequence (T2-G3) on the 5
side of the operator sequence and the CA on the 3’ side
(C33—A34) are also highly conserved between C-proteins,
although on the original scheme, they were not symmetri-
cally related (Figure 2A). With T18 as the centre of sym-
metry, as observed in the crystal structure of the complex,
these four base pairs are now related by the pseudo-dyad
axis (Figure 2B).

Structural distortion of DNA occurs at TATA sites

The DNA in the complex displays a major kink at the
centre of each of the operator sequences (Figure 5), in
accordance with the results of the circular permutation
assays. From the crystal structure, the overall bend at
each operator is estimated as ~50°, which is close to
that observed in the gel assay (51°). Figure 7 plots the
major and minor groove width across the DNA sequence.
The minor groove width is remarkably narrow (~2A) at
each TATA site, compared to typical values of around 7 A
elsewhere. In addition, there is a smaller local narrowing
of the minor groove in the centre of the 35bp sequence
(GTG), where the groove width changes locally
from ~8.5A to ~6A. In contrast, the major groove
width is only slightly increased (to ~13A) around the
TATA sequences, but increases quite drastically to 16 A
at the centre of the DNA binding site.

The severe compression of the minor groove at the
TATA sites is stabilized by interactions of the phospho-
diester backbone (at the 3’ end of each strand in both
TATA sequences) with the side chains of Ser52 and
Tyr37 from each of the four subunits (Figure 5C). There
may be additional interactions with the DNA backbone in
this region involving amino acid residues at the dimer
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Figure 5. Structure of the C.Esp1396I-DNA complex. Protein subunits are shown in yellow (subunit A), green (subunit B), pink (subunit C) and
blue (subunit D). Details are shown of (A) hydrogen bonding at the dimer interface; (B) two alternative R35 contacts from the central subunits B and
C, involving both protein—protein and protein-DNA interactions; (C) protein~DNA interactions stabilizing the compressed minor groove around
TATA; (D) R35 contacts to the conserved guanine, G3 (outer subunits, A and D).
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Figure 6. Topology of the tetramer—-DNA complex. The relative posi-
tion of the two dimers (shown in green and blue) is illustrated with
respect to the approximate DNA axis. The overall bend angle of ~43°
results from the two individual bends imposed by each dimer, which are
related by a 150° rotation about the helix axis (rather than 180° that
would cancel the overall bend).

interface (Asn47 and Thr49) but the details are indistinct
at this resolution. In addition, the bent conformation of
the DNA is stabilized by interactions from GIn24 and
Arg43 (and possibly Ser39) of each of the four subunits
with the phosphodiester backbone at the extremities of
each operator site (nucleotides 1, 2 and 17, 18 on each
strand).

The role of Glu25 and Arg3S5 in stabilizing the
tetrameric complex

The relative orientation of the two protein dimers in the
complex is such that Arg35 and Glu25 of neighbouring
subunits (Subunits B and C) can make contacts between
positively and negatively charged side chains to stabilize
the tetrameric complex (Figure 5B). To test whether these
interactions were indeed stabilizing the tetrameric complex
and contributing to the cooperativity of binding, we sepa-
rately mutated Arg35 and Glu25 and checked the DNA
binding activity of the mutant proteins by EMSA
(Figure 8). In order to confirm their structural integrity
prior to binding studies, C.Esp13961 wild-type, E25A and
R35A proteins were purified and crystallized individually
in the absence of DNA. Preliminary diffraction studies
indicate that all three crystallize with identical unit cell
dimensions in the same space group.

As anticipated, the E25A mutant shows greatly reduced
cooperativity, and thus destabilizes tetramer formation on
the intact operator DNA. More surprisingly, for R35A,
DNA binding was completely abolished. The reason for
the inability of the R35A mutant to bind to the operator
DNA becomes apparent from the structure of the com-
plex; the R35 side chains of the outer subunits (A and D)
are in contact with the conserved G3 base on each strand,
through paired hydrogen-bond interactions between
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Figure 7. DNA distortion in the complex. Variation in major (red) and
minor (blue) groove widths in the crystal structure of the C.Esp13961
DNA-protein complex are plotted across the 35bp DNA sequence.
Groove parameters were obtained using the program CURVES.

the guanidinium group of Arg35 and the O6 and
N7 H-bond acceptors of guanine G3 in the major groove
(Figure 5D). The loss of two strong H-bonds at each site
will severely weaken the interaction with the operator.

The E25 mutation, however, does not completely abol-
ish cooperativity (Figure 8), and a further contribution
almost certainly arises from distortion of the DNA. The
major groove is significantly widened where the HTH
motif inserts into the major groove of the DNA and this
is most noticeable at the centre of the sequence (Figure 7),
where two adjacent HTH motifs are located in the tetra-
meric complex (Figure 5). This is consistent with the
unwinding of the DNA helix between the two operator
sites, as deduced from the DNA bending assays. Binding
of subunit B of the first dimer would assist the second
dimer to bind DNA by opening up the major groove to
more casily accommodate the HTH motif from subunit C.
This distortion of the major groove between the two
operators therefore represents an additional contribution
to cooperativity.

DISCUSSION

Our understanding of the recognition of DNA sequences
by proteins is far from complete and it is becoming clear
that there is no simple ‘read-out’ code involving passive
DNA and protein structures (31,32). Frequently both
‘direct’ and ‘indirect’ read-out mechanisms are employed
to achieve specificity e.g. as seen in the bacterial transcrip-
tional activator catabolite activator protein (AP) (33). In
eukaryotic transcription factors, a combination of read-
out mechanisms can also be found; for example, Hox pro-
teins detect DNA shape in the minor groove, in addition
to base pair recognition in the major groove (31,34).
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Figure 8. Analysis of E25 and R35 mutants. Wild-type C.Esp13961, and mutant proteins E25A and R35A were analysed by EMSA. Proteins were
incubated with a 35bp dsDNA fragment (240 nM) corresponding to the native operator sequence at protein:DNA ratios of 0, 1, 2, 3, 4, 5, 6, 7 and
8:1. Free DNA (F), dimer-DNA complex (D) and tetramer-DNA (T) complex are indicated. The E25 mutation causes the formation of dimers
rather than tetramers. The R35 mutation abolishes all specific nucleoprotein complexes.

We propose that a similar dual read-out mechanism
applies to C-protein recognition of the operator sequences
preceding the C/R genes, but with some unusual features.

Indirect read-out

Indirect readout by C.Esp1396I is based on a number of
structural features in the DNA backbone that must be
recognized (or induced) by the protein: severe compres-
sion of the minor groove at TATA sequences where
there is a major kink at the centre of each operator, and
expansion of the major groove around the central GTG
between operator sites. In total, we can identify 36 inter-
actions to the DNA backbone (810 from each subunit),
including a number from positively charged arginine side
chains.

These interactions are concentrated into two areas: (i) at
the extremities of each operator and (ii) either side of the
TATA sequences at the centre of each operator. The com-
pression around TATA is accomplished by phosphodie-
ster backbone interactions with Ser52 and Tyr37
(Figure 5C). The side chains of Argl7, Gln24, Ser39 and
Arg43 of subunits B and C around the central GTG sta-
bilize the conformation of the phosphodiester backbone
defining the wide major groove. Some, but not all, of the
equivalent side chains from subunits A and D also make
symmetry-equivalent interactions to the phosphodiester
backbone near the 5 end of each DNA strand. All of
the above amino acid residues are very highly conserved
between C-proteins, with the exception of Ser39 and
Ser52, which are frequently replaced by Gly or Asn,
respectively (11).

There is evidence from circular permutation gel assays
that the DNA is not intrinsically bent, as differential mobi-
lity is not seen in the free DNA; moreover, the pronounced
structural deformation of the DNA observed by circular
dichroism is clearly induced by C-protein binding (15).
Thus the interactions of the C-protein with the DNA back-
bone are responsible for deforming its structure; the
sequence of the DNA is also crucial, as it must be capable
of assuming this bent conformation without too big an
energy penalty. TATA sequences are known to be easily
deformable and are frequently found in bent DNA struc-
tures in DNA—protein complexes (35). It is notable that the
compression of the minor groove that we see at the TATA
sites is in stark contrast to the expansion of the minor
groove in TATA box recognition by TATA-box binding
protein (TBP) (36). In the latter case, the expansion is

caused by insertion of aromatic side chains of the protein
into the DNA minor groove; for C.Esp1396l, the minor
groove of the DNA contracts due to the interactions of
amino acid residues of the protein with the phosphodiester
backbone of the DNA, which pulls the two strands
together across the minor groove.

Direct read-out

Direct readout is provided by the insertion of helix 3 of
C.Esp1396I into the major groove of DNA. However,
there is likely to be some plasticity in these interactions
to accommodate the lack of true symmetry between adja-
cent operators. Indeed, across species there is also sub-
stantial variation in C-box sequences, even when the
recognition helices of the C-proteins are identical. The
clearest interactions to the DNA that are visible at this
resolution are from the side chains of Arg35, and interac-
tions from Arg46 and Thr36 are also likely. Again, it is
notable that all three residues are highly conserved in this
family of C-proteins, although occasionally conservative
changes (Lys and Ser, respectively) are found at the latter
two sites (11).

The Arg35 guanidinium group (subunits A and D)
interacts with G3 of each DNA strand, each forming
two H bonds to the base (Figure 5D). These guanines
are strongly conserved across a wide variety of C-protein
binding sites (6,8), as is Arg35 in the recognition helix of
the C-protein (11). The adjacent base T2 is also highly
conserved, perhaps because of the very limited intra-
stand base stacking (but significant inter-strand stacking
of the purines) that is typical of TpG (= CpA) steps (37).
This allows the planar guanidinium group of Arg35 to
stack with the exposed face of the thymine base whilst
forming hydrogen bonds to the edge of G3 (Figure 9).

The symmetrically equivalent interactions from the
Arg35 side chains of subunits B and C, however, cannot
occur with this DNA sequence (or indeed any other) as a
guanine would be required at position 18 on both strands
(i.e. a GG base pair at the centre of the 35 bp sequence). In
fact, a T:A base pair is located at this site; moreover, this
T, together with the G on its 5 side, is very highly con-
served, suggesting that the GT might be essential for the
function of the genetic switch (13). We note that the side
chain of arginine is long and sufficiently flexible to make
alternative contacts in the major groove of the DNA, pos-
sibly to the O6 and N7 of G17 (Figure 5B). Indeed, a small
displacement and a rotation of the guanidinium group of
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Figure 9. Interaction of Arg35 of subunits A and D with conserved TG
(=CA) sequences. Inter-strand stacking of purines A34 and G3, allows
T2 to stack with the planar guanidinium group of Arg35, which also
hydrogen-bonds to G3 in the major groove.

Arg35 of subunit B would allow it to hydrogen bond
simultaneously with both the O4 of T18 and the O6 of
G17. Although the electron density map in this region is
not of sufficient clarity to be unambiguous, such an inter-
action could provide a plausible explanation for the high
conservation of the central GT. The equivalent interaction
from subunit C, however, cannot occur since the major
groove on the opposite strand is populated by amino
groups, rather than carbonyl groups. Instead, we propose
that the Arg35 side chain from subunit C contacts Glu25
of subunit B (Figure 5B), to bridge the two dimers and
stabilize the tetramer, rather than interacting with DNA
(as discussed below).

Stabilization of the repression complex

Repression of transcription requires the occupation of Og
by a C-protein dimer. Since the intrinsic binding of
C.Esp1396I to this site is weak, the ‘off switch’ is depen-
dent (at least in part) upon stabilizing the tetrameric com-
plex through energetically favourable interactions at the
dimer—dimer interface, resulting in binding of the second
dimer. However, there is very little contact between the
two dimers when bound to DNA, and there is no buried

surface area at the ‘interface’. In the crystal structure of
the complex, the only contact between dimers is between
Glu25 (subunit B) and Arg35 (subunit C). This electro-
static interaction between positive and negative amino
acid side chains of the ion pair contributes significantly
to the strength of the dimer—dimer interaction and,
together with conformational changes in the DNA
induced by binding of the first dimer to Oy, is a major
contribution to the observed cooperativity.

We have shown that Glu25 is important for coopera-
tivity in binding two consecutive C.Esp13961 dimers. The
equivalent acidic amino acid, Glu34, in A repressor is
essential for transcription activation through its interac-
tion with 6’ (Arg588) and the equivalent residue has been
suggested to play this role in activation of the C/R pro-
moter (11). We envisage that competition between the
Arg35 side chain of subunit C of C.Espl3961 and
Arg588 (or its equivalent) in the ¢’® subunit of RNA
polymerase for the negatively charged side chain of
Glu25 leads to competition for the -35 promoter site. It
is this competition that is primarily responsible for switch-
ing off transcription of the C/R genes at high concentra-
tions of C-protein.

Given the high level of sequence conservation between
the majority of C-proteins so far studied (8,11), we antici-
pate that our findings will be generally applicable to this
family of proteins (although there may be some subtle
variations in sequence recognition). The ‘spacer’ sequences
originally identified within C-protein binding sites (6,8)
are almost invariably Py-Pu-Py (usually TAT or CAT).
Moreover, these trinucleotide sequences are generally fol-
lowed by another purine, and all such tetranucleotide sites
(Py-Pu-Py-Pu) would be predicted to be bending sites (15),
even if they lacked the perfect symmetry of the TATA
sequences in the Espl13961 operators. Likewise, the GT
between operator sites is highly conserved, and is likely
to play a similar role in cooperative binding to that
we propose for C.Espl1396l, in which Arg35 plays a
crucial role.

Further understanding of the detailed molecular inter-
actions responsible for the specificity (and promiscuity) of
sequence recognition by C-proteins will require higher
resolution crystallographic studies of a variety of DNA
sequences, including smaller dimeric complexes, and
these are currently in progress. The current structure high-
lights for the first time the principal structural features
that underpin the genetic switch that regulates gene
expression in R-M systems, and provides a paradigm
for a new class of protein—-DNA complexes.

Accession code

Atomic coordinates and structure factor files have been
deposited in the Protein Data Bank with the accession
code 3CLC.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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