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Abstract: Emulsions are multiphasic systems composed of at least two immiscible phases. Emulsion
formulation can be made by numerous processes such as low-frequency ultrasounds, high-pressure
homogenization, microfluidization, as well as membrane emulsification. These processes often
need emulsifiers’ presence to help formulate emulsions and to stabilize them over time. However,
certain emulsifiers, especially chemical stabilizers, are less and less desired in products because of
their negative environment and health impacts. Thus, to avoid them, promising processes using
high-frequency ultrasounds were developed to formulate and stabilize emulsifier-free emulsions.
High-frequency ultrasounds are ultrasounds having frequency greater than 100 kHz. Until now,
emulsifier-free emulsions’ stability is not fully understood. Some authors suppose that stability is
obtained through hydroxide ions’ organization at the hydrophobic/water interfaces, which have been
mainly demonstrated by macroscopic studies. Whereas other authors, using microscopic studies, or
simulation studies, suppose that the hydrophobic/water interfaces would be rather stabilized thanks
to hydronium ions. These theories are discussed in this review.

Keywords: emulsifier-free emulsion; emulsification processes; 1–5 MHz ultrasounds; oil/water
interface; hydroxide ions adsorption

1. Introduction

Emulsions are commonly used in many fields, such as food, cosmetic, pharmaceutical,
agrochemical, paint, printing, as well as petroleum industries, and are thus used for drug
delivery, nanomaterial preparation, or chemical reaction media [1–4].

Emulsions are metastable colloidal systems which tend to separate in different phases
over time. Four main physicochemical mechanisms contribute, in combination or individu-
ally, to phase separation (Figure 1).

Gravitational separations, creaming, and sedimentation are reversible phenomena and
correspond to the rise or fall of droplets, respectively, depending on dispersed phase density.
Creaming and sedimentation velocities ν are determined by Stokes formula (Equation (1)):

ν =
2 g r2(ρ cont − ρdrop

)
9 ηcont

, (1)

where r, g, ρcont, ρdrop, and ηcont correspond to droplet radius, gravity acceleration, contin-
uous phase density, droplet density, and continuous phase viscosity, respectively. Thus,
to reduce these gravitational destabilizations, it is possible to reduce droplet size, reduce
difference density between two phases, or to increase the continuous phase viscosity [5].
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Flocculation is another reversible destabilization phenomenon, where droplets are gath-
ering to form flocs or aggregates, due to attractive interactions between them. Droplets
aggregation depends on surface electric charge, which is fluently determined by its ζ-
potential [5,6]. Electric charge on droplet surface is structured in an electrical double layer.
The first layer, called “Stern layer”, is constituted of a single ion layer which is immobile
at the interface. This layer is then surround by a diffuse layer, “Gouy layer”, constituted
of mobile ions [7]. To limit flocculation and to increase emulsions stabilization in the
long-term, the ζ-potential magnitude should be greater than 20 mV. This can be achieved
by using charged emulsifiers (as proteins or ionic surfactants) that promote electrostatic
repulsions between droplets. Steric repulsions, favored by uncharged macromolecules’
(such as polysaccharides or non-ionic surfactants) presence at the interface, can also help
to stabilize droplets and avoid flocculation [8]. Flocculation can then lead to coalescence,
an irreversible phenomenon. Coalescence corresponds to the merge of droplets leading to
bigger droplets formation until phase separation. The fourth destabilization mechanism
is Ostwald ripening, which consists of droplets growth like coalescence. However, in this
case, growth is due to the migration of dispersed phase molecules between droplets. This
transfer is caused by the slight solubility of the dispersed phase in the continuous phase,
which migrates between droplets. This phenomenon is governed by chemical potential
difference between droplets of different size. Indeed, due to Laplace pressure, chemical
potential of the dispersed phase is more important in smaller droplets than in larger ones,
causing a mass transfer from smaller droplets to larger ones [5,6,9].
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Figure 1. Schematic illustration of emulsions destabilization mechanisms.

To facilitate emulsions formulation, droplet size reduction, and slow their destabi-
lization, emulsifiers are currently used [4,10]. Emulsifiers are amphiphilic and contain
both hydrophilic groups and hydrophobic tails, such as polysorbates and sorbitan deriva-
tives [11] that are widely used in industries from petroleum to the cosmetic fields. Because
of their chemical origin, most of the stabilizers are not biodegradable and can persist in
the environment causing adverse effects on organisms [12–15]. Limiting stabilizers’ use
or replacing chemical stabilizers by green and natural biomolecules, such as glycolipids,
lipopeptides, as well as phospholipids, is challenging because it is difficult to obtain them
at the industrial scale [12]. Pickering emulsions formulation with natural particles [16–18],
as well as emulsifier-free emulsion formulation [2], i.e., emulsions formulated in absence of
any stabilizers, such as proteins, polysaccharides, lipid-derived molecules, particles [6,8]
represent other alternatives.
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Emulsification requires energy input. The processes usually used are high-speed
homogenizers, low-frequency ultrasounds generators, high-pressure homogenizers, or
microfluidizers [8]. The first part of this paper will focus on the methods enabling the
formulation of oil/water emulsions. In combination with current emulsification processes,
a new high-frequency ultrasound method will be described as an additional step to increase
the emulsions’ stability, without using a stabilizer [2,19,20]. However, the effect of high-
frequency ultrasounds on emulsions’ stability is for the moment not fully explained.

A first line of study consists in understanding how the oil/water interface is orga-
nized in absence of any kind of stabilizer. Some authors assume that stability would
be due to hydroxide ions’ (OH−) organization at the interfaces [21–26], whereas others
suppose that the hydrophobic/water interfaces would rather be stabilized by hydronium
ions (H3O+) [27–30]. Thus, the second objective of this paper will be to clarify these op-
posite views to understand how emulsifier-free emulsions are stabilized and then try to
understand the effect of high-frequency ultrasounds on emulsions’ stability.

2. Emulsification and Stabilization Processes
2.1. Main Emulsification Processes

In general, making an emulsion requires four elements: (i) an aqueous phase, (ii) an
oily phase, (iii) energy to deform droplets and break them down into smaller droplets,
and (iv) an emulsifier to stabilize the oil/water interface formed. The emulsifier also has
another role, which is to decrease interfacial tension. Physically, to break down droplets,
energy provided must be more important than Laplace pressure (PL), which corresponds
to the pressure difference between the concave and convex side of the curved interface.
Laplace pressure is given by Equation (2):

PL = γ (
1

R1
+

1
R2

), (2)

with γ the interfacial tension, and R1 and R2 the main curvature radii. Thus, by reducing
interfacial tension, Laplace pressure decreases and therefore energy required for emulsifica-
tion is less important [31].

Thus, emulsification can require high-energy or low-energy processes depending on
emulsion composition, and emulsifier nature and content. As usual emulsification methods
have already been studied and reviewed many times [6,8,32–37], we will briefly present
their main characteristics in this part.

2.1.1. High-Energy Emulsification Methods

High-energy emulsification methods are widely used in industry despite their cost.
The dissipated energy results in an efficient reduction of droplet size in emulsion but it can
also affect the thermolabile active ingredients and thus, required temperature-controlled
device [38].

High-Speed Homogenization

High-speed homogenization is a mechanical stirring method based on the rotor/stator
system (Figure 2A). Droplets’ breakage is due to inertia and shear force in turbulent flow.
The disc system (Figure 2B) is similar to the rotor/stator system and adapted to high
viscosity fluids and/or formulation with sensitive components.

These methods are generally used to produce macroemulsion, pre-emulsion, or premix,
before using other emulsification methods [34,39,40].



Foods 2022, 11, 2194 4 of 24

Foods 2022, 11, x FOR PEER REVIEW  4  of  24 
 

 

The disc system (Figure 2B) is similar to the rotor/stator system and adapted to high vis‐

cosity fluids and/or formulation with sensitive components. 

These methods are generally used to produce macroemulsion, pre‐emulsion, or pre‐

mix, before using other emulsification methods [34,39,40]. 

 

Figure 2. Schematic representation of (A) high‐speed homogenization and (B) disc system. 

Low‐Frequency Ultrasounds 

Ultrasounds are produced by piezoelectric transducers that convert electrical pulses into 

acoustic energy waves  (Figure 3). Low‐frequency ultrasounds, between 20 and 100 kHz, 

correspond to high energy from 10 to 1000 W/cm2 [41]. Acoustic waves induce cavitation 

phenomenon which produce gas bubbles. These bubbles grow under acoustic wave effect, 

oscillating between compression and rarefaction phases, until reaching a critical size where 

they collapse violently, causing high temperature and pressure generation in their local en‐

vironment (Figure 4). Thus, cavitation effect generates forces which break oil droplets into 

smaller ones [42]. 

 

Figure 3. Schematic representation of low‐frequency ultrasounds treatment. 

Figure 2. Schematic representation of (A) high-speed homogenization and (B) disc system.

Low-Frequency Ultrasounds

Ultrasounds are produced by piezoelectric transducers that convert electrical pulses
into acoustic energy waves (Figure 3). Low-frequency ultrasounds, between 20 and 100 kHz,
correspond to high energy from 10 to 1000 W/cm2 [41]. Acoustic waves induce cavitation
phenomenon which produce gas bubbles. These bubbles grow under acoustic wave effect,
oscillating between compression and rarefaction phases, until reaching a critical size where
they collapse violently, causing high temperature and pressure generation in their local
environment (Figure 4). Thus, cavitation effect generates forces which break oil droplets
into smaller ones [42].
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A recent publication aimed to describe the ultrasonic emulsification phenomenon [43].
When cavitation bubbles generated by acoustic waves collapse, a micro-jet is produced,
pushing water molecules into an oily phase and forming water-in-oil (W/O) emulsion.
Then, due to Rayleigh–Taylor instability, droplets containing W/O emulsion are pulled
apart from the oily phase into water phase. Under ultrasounds’ effect, these droplets are
broken into smaller droplets until oil-in-water (O/W) emulsion is formed (Figure 5) [43].
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Low-ultrasonic emulsification has several advantages such as giving small droplets,
low size polydispersity, and high ζ-potential value, resulting in the structural stability of
emulsion with time. However, the bubble collapse that is specific of this process produces
a lot of heat that can induce free radicals’ formation from water molecules and then
deleterious oxidation of emulsion components (Equation (3) [42].

H2O→ H• + OH• (3)

High-Pressure Homogenization

High-pressure homogenization (HPH) consists of applying high pressure to force the
passage of oily and aqueous phases in a premix, through an orifice between a valve seat
and a forcer (Figure 6).

During HPH treatment, two opposite mechanisms occur impacting oily droplet size.
First, droplets’ fragmentation is caused by the combination of (i) shear forces in the orifice,
or in orifice boundaries, (ii) cavitation forces, due to pressure difference when passing from
the inside to outside orifice, taking place in the orifice, and (iii) turbulent flow due to fluid
passage through the orifice. Secondly, collisions between droplets cause coalescence and
droplet enlargement. To promote fragmentation, it is necessary to use emulsifiers with a
high adsorption rate, or to increase number of passages through the valve.

This method gives droplets with a size ranging from 50 nm to 5 µm, depending on
emulsion composition and process conditions, such as temperature, pressure (from 50 to
500 MPa), cycles number, as well as narrow orifice geometry.
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Emulsification by HPH is a rapid process that can be carried out in continuous flow.
Cold HPH has the advantage to treat thermosensitive compounds. However, this expensive
process can only be used with medium and low viscosity emulsions and does not allow to
treat shear-sensitive compounds [34,44].

Microfluidization

Similar to HPH, microfluidization uses high pressures to force emulsion, or premix,
to pass through a narrow orifice, but in this case, emulsion is divided into two streams.
The two emulsion jets formed coming from two channels collide with each other in an
interaction chamber (Figure 7).
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The droplet size decrease is essentially due to shear, inertia, and cavitation forces,
which enable to obtain very fine droplets. Droplet size depends on pressure, cycle number,
and emulsifier concentration, and can be easily controlled.

Microfluidizer could produce narrower and smaller droplet size than HPH. However, this
process is difficult to use for large-scale production, and as HPH, is expensive [32,34,40,45].
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2.1.2. Low-Energy Emulsification Methods
Membrane and Microchannel Emulsifications

Membrane emulsification consists in forcing dispersed phase passage under pressure
through a membrane containing uniform pores, towards the continuous phase flowing
tangentially to the membrane (Figure 8).
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Membrane nature depends on emulsion type. O/W emulsions are emulsified with
hydrophilic membrane, whereas for W/O emulsions, membrane is hydrophobic, so that
the dispersed phase does not wet the membrane.

Pressure applied depends on membrane pore size, interfacial tension, and production
objectives. High pressures favor large droplets’ formation while low pressures decrease
production rate.

Even though this process needs energy input to form droplets, membrane emulsifica-
tion requires much less energy than other processes mentioned above, and size droplets’
decrease is not due to shear. Thus, membrane emulsification can be used to treat sensi-
tive molecules.

Microchannel emulsification is a similar process to membrane emulsification (Figure 8),
but dispersed phase passage does not occur through a membrane, but instead through
microchannels fabricated by photolithography.

The main advantages of these methods are low energy consumption and droplet
formation with a narrow size distribution, which limits Ostwald ripening and thus in-
creases emulsion stability. However, droplet size is generally larger than with high-energy
emulsification methods, and production rate is much lower [40,46–48].

Other Low-Energy Emulsification Methods

Other low-energy emulsification methods can be used, such as phase inversion or
spontaneous emulsification. However, these methods are specific, require a lot of emulsi-
fiers (or even emulsifier and co-emulsifier combination), and cannot be used for large scale
production [45].

Phase inversion corresponds to emulsion structure inversion: continuous phase be-
comes dispersed phase and conversely. This inversion is due to the modification of various
parameters such as temperature, electrolytes concentration, oil/water ratio, or even pres-
sure. This method enables to produce concentrated and monodisperse emulsions [38,46].

Spontaneous emulsification occurs when interfacial tension between two immiscible
liquids is very low. A weak energy input can enable to accelerate emulsification [46]. A
specific case of spontaneous emulsification without emulsifier or mechanical agitation,
called Ouzo effect, can be observed as result of change in the components’ proportion
leading to oil solubility modification. For example, O/W emulsion can be formed by
adding water to oil and solvent solution [49].

2.2. Specific Case of High-Frequency Ultrasounds Process
2.2.1. Definition and Generalities

High-frequency ultrasounds correspond to a frequency range greater than 100 kHz and
have a low energy, below 1 W/cm2 [41]. In this ultrasound range, cavitation phenomena



Foods 2022, 11, 2194 8 of 24

are less important, limiting bubbles collapse consequences. Indeed, when ultrasound
frequency increases, cavitation bubbles size decreases because high frequencies reduce time
and space for bubbles’ growth. Thus, since cavitation bubbles are smaller, energy released
when they implode is weaker [50,51].

2.2.2. Emulsification and Stabilization by High-Frequency Ultrasounds

Emulsification by high-frequency ultrasounds is a method used to produce emulsifier-
free emulsions. Two types of high-frequency ultrasounds emulsification can be used: (i)
tandem treatment consisting in sequentially irradiating oil/water mixes with different
frequencies ultrasounds, ranging from the lowest to the highest frequencies (Table 1) and
(ii) single treatment performed with ultrasounds at a specific high-frequency (Table 2).

Table 1. Characteristics of emulsions produced by tandem high-frequency ultrasounds treatment.

Oil (Concentration) Ultrasounds Frequencies (Treatment Time) Mean Droplet
Size (in nm) References

Oleic acid (1.4% w/v)

40 kHz (8 min) 232

[52]

200 kHz (8 min) ∼100

1 MHz (8 min) ∼350

40 kHz (8 min) + 200 kHz (8 min) ∼100

40 kHz (8 min) + 200 kHz (8 min) + 1 MHz (8 min) 140

3,4-Ethylenedioxythiophene (0.3% w/v)

20 kHz (5 min) 351

[19,53,54]20 kHz (5 min) + 1.6 MHz (5 min) 208

20 kHz (5 min) + 1.6 MHz (5 min) + 2.4 MHz (5 min) 82

Oleic acid (Volume fraction: 8.0 × 10−4)

20 kHz (1 min) ∼100

[55]

20 kHz (1 min) + 0.5 MHz (3 min) ∼90

20 kHz (1 min) + 0.5 MHz (3 min) + 1.6 MHz (3 min)

∼7020 kHz (1 min) + 0.5 MHz (3 min) + 1.6 MHz (3 min) + 2.4 MHz (3 min)

20 kHz (1 min) + 0.5 MHZ (3 min) + 1.6 MHz (3 min) + 2.4 MHz (3 min) +
4.8 MHz (3 min)

Oleic acid (Volume fraction: 6.0 × 10−3) ∼110

Oleic acid (Volume fraction: 3.0 × 10−2) ∼120

Chloroform (Volume fraction: 2.0 × 10−2)

20 kHz 20,000

20 kHz + 0.5 MHZ <1000

20 kHz + 0.5 MHZ + 1.6 MHz + 2.4 MHz + 4.8 MHz -

Methyl methacrylate

20 kHz (8 min) 220

[56]
20 kHz (8 min) + 500 kHz (10 min) 112

20 kHz (8 min) + 500 kHz (10 min) + 1.6 MHz (10 min) 51

20 kHz (8 min) + 500 kHz (10 min) + 1.6 MHz (10 min) + 2.4 MHz (10 min) 23

W/O emulsion: potassium carbonate (10% v/v) in
chloroform

20 kHz (10 min) + 1.6 MHz (10 min) + 2.4 MHz (10 min) 436
[57]

Two cycles: 20 kHz (10 min) + 1.6 MHz (10 min) + 2.4 MHz (10 min) 112

Methyl methacrylate

20 kHz (5 min) 103

[58]
20 kHz (5 min) + 500 kHz (10 min) 87

20 kHz (5 min) + 500 kHz (10 min) + 1.6 MHz (10 min) 61

20 kHz (5 min) + 500 kHz (10 min) + 1.6 MHz (10 min) + 2.4 MHz (10 min) 42
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Table 1. Cont.

Oil (Concentration) Ultrasounds Frequencies (Treatment Time) Mean Droplet
Size (in nm) References

Perfluoromethyl-cyclohexane (2.4% v/v)

20 kHz (7 min) 175–311

[59]

20 kHz (7 min) + 500 kHz (15 min) 224–430

20 kHz (7 min) + 500 kHz (15 min) + 1.6 MHz (15 min) 342

20 kHz (7 min) + 500 kHz (15 min) + 1.6 MHz (15 min) + 2.4 MHz (15 min) 306

20 kHz (7 min) + 500 kHz (15 min) + 1.6 MHz (15 min) + 2.4 MHz (15
min) + 5 MHz (15 min) 158

Allyltriethylsilane (3.75% w/v)

20 kHz (5 min) 1202

[60]20 kHz (5 min) + 1.6 MHz (5 min) 132

20 kHz (5 min) + 1.6 MHz (5 min) + 2.4 MHz (5 min) 59

Table 2. Characteristics of emulsions produced by single high-frequency ultrasounds treatment.

Oil (Concentration) Pre-Emulsification Ultrasounds Frequencies
and Treatment Time

Mean Droplet
Size (in nm) References

Sunflower oil
(5; 10 and 15% v/v) - 1.7 MHz (10 h) ∼1000 [20]

Toluene (1% v/v)Emulsifier presence:
Tween 20 (0.1% w/w)

Low-frequency ultrasounds (20 kHz,
4 min)

or high-speed homogenizer
(6000 rpm—10 min) or magnetic stirrer

(1000 rpm—15 min)

Indirect irradiation (10 min)
with 22.8 kHz; 127 kHz;
490 kHz; 1.64 MHz or

4.6 MHz

From 70 to 400 [61]

Miglyol 812: Caprylic/capric
triglycerides (10% v/v) High-speed homogenization (5 min) 1.7 MHz (1 h) 220 [62]

Sunflower oil (5% v/v) High-speed homogenization (5 min) 1.7 MHz (1 h) 154 [63]

Paraffin oil (8.2% w/w) + oleic acid (0.09%
w/w) High-speed homogenization (5 min) 1.7 MHz (1 h) 1920 [64]

Kamogawa et al. [52] were one of the first authors to use tandem emulsification. They
produced oleic acid/water emulsion by low-frequency ultrasounds (40 kHz for 8 min),
followed by high-frequency ultrasounds (0.2 MHz or 0.2 MHz/1 MHz, for 8 min). They
showed that mean droplet size was smaller when emulsion was treated by tandem rather
than by single low frequency ultrasounds (100 nm and 140 nm for both tandem treatments
and 232 nm for single treatment, respectively). In addition, droplet monodispersity and
emulsion stability were improved when emulsions were treated by tandem emulsification.
Moreover, the authors showed that single high-frequency treatment was not sufficient to
emulsify oleic acid/water mix. Indeed, they explained that high-frequency ultrasounds
generated weak cavitation and then did not reduce droplet size sufficiently to stabilize
emulsion. Single high ultrasound treatment, at 1 MHz, permitted to emulsify only 4%
(w/w) oleic acid, whereas up to 80% (w/w) were incorporated with tandem treatment
(40 kHz−0.2 MHz). Thus, high-frequency ultrasounds should be used only to reduce and
stabilize pre-formed droplets [52].

Yasuda et al. [55] also formulated oleic acid/water emulsions by tandem emulsification,
but using five frequencies: 20 kHz, 0.5 MHz, 1.6 MHz, 2.4 MHz, and 4.8 MHz. Droplet size
decreased and emulsion stability increased with increasing sequential treatment. However,
oil volume fraction had an impact on emulsification and stability. Emulsions produced
sequentially with the five frequencies and with oil volume fraction of 8.0 × 10−4 (0.08%)
were still stable after 7 months, whereas if oil volume fraction increased, up to 0.03 (3%),
emulsions were less stable. This was probably due to insufficient reduction in droplet size
and decrease in distance between droplets for higher oil volume fraction [55].

Nakabayashi et al. [53] prepared 3,4-ethylenedioxythiophene/water emulsion by tan-
dem treatment with 20 kHz, 1.6 MHz, and 2.4 MHz ultrasounds. After 5 min of each
treatment, they obtained transparent emulsion with droplets smaller than 100 nm. In
addition, during this sequential ultrasounds treatment from low to high ultrasounds fre-
quencies (20 kHz; 1.6 MHz; 2.4 MHz), ζ-potential decreased regularly (−29 mV; −37 mV;
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and −42 mV, respectively). This would be due to OH− adsorption at the oil/water inter-
face [53].

The works cited above concerned emulsions with low oil volume fraction. Kaci et al. [20]
studied vegetable oil/water emulsions with higher oil volume fractions (5–15%) treated
by single high-frequency ultrasounds (1.7 MHz), without pre-emulsification, and longer
treatment time, up to 10 hours. In these conditions, high-frequency ultrasounds could
emulsify oil/water mix, but droplet size was large, about 1 µm [20], compared to nanosized
droplet obtained by tandem emulsification (Table 1). The pre-emulsification by high-speed
homogenization followed by high-frequency ultrasounds treatment (1.7 MHz for 1 h) gave
droplet size much smaller, between 150 and 250 nm, but still with the presence of larger
droplets, approximately 2 µm [62,63]. When emulsions were formulated with 5% sunflower
oil and treated by high-frequency ultrasounds at 1.7 MHz, better stability was obtained than
emulsions formulated by low-frequency ultrasounds (40 kHz) or by HPH, at 1500 bar. The
improvement of emulsion stability treated by high-frequency ultrasounds could be due to
a majored population of nanoscale sized droplets compared to low-frequency ultrasounds
or HPH emulsions [63]. In addition to breaking up droplets, high-frequency ultrasounds
would make droplets surface rather hydrophilic, which would also participate in their
stabilization [52].

In addition to the O/W emulsions presented above, W/O emulsions can also be
obtained by high-frequency ultrasounds. Nakabayashi et al. [57] produced W/O emul-
sion with potassium carbonate solution as dispersed phase (10%—v/v) and chloroform as
continuous phase. Treating emulsions by tandem emulsification (20 kHz, 1.6 MHz, and
2.4 MHz ultrasounds) gave small droplets of few hundred nanometers. It was shown that
droplet size was smaller when this tandem emulsification was performed twice (112 nm)
than once (436 nm). W/O emulsions formulated by two tandem ultrasounds cycles were
stable for more than 6 months [57].

2.2.3. High-Frequency Ultrasounds Emulsification Uses

Emulsions formulated by high-frequency ultrasounds are stable without emulsifier,
which could allow to use them in numerous potential applications.

In the chemistry field, emulsifier-free emulsions formulated by high-frequency ultra-
sounds can be used to synthetize polymer nanoparticles [56,58,59], to produce conductive
polymer films or coatings [53,54] or to perform chemical reactions [57,60].

Emulsifier-free emulsions formulated by high-frequency ultrasounds can also be used
in the cosmetic and pharmaceutic fields to encapsulate and vectorize biomolecules. For
example, when Coenzym-Q10 is vectorized into emulsifier-free emulsion and treated
by high-frequency ultrasounds, it exhibits better activity than when it is vectorized into
emulsion containing emulsifiers and formulated by traditional methods such as low-
frequency ultrasounds or HPH [62]. Another example is biomolecules delivery, such as
caffeine. When this biomolecule was introduced to emulsions and treated by high-frequency
ultrasounds, its diffusion rate into skin was not affected by treatment, compared to reference
emulsion formulated by low-frequency ultrasounds and containing emulsifiers. This study
showed that high-frequency ultrasounds treatment can decrease active ingredients content
in cosmetic formulations without affecting their effectiveness [64].

Thus, the high-frequency ultrasounds process is an emulsification method with poten-
tial opportunities in many areas, such as cosmetic and pharmaceutical industries, but also
in the synthetic chemistry field.

2.2.4. High-Frequency Ultrasounds Emulsification Drawbacks

Despite its promising applications, high-frequency ultrasounds use could cause dam-
age to treated products.

It has been shown that high-frequency ultrasounds could produce free radicals such
as hydroxyl radical (OH•) [65] or singlet oxygen (1O2) [66]. OH• oxidizes lipids by a chain
mechanism, called auto-oxidation, which consists of three steps: initiation, propagation,
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and termination. During this mechanism, one radical can oxidize hundreds of lipids.
1O2 is a reactive oxygen species which can oxidize lipids by a non-radical mechanism.
1O2 does not react with double bound by a chain mechanism, but by a stoichiometric
reaction [67]. Thus, OH• and 1O2 presence in emulsions can cause lipid degradation
and thus impacts products’ chemical, physical, and sensory properties, affecting their
quality and safety [68,69]. It was shown, by Fourier transform infrared spectroscopy (FTIR)
measurements, that oil treated by high-frequency ultrasounds was not degraded after
treatment. However, after 30 days of storage at 37 ◦C, oil was oxidized [63]. These results
confirmed that oil was not degraded during emulsification, but this did not exclude reactive
oxygen species production during treatment, which then oxidized oil during storage.

Another drawback of high-frequency treatment is a possible phase separation during
storage. Indeed, experimental and modeling studies showed that ultrasounds between
1 and 2 MHz could favor creaming and droplets coalescence [70–74]. This coalescence
would be due to secondary acoustic forces which induce attraction between droplets [75].
Difference between droplets formation and droplets coalescence could come from power
and/or time of treatment.

2.3. Conclusion on Emulsification Processes

Emulsification can be carried out by various processes. Each process presents advan-
tages and drawbacks, and depending on applications, not all processes can be used.

A recent process, using high-frequency ultrasounds, seems promising and does not
require stabilizer to obtain stable emulsion, which is a significant advantage, in a context
where manufacturers try to reduce additives from their products. However, high-frequency
ultrasounds’ effect on emulsions stabilization is not yet explained. Thus, this process
requires more research to better understand its effects and the mechanisms by which
stabilization is obtained. This method allows to produce emulsions in the absence of any
kind of stabilizer. The next part of the present review consists in understanding how the
emulsifier-free interface is organized in order to try to explain high-frequency ultrasounds’
effect on the interface.

3. Emulsifier-Free Oil/Water Interface Organization

An interface is defined as “a narrow region that separates two phases, which could be a
gas and a liquid, a gas and a solid, two immiscible liquids, a liquid and a solid or two solids.
The two phases may consist of different kinds of molecules (e.g., oil and water) or different
physical states of the same kind of molecule (e.g., liquid water and solid ice).” [76]. Based
on surface charge and ζ-potential studies (see Section 3.1.1), the oil/water and air/water
interfaces are comparable because water behaves similarly with low dielectric hydrophobic
surfaces, such as oil and air [25,77–79]. Studies bearing on the oil/water interface and on
the air/water interface are presented here to try to understand the interfacial structure of
emulsifier-free emulsions because of the lack of results on the interfaces of emulsion O/W
and W/O.

The first studies about the structure of emulsifier-free hydrophobic/water interfaces,
also called “pristine hydrophobic/water interfaces” began more than 150 years ago with
air/water interface studies. In 1861, Quincke showed by electrophoresis measurement
that air bubbles were negatively charged due to their migration toward the positive elec-
trode [80]. Oil/water interface studies are more recent. In 1938, Carruthers was one of the
first to demonstrate that oil droplets were also negatively charged [81].

Since then, many authors tried to understand the hydrophobic/water interface struc-
tural organization thanks to different macroscopic and microscopic measurement methods,
but also thanks to simulation methods. Some of them confirmed that the interfaces were
negatively charged and would be basically due to hydroxide ions adsorption at the inter-
face [23–25], but others showed that the hydrophobic/water interface would be rather acid
due to hydronium ions’ position at the interface [28,29] (Table 3).
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Table 3. Interfacial organization hypotheses defined from different experimental methods and
interfaces studied.

Interface Studied Methods
Hypotheses

OH− Adsorption H3O+ Adsorption OH− and H3O+ Adsorption Other Hypotheses

Oil/Water

Surface charge [21–24,77,81–84] - [25,77] [85,86]

Spectroscopy [26,87] - [88,89] [85,89–91]

Simulation - - - [92,93]

Surface tension - - - [94]

Air/Water

Surface charge [77,80,95,96] - [77,97,98] -

Spectroscopy [99–101] [27,29,102–105] [106] [100]

Simulation [101,107–112] [28–30,113–117] [28,112,118–121] [93,112,122]

Surface tension [108,109] [30] [120,123] -

3.1. First Hypothesis: Hydroxide Ions Adsorption at Interface
3.1.1. Macroscopic Measurements

The first macroscopic analyses to study hydrophobic interfaces concerned electrophoretic
mobilities and ζ-potential measurements to determine droplets surface charge. Thus,
numerous authors showed that oil droplets, or air bubbles, dispersed in the aqueous phase
had a negative surface charge [21–25,77,81,84,95,96].

These authors showed a high dependence between surface charge and pH. For exam-
ple, Carruthers [81] studied the electrophoretic mobility of different organic substances
(n-octadecane, octadecene, undecyl and octyl alcohols, halogenated octanol derivatives, as
well as ethyl laurate) in the form of droplets dispersed in water containing 0.01 M NaCl for
pH ranging from 2 to 12. The droplets were positively charged as they migrated towards the
cathode, at pH below 2.5–3. Above these pH values, droplets were negatively charged and
electrophoretic mobility towards the anode increased until a maximal value at pH 8–10 [81].
Similarly, strong dependence between ζ-potential and pH were obtained with other oils
and alkanes, such as xylene, dodecane, hexadecane, or perfluoromethyldecalin [23,84]. For
alkanes, it was demonstrated that ζ-potential were chain length-dependent. For alkanes
containing 6, 7, or 8 carbon atoms, the ζ-potential-zeta decrease with pH increase from 6.5
to 11 was twice less important than with alkanes containing 9 to 16 carbon atoms. This
difference might be explained by the higher solubility in water of short alkanes [84].

Due to the strong dependence between electrophoretic mobility (or ζ-potential) and
pH, Dickinson [21] made the hypothesis that the origin of droplets’ negative charge would
be due to OH− adsorption at the interface. This hypothesis was approved by Beattie’s
team using pH-stat experiments, who showed that hexadecane/water emulsion pH de-
creased during emulsification. The authors added hydroxide ions to maintain a constant
pH value. Moreover, they observed a linear correlation between the amount of hydroxide
ion added and the increase of surface area created during emulsification. Thus, they con-
cluded that OH− adsorbed at the interface stabilized emulsions. From these experiments,
they determined that surface-charge density at the interface was comprised from −5 to
−7 µC/cm2, which corresponds to 0.31 unit charges per 100 Å2. In other words, at the
oil/water interface, one OH− would be present on every 3 nm2 [24,25,82].

Dickinson proposed two possible mechanisms to explain hydroxide ions adsorption
at the interface: (i) OH− adsorption from the aqueous phase depends on its pH value, and
reaches a maximum at pH 9, due to the saturation of the interfacial surface; (ii) adsorption
of a unimolecular layer of water molecules at the oil surface. In this last hypothesis, some
of the water molecules at the interface would ionize leading to the partition of hydronium
ions towards the bulk, while hydroxyl ions would adsorb at the interface. This ionization
would depend on bulk pH: when pH increases, ionization increases too, thus, the number
of OH− adsorbed increases. Dickinson proposed that those mechanisms could take place
individually or in combination [21]. More recently, researchers supposed water ionization
at the interface would be due to electric field gradient presence, via the second Wien effect.
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Indeed, the specific orientation of H2O molecules, where hydrogen atoms point towards
the phase with lower dielectric constant, would generate an electric field, favoring water
autolysis (Equation (4)):

2 H2O ↔ H3O++OH− (4)

The water dissociation constant (pKw) at the droplet surface is about 8, against 14
in bulk. Thus, water autodissociation would be 106 times more important at the surface,
than in bulk. On the other hand, electric field gradient at the interface would favor OH−

adsorption and protons repulsion [78,82,91,95,124–126].
After Dickinson, other authors provided more details about the mechanism explaining

why OH− are adsorbed at the interface. This phenomenon would be due to the fact that
hydroxide ions are able to reduce water dielectric constant and dipolar fluctuations with
bulk H2O molecules, causing Hamaker-like force and thus attracting OH− at the interface,
where dipole moment fluctuations are lower than in bulk water [77,109].

3.1.2. Spectroscopic and Simulation Studies on Interfaces

Only few methods at the microscopic scale allow to study interface organization
due to the difficulty to distinguish the ionic species present at the interface and those
in the bulk phase. However, two second order nonlinear spectroscopic techniques (sum
frequency generation (SFG) and second-harmonic generation (SHG) methods) can probe
the interfacial region [106,127]. These spectroscopic methods use two pulsed laser beams
which interact coherently in space and time. Emitted photons own a frequency (řSFG
or řSHG) corresponding to the sum of the two incident frequencies. SFG spectroscopy
uses an infrared (IR) beam and an UV/Visible (UV/Vis) beam, thus řSFG = řIR + řUV/Vis,
whereas for SHG spectroscopy, the two beams are in the UV/Visible domain, and so
řSHG = 2řUV/Vis [128–130].

SFG coupled with isotopic dilution experiments showed emerging hydroxide ions
at the interface, but this phenomenon was only observed at pH above 13 [102]. Similarly,
Tian’s team used phase-sensitive SFG method and showed that at the water/vapor inter-
face, OH− accumulated in 1.2 M NaOH solution [106]. Even if no signal proved OH−

adsorption at the interface, in pH range 2–13, that does not necessarily mean that OH−

does not adsorb at the interface, but just that its spectroscopic signal is too weak to be
observed [77]. Regarding the oil/water interface, phase-sensitive SFG showed, at pH above
3, that OH− accumulated at the octadecyltrichlorosilane/water interface [88] and at the
hexadecanol/water interface [89].

Second harmonic generation spectroscopy also showed that OH− accumulate at the
hexadecane/water interface and that OH− adsorption depended on pH (the higher pH,
the higher second harmonic signal intensity). Moreover, it has been shown that negative
charges at the interface could not be due to impurities, because signal corresponding to
OH− accumulation was the same in the presence or absence of impurities [26]. Another
study showed that hydroxide ions adsorption at the hexadecane/water interface saturated
at a relatively low alkali concentration (almost 1 mM), which consolidates the hydroxide
ions specific affinity at the oil/water interface hypothesis [87].

OH− ions adsorption at the air/water interface was also shown by fluorescent spec-
troscopy with specific fluorescent dyes use, i.e., n-decylfluorescein and n-decyleosin. After
demonstrating that dyes were most likely located at the air/water interface, the authors
showed that above pH 3, dyes were negatively charged, which demonstrated OH− are
adsorbed at the interface [99].

Several simulation studies alone or combined with experimental studies showed that hy-
droxide ions are adsorbed at the hydrophobic medium/water interface [101,107,111,112,121].
According to quantum mechanical calculations, gaseous carboxylic acids deprotonation
at the interface would be inhibited by a kinetic barrier, unless OH− would be present.
Thus, by demonstrating deprotonated acids’ presence at the interface by mass spectrometry,
Mishra et al. proposed the OH− presence at the hydrophobic interface. Moreover, they
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showed that isoelectric point was near pH 3, which is coherent with oil droplet and air
bubbles ζ-potential measurements [111].

Recently, the combination of an experimental study by SFG and a theoretical study by
ab initio molecular dynamics (AIMD) simulations confirmed hydroxide ions accumulate at
the hexane gas/water interface. SFG measurements had even enabled to link hexane cover-
age and OH− surface density, where five adsorbed hexane molecules adsorbed one OH−.
AIMD simulations showed that adsorbed hexane molecules formed an interfacial structure
with an H-bonding network of water, which decreased OH− mobility and suppressed OH−

diffusion from the interface to the bulk so that OH− accumulated at the interface. The
authors suggested that the hydrophobic hydrocarbons/water interfaces are basic [101].

Recent calculation studies of adsorption energies of OH− and H3O+ at the air/water
interface showed that OH− adsorption is energetically favorable, whereas H3O+ adsorption
is unfavorable. HCO3

− adsorption would be also favorable, but to a lesser extent than
OH− [112].

All these studies tend to validate the OH− adsorption phenomenon at the interface.

3.1.3. Other Origins of the Negative Charge

Other hypotheses about negative charge of droplets or bubbles were tested. First,
authors thought anions, other than OH−, adsorbed at the interface. Marinova et al. showed
that Cl− adsorption at the interface cannot explain ζ-potential results obtained, thus rein-
forcing the OH− ions adsorption hypothesis [23]. Beattie’s group showed that the addition
of Cl−, I−, ClO4

−, or dipolar anions, such as SCN−, IO3
− and CH3COO−, in hexade-

cane/water emulsions did not impact the dependence between ζ-potential and pH. Thus,
these experiments showed that preferential OH− adsorption at the interface was not due to
dipole-dipole forces nor electrostatic attraction, but was specific to hydroxide ions [24,82].
In hexadecane/water emulsions, Franks et al. [83] added different anions (Cl−, Br−, I−,
F−, ClO4

−, or IO3
−) that have different polarizability and, according to lyotropic series,

different hydration enthalpy. The authors showed that neither hydration enthalpy nor
polarizability had an effect on the ζ-potential of hexadecane droplets in water. They then
concluded that another property of hydroxide ions would be at the origin of their strong
adsorption at the interface and thus supposed that it would be due to hydrogen-bonding
interactions with water molecules at the interface [83]. A more recent study showed that
OH− would not be the only ion to accumulate at the interface. Indeed, according to phase-
sensitive SFG measurements, other ions, such as I−, Cl−, H3O+, as well as Na+, could
accumulate at the alcohol/water interface, but OH− was the ion with highest affinity [89].

Another hypothesis about the negative charge of droplets and bubbles would be
negative adsorption or depletion, of cations, mostly hydronium ions. However, some
authors showed that this hypothesis was unrealistic by calculating the depletion layer
thickness [23], the hydronium and hydroxide concentrations [125], as well as surface
potential [131].

To explain why negative charge is found at the interfaces, some authors proposed
that this would be due to HCO3

− and CO3
2− ions coming from air CO2 dissolution [91,94].

Experiments realized under N2 with various content of Na2CO3 were not conclusive [23,24].
However, recently, by using the modified Poisson-Boltzmann equation, Iyota and Krastev
showed that negative surface charge would not only be due to hydroxide ions, but also
due to CO2 derived ions, such as HCO3

− and CO3
2−, and also Cl− [100].

Negative charge could be due to the long-range orientation of water dipoles at the
interface, but experiments using chaotropic agent urea, that can destroy molecular network
in the bulk, showed electrostatic potential did not change in absence or presence of urea [23].

Recently, other hypotheses about negative charge surface were analyzed. State-of-
the-art linear scaling density functional theory use showed negative charge would be due
to charge transfer, and not negative ions adsorption. Indeed, at the oil/water interface,
a charge transfer from water molecules to oil molecules would cause a negative charge
of these latter molecules [93]. Similar results were obtained for the air/liquid [122] and
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solid/liquid interfaces. In this last case, a hybrid model, called Wang’s hybrid electric
double layer model, was developed. A first step would consist of electron transfer at the
surface, followed by a second step where free ions were attracted to the electrified solid
surface. Simultaneously, water ionization reactions should occur at the surface. After losing
an electron, H2O molecule becomes a water cation H2O+ with a very short lifetime and
combines rapidly with another H2O molecule according to Equation (5), where ion and
radical formed would enable electric double layer formation:

H2O++H2O → H3O++OH. (5)

This hybrid model described for the solid/liquid interface might also correspond to
the liquid/liquid interface [132,133].

3.2. Second Hypothesis: Hydronium Ions Adsorption at Interface

Surface tension measurement is an indirect method to determine physical ion adsorp-
tion at the interfaces. According to Gibbs adsorption equation, ions decreasing surface
tension are attracted toward the interface, whereas ions increasing surface tension are
repelled from the interface. Thus, according to surface tension measurements from aque-
ous electrolyte solution, H3O+ would be adsorbed at the interface, whereas OH− would
be repelled from the interface [28–30,134]. However, these conclusions could be invalid
because Gibbs isotherm used did not consider cation number changes. When these modifi-
cations are considered, OH− ions adsorption at the interface led to surface tension almost
independent of pH, for pH values comprising between 1 and 13, unless other cations than
H3O+ were present. Thus, by applying the corrected Gibbs isotherm, experimental surface
tension data showed that OH− ions adsorbed at the interface, and more precisely, about
0.7–1 nm below the surface [108,123].

Another study, combining surface tension measurements and a thermodynamic model-
based Gibbs concept showed that OH− and H3O+ had a greater affinity for the interface
than for the bulk, but OH− affinity would be more important than that of H3O+ [120].

Several spectroscopic methods used to study and understand interfacial organization
showed that hydroxide ions would not be adsorbed at the interface, but that it would rather
be hydronium ions.

SFG spectroscopy [103] combined with isotopic dilution experiments [102] brought
out that hydronium ions, Zundel (H5O2

+) and Eigen (H3O+•(H2O)3) forms, could be
adsorbed at the air/water interface. It is important to note that, Eigen form was observed
only in SFG spectroscopy combined with isotopic dilution experiments [102]. However,
all these observations were only made at low pH (below pH 2), which were coherent
with ζ-potential measurements defining an isoelectric point around pH 2–4 [25]. More
recently, phase sensitive SFG spectroscopy was used to demonstrate H3O+ adsorption at
the air/water interface. Authors also brought out differences in pH between the surface and
bulk, which was of −0.65 (+/−0.14) pH unit [105]. However, like for previous experiments,
this study was conducted in acidic conditions, which does not provide any proof of H3O+

presence at the interface when pH is superior to the isoelectric point.
By using SHG method, Petersen and Saykally demonstrated an increase H3O+ con-

centration at the liquid/water surface, but that was shown by indirect method. They
observed an increase iodide concentration at the hydriodic acid solution surface, which
would be an indicator of an increased hydronium concentration, according to theoretical
studies [27]. Later, these same authors showed, from SHG measurements and Langmuir
adsorption model, that hydroxide ions would be repelled from the surface. This study was
conducted with basic solutions having a pH range from 9 to 14 (potassium and sodium
hydroxide solutions). However, a weak OH− adsorption would not be rejected, due to
possible experimental uncertainty [104].

Jungwirth’s team used a linear surface selective spectroscopic method, synchrotron
photoelectron spectroscopy (PS), and molecular dynamics simulations to study the interface
between vapor and aqueous basic solutions. They showed that OH− were “weakly repelled
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or at best very weakly attracted to the surface” [29]. An uncertainty therefore seems to
exist as to OH− adsorption. According to Beattie, these results would be due to a lack
of depth of the spectroscopic probe used which probed only the 1 to 3 first water layers,
whereas OH− would be positioned deeper. With a more penetrating probe, more OH− were
highlighted. That would explain why these ions are not observed with some spectroscopic
methods [135]. However, according to Jungwirth’s team, OH− layer present at one or
several nanometers from the surface would be observable if it was well present. As it is not
the case, that confirmed OH− would not be adsorbed at the interface [136]. Nevertheless,
PS experiments duration would be too short to obtain surface equilibrium. That is another
experimental bias explaining why OH− would not be observable [135].

Simulation studies showed also that hydronium ions would be adsorbed at the inter-
face [28,113] and hydroxide ions would be even repelled from the interface [30,115–117].
The interface would be thus acidic with a surface pH value of 4.8 [114]. However, using first-
principles molecular dynamics simulations, Mundy et al. showed that H3O+ and H5O2

+

ions adsorption would be less important than predicted previously by Buch et al. [114] and
it might even be OH− presence at the air/water interface [110]. Later, this same team’s
research suggested that both hydronium and hydroxide ions were present at the air/water
interface [119].

3.3. Other Hypotaheses
3.3.1. No Charge at Interface

Some authors thought the interface would be not charged [85,92,137]. Thus, negative
ζ-potential would be due to stabilizer impurities presence, but this hypothesis was ruled
out by purifying several times materials used to formulate emulsions, verifying oil/water
interfacial tension, studying oil purity by UV and IR spectroscopy measurements, and
analyzing results reproducibility, which could not have been obtained with impurities
noncontrolled traces [23]. However, Roger and Cabane thought that negative charge would
be due to fatty acid accumulation at the oil/water interface, which have stabilizer properties.
Thus, OH− added during emulsification would react with fatty acids, and not adsorbed at
the interface [86,137]. Nevertheless, the comparison between emulsions formulated with
purified or unpurified oils showed it was necessary to add more hydroxide ions to maintain
pH during emulsification with unpurified oil than with purified oil. That confirmed OH−

reacted with fatty acids, but it was always necessary to add OH− during emulsification
with purified oil, confirming OH− adsorbed at the interface [138]. On the other hand,
spectroscopic measurements confirmed carboxylic acid absence at the interface and thus
surface charge would be due to oil/water interface property [139].

A molecular dynamics simulation study reproduced in the presence of an electric field,
without any ion. This study showed that uncharged oil droplets dispersed in water can
have negative electrophoretic mobility, and thus mobility electrophoretic would not reflect
the charge of oil droplets [92]. However, it was then shown, by calculation, that oil droplets,
and more widely hydrophobic particles, had negative electrophoretic mobility only when
they were negatively charged [140].

More recently, non-charged emulsions would have been formulated by using rigorous
cleaning procedures and specific solvent storage conditions. SFG spectroscopic study
confirmed clean interface formation. These emulsions were stable during several days [85].
However, it was then shown that uncharged n-hexadecane droplets [141] and uncharged
bubbles [142] dispersed in water were unstable. Indeed, electrophoretic mobility must
be sufficient to avoid droplets coalescence, thanks to electrostatic repulsions. Moreover,
specific cleaning procedures would not have any effect on oil droplets ζ-potential [141].

3.3.2. H3O+ and OH− Presence

Numerous authors thought there is not only OH−, nor only H3O+, but both ions at
the interface to ensure electroneutrality of the double layer [25,77,98,112,119,121,123]. Two
main hypotheses appeared around this supposition: (i) H3O+ would be placed in the surface
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layer, although OH− would be in the diffuse layer (Figure 9A), according to simulations
and spectroscopic studies [28,118]. (ii) OH− ions would be adsorbed in the surface layer,
whereas H3O+ would be placed in the diffuse layer (Figure 9B). OH− contributes more
to the surface charge than H3O+ because ζ-potential is measured at 2–3 nm depth and its
value reflects the charge between shear plane and surface [25,109].
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Figure 9. Schematic representations of the two main hypotheses about interfacial organization:
(A) H3O+ adsorption at interface with OH− presence in subsurface layer and (B) OH− adsorption at
interface with H3O+ presence in diffuse layer (simplified representations—scales are not respected).

3.4. Conclusion on Interfacial Organization

To synthesize, the structure and organization of the hydrophobic/water interfaces
were the subject of a long debate and despite numerous studies full agreement is still not
reached. Indeed, since 2005, evaluation methods have increased, but no consensus was
reached, and several hypotheses were formulated (Figure 10). The two main hypotheses
are hydroxide or hydronium ions adsorption. However, other ions seem to be adsorbed at
the interface, with less affinity than the two first cited. Thus, interfacial structure is very
complex, which can explain study difficulty and disagreement between authors.

On the one hand, according to macroscopic studies, the water surface layer is nega-
tively charged due to hydroxide ions adsorption. However, recently, some studies showed
that the negative charge origin would not be clear because of possible charge transfer taking
place alone, or in combination with OH− adsorption.

On the other hand, numerous simulation and spectroscopy studies are in conflict
with macroscopic measurements. The hydrophobic/water interface would be stabilized
by hydronium ions. However, some recent spectroscopic measurements are coherent with
macroscopic studies, which could be due to the improvement of spectroscopic techniques.
According to Petersen et al., SHG and SFG probing depths were not well founded [104]
and it was shown that OH− gradients would be present at the interface, explaining why
spectroscopic studies revealed only a weak signal corresponding to OH− adsorption [111].
Thus, probing methods were improved which could explain why more recent spectroscopic
studies demonstrated that hydroxide ions were preferentially adsorbed at the interface.
Moreover, numerous recent studies showed that H3O+ and other ions would also be present
at the interface, but in the diffuse layer to respect electroneutrality.
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It is also important to remark that most of studies showing that H3O+ is adsorbed
at the interface have been conducted on the air/water interface (Table 3). Thus, it seems
that contrary to what was stated at the beginning of Section 3, the air/water and oil/water
interfaces are not totally comparable, especially when microscopic structure is studied.
Indeed, recently, some works showed that water molecules did not behave in the same way
at the air/water or oil/water interfaces [89,143,144], which could explain different results
obtained and different hypotheses formulated on water interfacial organization.

Thus, despite new approaches and more developed methods use, numerous contro-
versies still exist about the charge and organization of hydrophobic/water interfaces, but
it seems that the interface is more complex than that defined in the early 2000s. It would
consist of several ion types organized in different layers with other possible mechanisms,
such as surface charge transfer.

Although oil/water interfacial organization in the absence of any kind of stabilizer is
not yet well understood, the elements presented in this part could help to understand the
effect of high-frequency ultrasounds on the oil/water interface and thus on the stabilization
of emulsifier-free emulsions.

4. Conclusions

Emulsions are metastable systems used in various fields. Numerous methods enable
to formulate emulsions, such as low-frequency ultrasounds, HPH, microfluidization, mem-
brane and microchannel emulsification, as well as spontaneous emulsification and phase
inversion. With these different processes, emulsifiers are generally necessary to stabilize
emulsions over time.

However, a new process using high-frequency ultrasounds can stabilize emulsions
without emulsifier, and vectorize/encapsulate biomolecules, and is thus promising in
food and cosmetics fields. This process also makes it possible to reduce droplet size, and
even to emulsify oil/water mix. The stabilizing effect is currently unknown and requires
further studies. To try to understand high-frequency effect on the interfaces, emulsifier-free
interface organization is an important way to study, which was the objective of the third
part of this review.
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Emulsifier-free interfacial organization was studied by various macroscopic and spec-
troscopic methods, but also by simulation studies. Despite these numerous studies, no
consensus has been found by authors and numerous discords exist between research teams.
Macroscopic studies consisting essentially of measuring droplets surface charge and some
spectroscopic and simulation studies showed that OH− would adsorb at the interface,
whereas most spectroscopic and simulation studies suggest that H3O+ would be prefer-
entially adsorbed at the interface. Thus, more studies would be necessary to better define
emulsifier-free interface organization. However, in view of all the elements presented in
this review, we suppose that the oil/water interface is negatively charged with the majority
presence of OH− ions. We also assume that other ions would be present at the interface,
but in less quantity.

Thus, due to the complexity of the oil/water interfacial organization and to the dif-
ficulties in studying and defining this organization, it could be difficult to understand
high-frequency ultrasounds effect on the interface, but perhaps high-frequency ultrasounds
effect study on the interface could, on the contrary, provide new evidence to better under-
stand emulsifier-free interfacial organization.

The effect of high-frequency ultrasounds on biomolecules encapsulation and deliv-
ery also require more research. This could then allow to optimize this process for food
applications, such as in the formulation of functional ingredients or foods. An immediate
industrial application could be focused on food supplements. High-frequency ultrasounds
enable to obtain emulsions highly enriched in both hydrophilic and hydrophobic nutrients
(i.e., vitamins, essential oils, polyunsaturated fatty acids) without any additives, such as
emulsifiers or other stabilizers. This kind of product is an excellent answer to people’s
requirements for natural and additive-free food products.
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