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Bioelectronic modulation of neural activity is a powerful tool 
for treating many disorders, especially when these disorders 
cannot be effectively managed with conventional therapies. 

For example, electronic devices that stimulate neural activity are 
effective for treating disorders such as Parkinson’s Disease, epi-
lepsy, chronic pain, hearing loss and paralysis1–7. These devices are 
most effective when implanted in the body where they can selec-
tively stimulate the desired nerve targets; however, the invasiveness 
of the implantation can introduce additional risk for the patient. 
Invasive implants can also lead to complications such as chronic 
inflammation, which can further degrade device functionality and 
lead to failure8–10.

The vascular system that accompanies nerves as part of the neu-
rovascular bundle provides a less invasive route for approaching 
nerve targets11. Existing neural implants for nerve targets such as the 
dorsal root ganglion (DRG) can suffer from site infection that results 
in device explantation and follow-up surgeries12. Millimetre-sized 
endovascular neural stimulators (EVNS) delivered via an intra-
vascular catheter to deep tissue targets with a minimally invasive 
procedure through the blood vessels within the body would leave 
the target tissue undisturbed. As a result, endovascular deployment 
of devices is often associated with lower risk compared with open 
surgical approaches: recovery times are drastically reduced and site 
infections are extremely uncommon11. Given these advantages, an 
endovascular approach to neural stimulation would be attractive 
for the multitude of central and peripheral nerve targets that are 

adjacent to vascular structures, such as targets in the deep brain, 
peripheral nerves and the heart13–15. Recently, several new endovas-
cular bioelectronic devices that exemplify the benefits of stimulat-
ing neural tissue through the vasculature have been developed16–19. 
However, these devices have stimulation leads that are wired to 
pulse generators or centimetre-sized inductive coils. The long lead 
wires and implantation of centimetre-sized devices create addi-
tional failure points and require an open surgery that reduces some 
of the benefits of an endovascular surgical approach20.

By miniaturizing the bioelectronic implants to a diameter of a 
few millimetres, it would be possible to deliver endovascular neuro-
modulation therapies entirely with minimally invasive procedures 
that rely on percutaneous catheters. To sufficiently miniaturize the 
device to the size constraints of the catheter (<3 mm diameter), 
some form of wireless power is necessary to replace the bulkier 
batteries if we expect long-term operation. While several innova-
tive wireless power transfer modalities have been demonstrated, 
including far-field radio frequency radiation, near-field inductive 
coupling, mid-field electromagnetics with hybrid inductive and 
radiative modes, ultrasound and light, there has yet to be a demon-
stration of a mm-sized wireless and digitally programmable neural 
stimulator that operates at a depth of several centimetres in a large 
animal model21–36.

Here we turn to magnetoelectrics (ME) as a wireless data and 
power transfer technology due to its large power densities, high tol-
erance for misalignment and ability to operate in deep tissue when 
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compared with alternative wireless power technologies for bioelec-
tronic implants37,38.

Our results show that it is possible to safely stimulate periph-
eral nerves using electrodes placed inside the blood vessels, and 
that we can deliver the stimulation using a mm-sized bioelec-
tronic implant. By combining ME data and power delivery with a 
custom application-specific integrated circuit (ASIC), we achieve 
a miniature device that is only 3 × 2.15 × 14.8 mm³ when fully 
encapsulated. Compared with miniature ultrasound-powered 
devices, our MagnetoElectric-powered Bio ImplanT (ME-BIT) 
maintains functional power levels over a larger range of trans-
lational and angular misalignment, and does not need ultra-
sound gels or foams to couple energy from the transmitter29,31–33. 
Furthermore, in comparison with previous in vivo demonstra-
tions of ME-powered devices that were not digitally program-
mable37, the ME-BIT technology described here can receive 
digital data via the ME effect to programme the amplitude and 
timing of the electrical stimulus. As proof-of-concept, we show 
that these ME-BITs can be powered several centimetres below 
the tissue surface and can electrically stimulate peripheral nerve 
targets through the vasculature in a large animal model. These 
proof-of-principle studies open the door to minimally invasive 
bioelectronic therapies based on EVNS.

Results
ME combined with a custom ASIC enables a mm-sized neural 
stimulator. To overcome the challenge of wireless data and power 
delivery to miniature bioelectronic implants, we developed a data 
and power delivery system on the basis of ME, which achieves 
high power densities within the safety limits for human expo-
sure39. ME materials provide efficient power delivery for bioelec-
tronic implants by directly converting magnetic fields to electric 
fields on the basis of the material’s properties37,40. In our case, we 
use a laminated bilayer material that consists of Metglas, a mag-
netostrictive layer, and lead zirconium titanate (PZT), a piezo-
electric layer. When we apply a magnetic field to the material, 
the magnetostrictive material generates a strain that is coupled to 
the piezoelectric layer that, in turn, generates an electric field37. 
Thus, by applying an alternating magnetic field at the acoustic 
resonant frequency of the film, we can efficiently deliver power to 
our implant37–39,41,42. In addition to delivering power, we can also 
transmit data to our implant by modulating the frequency of the 
applied magnetic field. The frequency shift results in a change in 
the amplitude of the received voltage, which can be interpreted 
as a digital bit sequence that specifies the stimulation parameters 
for the implant41,42. Taken together, the complete wireless EVNS 
system consists of an external magnetic field transmitter, an ME 
film that harvests power and data from the magnetic field, and a 
custom integrated circuit (IC) that interprets the digital data and 
generates the electrical stimulus delivered by the electrodes (Fig. 
1a). Figure 1b shows a conceptual overview of the system imple-
mented in a large animal model where a surface coil can be used to 
wirelessly transmit a magnetic field to power and programme the 
implant for endovascular stimulation.

The ME-BIT itself consists of a magnetoelectric film with a size 
of 1.75 mm × 5 mm and a thickness of 0.3 mm for wireless power 
and data transfer, an ASIC for modulating the ME power and 
stimulation, and an external capacitor for energy storage (Fig. 1c), 
the system being packageable to fit within an 11 French catheter. 
For our experiments, we packaged the ME-BIT within a custom 
three-dimensionally (3D) printed polylactic acid capsule with 
on-board electrodes that can also be used to power external elec-
trodes (Fig. 1d). With this design, the miniature capsule can not 
only be delivered through a minimally invasive catheter, but also 
serve as a complete neuromodulatory device that can receive power, 
undergo programming and transmit stimulation to neural tissue.

A custom magnetic field transmitter enables data and power 
transfer at centimetre depths within safety limits. To deliver data 
and power to the implant, we designed a magnetic field transmitter 
that drives a high-frequency biphasic current into a resonant coil41. 
By maintaining transmitter power levels below 1 W, we can achieve 
field strengths >1 mT, sufficient to power the ME-BIT at depths of 
4 cm within the safety limits.

Because the amplitude of the ME voltage peaks at the acoustic 
resonant frequency, we can send digital signals to our ME-BIT by 
detuning the applied magnetic field frequency. Figure 2 shows our 
communication protocol with charging, data transfer and stimu-
lation phases. As seen in Fig. 2b, we can select 3 frequencies to 
transmit digital data. The first frequency ‘Data 1’ corresponds to 
the mechanical resonance (345 kHz). This is the frequency of maxi-
mum voltage (and maximum power transfer), which we use as a 
digital 1, and for the charging and stimulation phases. The second 
frequency ‘Data 0’ is detuned by ~5 kHz. This frequency of 350 kHz 
produces a lower amplitude voltage, which is used as a digital 0. 
The third frequency is detuned by 55 kHz from the resonance peak 
and produces an even lower voltage than the ‘Data 0’ signal. This 
‘notch frequency’ of 400 kHz is used to indicate the start of the data 
transfer and stimulation phases. By using the mechanical properties 
of the ME film to receive data on the basis of frequency modula-
tion, we can avoid turning the transmitter coil on and off, which 
would require a settling time of 100 µs for our resonant transmitters. 
Given the fast settling time of this frequency modulation scheme, 
we find that 64 cycles of the carrier frequency can reliably trans-
mit one bit, resulting in a 4.6 kbps data rate. We use a digital pay-
load of 18 bits per stimulation, which accounts for a preamble and 
real-time calibration of the demodulation reference. This payload 
combined with the charging phase yields a maximum stimulation 
rate of 1 kHz, which is well within the range of typical neural stimu-
lation applications41.

We estimate that this device can generate a maximum of 4 mW 
as long as the ME films can maintain a peak resonance voltage of 
>8 peak-to-peak voltage (Vpp) with a resistive source impedance 
lower than 1 kΩ (Fig. 2d). This power level is sufficient for many 
neural stimulation applications43.

Custom IC provides digitally programmable stimulation with 
<9 µW power consumption. To deliver reliable stimulation inde-
pendent of the coupling between the transmitter and the ME-BIT, the 
implant includes a custom ASIC that uses the digitally received data to 
programme the shape (monophasic or biphasic), the amplitude (0.3 V 
to 3.3 V with 4 bit resolution), the pulse width (0.05 ms to 1.2 ms with 
3 bit resolution) and the delay (0.01 ms to 0.8 ms) of the stimulation. 
The stimulation reference voltage is also programmed by the down-
link data to generate a stimulation supply voltage 10% higher than the 
desired amplitude. As a result, the implant achieves >90% stimula-
tion efficiency ηstim for 1.5–3.3 V stimulation amplitude; when com-
pared to the stimulation power (<9 mW), the power consumption of 
the SoC is negligible (<9 µW). Thus, we expect little heating due to 
energy loss on the chip. Furthermore, this high efficiency also reduces 
required transmitter power and its associated heating.

ηstim =

< stimulation voltage > × < stimulation current >
< stimulation supply voltage > × < stimulation current >

The ASIC, fabricated on 180 nm complementary 
metal-oxide-semiconductor (CMOS) technology (TSMC), mea-
sures only 1 mm × 0.8 mm while performing several functions to 
ensure robust stimulation and communication. The ME-induced 
alternating voltage is first rectified to the direct current (DC) voltage 
Vrect by a full-bridge active rectifier with an 84% voltage conversion 
efficiency. This rectified voltage is then converted by a DC voltage 
converter, which provides proper voltage and buffers energy on the 
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off-chip capacitor Cstore for stimulation. The voltage converter also 
generates a high-voltage supply VDD_H for other circuits for power 
management, including the low-dropout regulator and the voltage 
references generator, and guarantees cold startup of the system as 
well. A constant low-voltage supply VDD_L of 1 V is provided by the 
low-dropout regulator for the controller, the data demodulator and 
the timing reference generator. To ensure proper system operation, 
a power-on-reset (POR) signal is triggered when VDD_L stabilizes.

To maintain reliable functionality of implants under varying ME 
voltages caused by changes in transmitter–implant distance and 
alignment, the phase transitions of the IC are fully controlled by 
the transmitter through the short notches in ME voltage. In addi-
tion, the demodulation threshold for the amplitude-modulated data 
is generated autonomously at the beginning of the data transmis-
sion cycle to avoid data recovery errors due to changes in ME volt-
age. Meanwhile, a global system clock is extracted from the source 
by a low-power comparator-based clock recovery circuit, ensuring 
process and voltage invariant timing references for data sampling  
and stimulation.

ME implant demonstrates high tolerance towards misalign-
ment. We find that our magnetoelectric-based power transfer 
approach displays improved tolerance for translational and angular  

misalignment when compared with other mm-sized implants. 
Our simulations show that ME-BITs can tolerate approximately 
3 cm translational misalignment from the centre of the transmitter 
coil and a depth of 3 cm in tissue. Using finite element modelling 
(COMSOL) to model the magnetic field generated by our 15-turn 
transmitter coil, we find an almost uniform magnetic field across 
6 cm inner diameter of the coil (>70% of total transmitter area) as 
shown in Fig. 3a. The dashed line in Fig. 3b shows the boundary line 
of 1 mT, which is the operating field strength for the implant.

When we tested our 15-turn transmitter coil, we found that 
we could indeed power our ME films above our operating voltage 
(>3.6 Vpp) a distance of 3 cm in air from the surface of the coil, with 
a misalignment tolerance that matched the 6 cm inner diameter of 
the coil (Fig. 3c). This misalignment tolerance is more than 27 times 
greater than recently reported ultrasound-powered implants with a 
mm-scaled translational window33. The improved alignment toler-
ance would be advantageous for applications where an individual 
may want to align a transmitter several times a day or fit a wearable 
transmitter that may move and drift over time.

Furthermore, ME-based power transfer also demonstrates 
encouraging angular misalignment tolerances. In comparison 
with inductive coils that harvest power on the basis of magnetic 
flux, the ME materials harvest power on the basis of magnetic 
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field strength. As a result, it has been shown that ME demon-
strates more stable power transfer as a function of angular mis-
alignment39. This angular stability is supplemented by the fact that 
the large magnetic permeability of the Metglas layer helps to con-
centrate the magnetic field lines along the length of the ME film44. 
To assess the angular tolerance of the ME-BIT in vivo, we used a 
COMSOL model to simulate how ME voltage is affected when it 
undergoes angular misalignment in tissue (see Methods). Because 
the simulated coil is radially symmetrical, we found that rotating 
the film in either the θ direction, as shown in Fig. 3d, or in the 
φ angular direction, resulted in the ME voltage decaying simi-
larly with either angular change and being able to maintain >40% 
of the maximum voltage at a 90° rotation. Existing devices and 

implants that use ME antennas probably share similar angular tol-
erances and have been shown to be operational at large distances; 
however, these sub-mm devices primarily operate at much higher 
frequencies (60 MHz to 2.5 GHz)45–47. At these higher frequencies, 
tissue absorption and reflection become more substantial, which 
lowers the amplitude of the field that can be applied within the 
safety limits48. Furthermore, many of these demonstrations rely 
on the magnetic component of radiating electromagnetic waves, 
which is small compared to the electric field component. As 
a result, small ME devices that couple to radiating electromag-
netic waves are used primarily for low-power sensing and com-
munication applications rather than electrical stimulation, which 
requires more power.
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ME power is able to sustain operation of implant at centime-
tre distances within tissue. We found that the ME-BITs received 
enough power to function when implanted at centimetre depths in 
porcine tissue (Fig. 3e). Specifically, the ME film packaged inside 
the IC capsule was able to power the IC and maintain a sustained 
rectified voltage of 1.9 V. By adjusting the magnetic field while 
increasing the distance between the implant and transmitter coil, 
the ME-BIT was able to maintain a working voltage up to 4 cm 
(Supplementary Table 1). This energy was delivered through a 
~3 mm air gap between the surface coil and tissue, demonstrating 
the ability to achieve non-contact wireless power transfer.

When characterizing the power coupling efficiency in tissue, we 
achieved functional power levels at a transmitter-receiver (TX-RX) 
distance of up to 4 cm, which is primarily limited by the size and 
power level of our magnetic field transmitter. At the surface of the 
coil, while the ME-BIT generated a peak power of 1.17 mW, the 
resulting peak efficiency of the implant was found to be 4.4% (Fig. 
3f). To maintain a functional voltage on the implant at a depth of 
4 cm, the coil current was increased from 0.23 A to 8.6 A at 0 mm 
and 40 mm distance, respectively (Supplementary Table 1 and 
Methods). While the maximum distance demonstrated here is 4 cm, 
ME voltage is primarily dependent on magnetic field strength, thus 
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greater TX-RX distances may be achieved by optimizing driver elec-
tronics and transmitter designs.

ME-BIT demonstrates programmability and fully untethered 
operation for direct nerve stimulation in rats. Proof-of-concept 
experiments show that wirelessly powered ME-BITs evoke repeat-
able compound muscle action potentials (CMAPs) along with 
observable leg kicks when placed in contact with the sciatic 
nerve. This miniaturized implant had a volume of 6.2 mm3 and 
weighed 30 mg, making this suitable for small rodent models, and 
was able to directly stimulate rat peripheral nerve (n = 2) in vivo 
(Fig. 4a). Stimulation for rat A, while the mote was fully unteth-
ered and powered at a distance of 1 cm, is shown in Fig. 4b, where 
a 3 V, 1.5 ms pulse width monophasic pulse train was applied at 
3 Hz. Electromyography recordings of foot muscles showed wave-
forms that were time locked with the applied stimulus at the same 
frequency. Often necessary in neural interfaces, the stimulation 
parameters on the ME-BIT can be adjusted by sending the appropri-
ate commands through the magnetic field. Not only is the implant 
able to adjust its stimulation amplitude from 0.3 V to 3.3 V as shown 
in Fig. 4c, it is also able to vary its pulse width and frequency to 
meet the demands of different neuromodulation applications and 
provide targeted therapies to account for variance from patient to 
patient. The programmability of the device is shown through an 
acute demonstration with rat B by varying the amplitude of the 
stimulus and observing the resulting graded EMG response. By 
adjusting the stimulation as well as the pulse width, the total charge 
delivered to the nerve could be controlled to directly affect the num-
ber of recruited motor units to elicit varying CMAP responses. In  
Fig. 4d, we innervated the sciatic nerve with monophasic pulses 

at 1 Hz while holding the pulse width at 1.5 ms and varying the 
amplitude from 300 mV to 3.1 V. The resulting CMAPs ranged in 
amplitude from 0.4 to 2.7 mV where the number of recruited muscle 
fibres seemed to saturate when increasing the stimulation amplitude 
from 2.1 to 3.1 V.

The ME system demonstrates wireless endovascular nerve stim-
ulation for multiple nerve targets. To demonstrate endovascular 
neural stimulation and the potential for clinical translation, we 
implanted the ME-BIT in a pig and demonstrated peripheral nerve 
stimulation from within the blood vessels using a wirelessly powered 
device. For this experiment, the film was mounted along the printed 
circuit board (PCB) and soldered to gold pads, with the stimulation 
lead wire soldered to an exposed pad on the top of the PCB before 
the device encapsulation (Fig. 5a). For the surgery, an incision was 
made in the hind leg of the pig to expose both the femoral nerve and 
the femoral artery. The ME implant was then placed into the surgical 
site and a 9 Fr sheath was then introduced into the femoral artery to 
allow access into the vessel. The parylene insulated stimulation wire 
connected to the implant was introduced into the vessel as shown in 
the schematic in Fig. 5b. Images of the surgical site shows the femo-
ral nerve and a sheath entering the femoral artery with the encap-
sulated implant placed proximal to the vessel. The magnetic field 
transmitter was then brought to the surface of the skin to wirelessly 
power the implant at an implanted distance of 1.5 cm (Fig. 5d). By 
applying a 3 V monophasic stimulus pulse with 1.5 ms pulse width 
to the exposed tip of the endovascular wire, the device provided tar-
geted monopolar stimulation with the reference electrode on the ME 
implant. As shown in Fig. 5c, we were able to stimulate the femoral 
nerve through the femoral artery at various stimulation frequencies  
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including 10 Hz. Along with CMAPs, we recorded downstream 
nerve action potentials with bipolar hook electrodes shown in  
Fig. 5e, as well as time-averaged central somatosensory evoked 
potentials (SSEPs) (Supplementary Fig. 1). These recordings dem-
onstrate that the stimulation was mediated by the nerves and is not 
a direct muscle stimulation. To rule out the possibility that our data 
could be explained by stimulation artifacts due to the applied mag-
netic field, we performed control experiments with the magnetic 
field detuned from the ME resonance wavelength (Fig. 5c). Although 
we transmitted the same communication protocol, because the mag-
netic field was detuned, the ME-BIT did not accurately receive the 
digital data and the implant did not deliver a stimulus.

We were also able to demonstrate EVNS of the intercostal nerves 
and the dorsal root ganglion, which are common targets for treat-
ing chronic pain12. As shown in Supplementary Fig. 2, we were able 
to introduce the insulated stimulation wire through the segmental 
artery to reach intercostal nerves and the DRG of the pig, which 
are both in direct contact with the intercostal arteries. Similar to 
femoral nerve stimulation, we applied a monophasic stimulus pulse 

at 3 V, 1.5 ms with varying frequencies from 1–10 Hz. The delivered 
exposed wire tip served as the monopolar electrode, while the return 
electrode was an on-board electrode located on the ME implant. 
We also were able to measure compound muscle action potentials 
that resulted from the stimulation and observed time-aligned mus-
cle contractions in the chest wall. When we performed the same 
off-resonant frequency controls as we did for the femoral nerve 
stimulation, we found no response, supporting the fact that EVNS 
of the intercostal nerve was also a nerve stimulation from within 
the blood vessel.

The small mm-sized form factor of our ME-BITs also enables 
delivery of the entire device within the vasculature. As proof of 
concept, we deployed our ME-BIT through a 9 Fr sheath into the 
femoral artery as can be seen in Fig. 5f. The ME film and ASIC are 
visible through X-ray, which can allow for visualization and moni-
toring of the device post implantation. Tissue samples for histologic 
evaluation were also taken to assess for acute vascular damage from 
endovascular stimulation; no damage was observed as shown in 
Supplementary Figs. 3–5.
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In summary, we demonstrate (1) that these miniature ME-BITs 
have sufficient power density to stimulate a clinically relevant large 
animal model from within a blood vessel and (2) the potential for 
wireless EVNS of multiple peripheral nerve targets. Because the 
implant can be deployed through a 9 Fr sheath (inner diameter of 
3.09 mm), it would be possible to deliver the device using minimally 
invasive surgical procedures. For example, Fig. 5f shows an X-ray 
image of an endovascularly deployed ME-BIT in the femoral artery 
(see Methods). Utilizing the advantages of magnetoelectrics, the 
ME-BIT can be implanted deep within the tissue close to targeted 
areas without requiring lead wires that connect to a more superficial 
inductive coil.

Discussion
This work shows a magnetoelectric-powered bioelectronic implant 
in a large animal model, and highlights several of the advantages 
of this wireless power-transfer technology for biomedical applica-
tions. Specifically, its large angle and lateral misalignment tolerance 
are favourable for the future use of wearable transmitters to power 
and communicate with the ME-BIT. Although the implant itself 
might only move a few millimetres once fixed within the tissue, 
it is easy to imagine misaligning a wearable transmitter by a cen-
timetre or more, which remains within our alignment tolerances. 
Furthermore, the use of a wearable transmitter is also possible due 
to the low magnetic field strengths that are required to activate high 
voltages in these ME thin films. These thin films require only <1 mT 
field strengths for the power densities needed to activate neurons 
through stimulation by the material itself37 or by powering custom 
integrated circuits41,42. This will allow the technology to be read-
ily translated into the clinic and may even permit patients to use 
implants at a home setting. Furthermore, because wireless power 
transfer scales favourably for ME in that power decreases linearly 
with implant size rather than a higher power as is the case with 
other wireless power technologies37, it may be possible to greatly 
reduce the size of the device to the point where it could fit in smaller 
vessels and be deployed to difficult-to-reach targets.

The data that we provide represents proof-of-concept evidence 
that peripheral nerves can be stimulated from within the blood ves-
sels using a mm-sized wireless implant. Additional work is needed 
to develop this technology into a biomedical device for clinical use. 
For one, hermetically sealed packaging will be needed for chronic 
implantation of the device. Although thin-film packaging solu-
tions have yet to be fully developed for clinical use, other wire-
less implants have shown that glass or ceramic casings can enable 
chronic operation49. Fortunately, the magnetic fields should easily 
penetrate these materials and thus they are not expected to degrade 
the power coupling efficiency. Long-term deployment of future 
endovascular bioelectronics may also require adjunctive therapies 
using blood thinning pharmaceuticals. Several factors that involve 
the implantation of devices within the vasculature can promote 
thrombosis; however, improved techniques along with antithrom-
botic regimens have been shown to decrease any catastrophic 
thrombosis due to stent implantations to <1%50,51. Furthermore, it 
has also been shown that extended implantation of cardiac pacing 
leads that develop occlusions can result in collateral venous chan-
nels that would reroute blood around the occlusion52. Future stud-
ies are needed to determine (1) how chronic deployment of the 
ME-BIT within the blood vessel could affect vasculature health 
and (2) the biocompatibility of the device, including the suitability 
of a hermetically sealed capsule for long-term implantation of the 
lead-containing PZT or other piezoelectric alternatives that do not 
contain lead, such as polyvinylidene fluoride37. Another safety con-
cern for the long-term implantation of the ME-BIT are the interac-
tions between the applied magnetic field and biological tissue. Our 
COMSOL simulations show that a field of 1 mT at an implant depth 
of 3 cm corresponds to a surface magnetic field of 7.7 mT, which 

results in an electric field and specific absorption rate that are within 
the IEEE safety limit of 101 V m−1 and 2 W kg−1 for unrestricted 
environments36. For other guidelines, such as those by the ICNIRP 
that have lower limits for magnetic field exposure, this device oper-
ates outside the compliance range53. Thus, future approval for these 
devices may depend on which standards are applied by the regula-
tory body. While we operate our device at an optimal rectified volt-
age of 2.5 V, the ME-BIT remains operational at voltages as low as 
1.8 V, in which field strengths as low as 0.6–0.8 mT can still be used. 
Additionally, improvements to the ME materials that increase the 
power transfer efficiency (PTE) or reduced power consumption by 
the ASIC could allow these devices to operate with lower magnetic 
field strengths, which could make the devices compliant with addi-
tional safety standards.

As we miniaturize the implant and ME film sizes, we expect that 
the ME-BITs will still be able to function at centimetre depths in 
tissue. This is because the ME film voltage does not depend on the 
area of the film37,43. As a result, we expect that received power will 
only decrease linearly with the size of the film. The film voltage, on 
the other hand, is expected to remain constant, which will ensure 
that the voltages are large enough to operate the ASIC. Thus, we 
expect that the major effect of miniaturization would be longer 
charging times between stimulation pulses, which could decrease 
the maximum stimulation bandwidth. Future work must also 
address packaging and connectorization, which will probably need 
to be changed as devices approach sub-mm length scales. These 
efforts will be needed to compare ME-powered implants with other 
types of sub-mm-sized battery-free implants, and their compat-
ibility with new minimally invasive delivery techniques which, 
although promising, have yet to demonstrate neural stimulation in 
a large animal model54–56.

Endovascular bioelectronics, such as the ME-BIT demonstrated 
here, opens the door for a wide variety of therapies that involve 
low-risk and high-precision implantable devices. Having bioelec-
tronics implanted within the vasculature enables devices to be 
implanted in many parts of the body that are traditionally difficult 
to reach without having major risks of surgery. Additionally, bio-
electronic implants with access to the bloodstream could enable 
real-time sensing of biochemicals, pH or oxygenation levels within 
the blood to provide diagnostics or support closed-loop-electronic 
medicine57,58. Overall, wirelessly powered mm-sized devices 
implanted within or near the vasculature could open up numerous 
opportunities for minimally invasive bioelectronic medicine.

Methods
Fabrication of ME-BITs. The external capacitor was mounted on the PCB before 
wirebonding the custom 0.8 mm × 1 mm IC to the board (Supplementary Fig. 6).  
After wirebonding, the die area was encapsulated with epoxy to maintain the 
structural integrity of the bonds. The magnetoelectric film was fabricated with 
a 127-µm-thick PZT (APC Int.) bonded to a 23-µm-thick layer of unannealed 
Metglas (2605SA1, Metglas) with a thin epoxy layer (Hardman Double/Bubble). 
The films were then laser cut by a femtosecond laser cutter to the desired shape 
to operate in the 300–400 kHz frequency range, at which the ME films operate in 
the fundamental extensional vibration mode. We chose to operate the ME-BIT 
in the extensional vibration mode as it has been shown previously with ME 
bilayer laminates that while the bending mode has higher magnetoelectric energy 
conversion efficiency, longitudinal resonance modes yield slightly higher voltage 
coefficients59. Future work can consider the usage of different resonant modes, 
including the primary bending mode at lower resonant frequencies. Depending 
on the iteration of the device, the geometry and strategy for interfacing the film 
with the board are slightly different. For the direct nerve stimulator, the film size 
was manufactured to be ~4 mm × 3 mm. This film was then coated with ~10 nm 
of titanium and ~40 nm of gold with radio frequency sputtering. The film’s 
non-coated side was bonded to an exposed pad on the PCB with conductive silver 
epoxy (Electron Microscopy Sciences) and allowed to cure at 60 °C for 20 min. The 
top electrical connection of the film was made by wirebonding the gold-coated side 
to the second exposed pad on the PCB. In the case of the endovascular device, the 
aspect ratio is more important as the device length is not as important as the width 
to fit inside a catheter/sheath and deployed in blood vessels. The films were cut 
out to be ~1.75 mm × 5 mm. Conductive silver epoxy was used to connect 30 AWG 
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wire to the centre of the ME film. This ME film was then soldered directly to the 
two exposed pads on the PCB. The insulated stimulation wire was then soldered 
onto the top side of the PCB. A second wire shown in Figs. 5a and 5d (purple) was 
soldered to the reference electrode for more flexible positioning, but was ultimately 
not used in the experiment. The assembled device was then placed within a 
3D-printed air-filled polylactic acid capsule, which allows the film to freely vibrate 
in air. The entire capsule was then sealed with non-conductive epoxy to provide 
more structural stability and prevent moisture from infiltrating the device. The 
assembled implant’s final dimensions are 3 × 2.15 × 14.8 mm³.

Device testing and calibration. Before fully packaging with an enclosure for 
encapsulation, each device was checked through comprehensive functional tests. 
In addition to the pads connected to the film, the energy storage capacitor and 
the stimulating electrodes, the ASIC also has testing pads and readout circuits 
providing gateways to the internal signals, such as the verified voltage, the 
low-dropout regulator output and the demodulated downlink data. Through 
monitoring these signals at various conditions, such as different TX-RX distances 
and misalignments, we validated that the devices could operate properly in future 
implantation. The ASIC was designed with robustness against source amplitude 
changes and process variations. In addition, we calibrated some variables 
during the tests to further improve the reliability of device operation and the 
effectiveness of stimulation. First, the carrier frequency shift for amplitude 
modulation needs to be carefully set. Simply employing a large enough frequency 
change may ensure that the voltage difference between data ‘1’ and data ‘0’ is 
always sufficient (>100 mV), but would sacrifice the received voltage and power 
in the data transfer phase and hence suffer a smaller TX–implant distance. 
Therefore, an optimal frequency setting needs to be found to maximize the 
ME-induced voltage while still providing a large enough modulation index for 
correct data demodulation. Due to process variations in the manufacture of the 
ME laminate, this optimal frequency shift may demonstrate slight variabilities 
among different ME films. Second, the reference voltage for the stimulation 
driver is generated on-chip; as a result, its accuracy may be affected by process 
variations in semiconductor fabrication. To ensure effective stimulation, we could 
calibrate the voltage reference generator with the downlink data to guarantee 
desired stimulating voltages in all cases.

ME power transfer characterization. Ex vivo porcine tissue that consisted of 
pork chuck, purchased from a local store, was a general mixture of mostly muscle 
tissue mixed with some fat and connective tissue. The 15-turn magnetic coil was 
held in place vertically with a small ~3 mm air gap from the piece of tissue and the 
permanent bias magnet was placed ~2 cm away from the alternating current (AC) 
coil. To maintain the feedback pins on the device, the ME film was encapsulated in 
the endovascular 3D-printed capsule, implanted with a stiffener into the distal end 
of the ex vivo tissue and pushed through until the device reached the proximal end 
with the coil. The film was then used to power the ME-BIT, the various feedback 
signals were monitored and rectified voltage was recorded up to 4 cm deep within 
the tissue. To measure power transfer efficiency, we measured both the transmitter 
power as well as the peak implant power. Using a current probe (CT2 AC Current 
Probe, Tektronix) to measure current running through the AC coils, as well as a 
potentiostat (Gamry Reference 600+) to measure the impedance of the resonant 
coil and ferrite shield at the operating frequency (~0.5 Ω real impedance, where 
imaginary impedance was cancelled at the resonant frequency by choosing the 
corresponding capacitors for the inductance of the coil), the transmitter power was 
calculated (Supplementary Fig. 7). The peak implant power, on the other hand, was 
measured by observing the charge current on the device powered by an 8.75 mm2 
ME film, where I = dVrect

dt × C, where C (~800 pF) is the on-chip capacitor and 
Pin = Vrect × I  (Supplementary Fig. 8). The peak implant power was held constant 
with the rectified voltage at 1.8 V, while the coil current was increased to sustain the 
operating voltage.

Magnetic field transmitter. A microcontroller or computer that is capable of 
communicating via I2C protocol sends commands to a frequency synthesizer 
IC. The frequency synthesizer IC provides the three different data and notch 
frequencies used to communicate with the custom IC. This signal is then 
modulated through various circuits before being transmitted to half-bridge 
drivers that are then passed to an H-bridge made up of 4 integrated driver ICs 
and MOSFETS (CSD95378BQ5M, Texas Instruments). The H-bridge is rated up 
to 30 Amps continuous current with an upper frequency limit of 1.25 MHz. The 
data and notch frequencies, as well as all of the stimulation parameters, are set by 
the user through a serial interface in Arduino. The H-bridge is then connected to 
surface coils that are wrapped with 18 AWG litz wire (MWS Wire) and resonated 
with high-voltage rated capacitors (~6 kV, WIMA). We designed transmitter coils 
to provide uniform magnetic fields for characterization and a large alignment 
tolerance so that we could effectively power our devices in the operating room. On 
the basis of COMSOL simulations, we chose a spiral coil with an inner diameter 
of 6 cm, with 15 turns and an outer diameter of 7 cm. We chose this size because 
it would be compatible with a wearable transmitter system38. When the ME film 
was aligned parallel to the surface of the coil (as is the case for experiments in 
the operating room), we placed the coil off-centre from the ME-BIT to power 

the device with the fringing fields. The impedance of the coil was measured to 
be ~0.5 Ω. The field profiles were simulated using COMSOL and experimentally 
measured with an AC magnetic field probe (AMF Life Systems). The field profile 
was created by simulating a current of 18 A in the 15-turn coil. A more robust 
magnetic field driver was designed and assembled for use in the operating 
room for the porcine experiments. This driver used high-electron-mobility 
gallium-nitride transistors (GS61008T, GaN Systems) for the output H-bridge 
stage and had optimized magnetic board layout for high-power, high-frequency 
switching operation60. The COMSOL model for the angular misalignment analysis 
used a similarly sized 7-cm-diameter coil. A 5 mm × 1.75 mm × 0.023 mm Metglas 
sheet was placed within a 14 mm × 3 mm × 2.15 mm airbox to simulate the ME-BIT. 
To model how the device would behave in vivo, the ME-BIT was placed within 
a tissue layer model (20 mm of muscle, 5 mm of fat and 2 mm of skin) at the 
distance of 15 mm consistent with the large animal experiments. The device was 
then rotated in two different directions (θ, φ). For each angle, the transmitter was 
translated to the position that achieved peak voltage across the film. For example, 
at a 90° rotation, the ME-BIT was placed off-centre to maximize the use of the 
fringing fields. Because we operated at the linear region of the magnetostrictive 
curve, strain induced on the magnetostrictive layer is linearly related to the 
induced voltage on the ME film38,61. Thus, we used the simulated strain induced in 
the Metglas film to calculate the induced voltage and normalize this voltage to the 
peak value (Fig. 3d).

In vivo rat stimulation model. All procedures complied with the National 
Institutes of Health standards and were approved by the Animal Care and Use 
Committee of Rice University (Protocol no. IACUC-20-181). In vivo stimulation 
with ME wireless power was confirmed in 3 different male Long-Evans rats 
(Charles River) weighing 300–400 g. The stimulation was verified with a visually 
observed leg kick and corresponding EMG recording in the subplantar region 
of the foot. For the acute procedure, the animal was placed in an induction 
chamber with 5% isoflurane in oxygen at a flow rate of 1–2 l min−1 until the rat 
was unconscious and areflexic, confirmed with toe pinches. The animal was then 
transferred to a 40 °C heated pad with a nose cone with ~2% isoflurane. Meloxicam 
(2 mg kg−1 subcutaneously) and Ethiqa XR (0.65 mg kg−1 subcutaneously) were 
administered to the rat before shaving the surgical site. Iodine swabs were used to 
sterilize the site before a single semi-circular incision was made across the lower 
hip of the rat. The fascial plane between the gluteus maximus and the anterior 
head of the bicep femoris was opened to expose the sciatic nerve. The underlying 
connective tissue was severed to better isolate the sciatic nerve.

Two EMG electrode needles were placed in the plantar muscles of the rat 
leg, while a third ground electrode was placed on the main body of the rat. 
The recording electrodes were connected to a dual bioamplifier (ADsystems) 
and sampled at 1 kHz. The data were acquired and exported through Labchart 
and processed in Matlab 2017. On completion of the study, the animals were 
immediately euthanized under proper guidelines.

In vivo porcine model. The animal procedures were conducted in accordance 
with the rules of the IACUC (Protocol no. 2007074). Eight female Yorkshire pigs 
weighing approximately 35–45 kg received a 7 d acclimation period before any 
procedure. General anaesthesia was administered by veterinary services personnel 
and was established with Telazol (4.4 mg kg−1), ketamine (2.2 mg kg−1) and xylazine 
(2.2 mg kg−1 intramuscularly), followed by intubation under general anaesthesia. 
Mechanical ventilation was given with a mixture of oxygen and isoflurane (1–3%). 
Routine physiological monitoring was performed.

The pigs were placed in supine position and the femoral artery was palpated 
between the rectus femoris and the vastas medials muscles. A 6 cm skin incision 
was performed to expose the femoral neurovascular bundle and blunt dissection 
was used to remove the surrounding connective tissue and adventitia, further 
exposing the femoral artery, vein and nerve. Baseline EMGs (recorded from the 
quadricep muscles) and nerve action potentials (NAPs, recorded from the femoral 
nerve) were obtained from direct femoral nerve stimulation to ensure nerve 
integrity after exposure. Swine analogues to Human 10/20 electrode positions were 
placed: nasion (Ns), cervical spine rostral (CSr) and cervical spine caudal (CSd).

A 9 Fr sheath was then delivered into the common femoral artery through a 
modified Seldinger technique. A parylene insulated wire (0.008 in) connected to 
the ME implant was introduced into the vessel. NAPs were then recorded on the 
femoral nerve and EMGs on the adjacent quadricep muscles after endovascular 
femoral nerve stimulation. Leg twitching was observed with each EMG recording. 
Central signals were also recorded from the cranial and cervical electrodes. Next, 
under direct fluoroscopic visualization, a 5 Fr Mikelson catheter (Cook Medical) 
was advanced over a 0.035 in Glidewire (Terumo IS) into the descending aorta 
at the level of a segmental artery. The same parylene insulated wire connected 
to the ME implant was then introduced into the segmental artery through a 
microcatheter (0.017 in inner diameter). Endovascular DRG and intercostal nerve 
stimulation was then performed through wireless magnetoelectric stimulation 
of the microwire. EMG was recorded from the intercostal muscles and twitches 
were seen with each recording. On completion of the study, the animals were 
immediately euthanized under proper guidelines. The femoral and intercostal 
arteries tested were collected for histopathologic examination. All tissue samples 
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were routinely fixed in 10% formalin, processed and embedded in paraffin. Tissue 
blocks were sectioned at 5 µm thickness for hematoxylin and eosin (H&E) and 
modified Movat pentachrome histochemical staining62,63.

The electrophysiologic recordings were done on a Cadwell IOMax utilizing 
subdermal needle electrodes for SSEP and EMG recordings. Direct nerve 
stimulation was performed via a triple hook electrode and direct nerve recordings 
were done via a double hook probe. Central response recordings were done via 
one subdermal needle placed over the rostrum, referenced to a subdermal needle 
placed over the midline of the cervical spine. In some cases, a second subdermal 
needle was placed over the cervical spine, with one positioned just behind the 
occiput and one placed at the lower cervical spine, always over the midline. A 
ground electrode was placed in the shoulder to help eliminate any unwanted 
artifacts. Amplification for central recordings and nerve action potentials was 
100 µV per div, and 1,000 µV per div for all EMG recordings. Digital filter bandpass 
settings were applied for each type of recording: central sensor responses (30–
500 Hz), EMG recordings (10–3,000 Hz) and nerve action potentials (30–1,000 Hz).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within the 
paper and its Supplementary Information. The raw data are available from the 
corresponding authors on reasonable request.

Code availability
The Arduino teensy code used to drive magnetic fields can be found at https://
github.com/RobinsonLab-Rice/EVNS.
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Data collection Arduino code was used to program the microcontroller and signal generators that were used to control the magnetic-field drivers. The 
experimental data in rats were collected with a dual amplifier DAQ system from AD systems. The raw data were visualized through LabChart 
and post-processed in Matlab R2021a. The porcine data were taken with a Cadwell IOMax recording system and visualized through its built-in 
software, and then post-processed in Matlab R2021a and Matlab R2017a. The arduino teensy code used to drive magnetic fields can be found 
at https://github.com/RobinsonLab-Rice/EVNS.

Data analysis Data were analysed via custom scripts in Matlab R2021a and Matlab R2017a.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
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- A description of any restrictions on data availability 
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Sample size For the rat experiments, two different rats were used, and stimulation was confirmed in both animals by the ME-BIT via visual observation of 
leg kicks as well as measured EMG signals. For the large-animal experiments, data are shown for one pig; additional animals were used in pilot 
studies. This study was designed to show the capabilities of the ME-BIT; clear physiological responses were observed and the relevant controls 
were run to demonstrate efficacy.

Data exclusions No data were excluded from the analyses.

Replication Specific experimental findings in the rat model were reproduced across different animals. For the large animal model, stimulation was 
reproduced with one pig (that is, the stimulation of the femoral nerve and the segmental nerve were readily replicated within the same 
animal).

Randomization Randomization was not relevant for the study, as successful stimulation and EMG showed a physiological response to the controlled 
endovascular stimulation.

Blinding Blinding was not used in this study.
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Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult male Long Evans rats  (300–400g) were sourced from Charles Rivers. 
The female Yorkshire pigs weighed 35–45kg.

Wild animals The study did not involve wild animals.

Field-collected samples The study did not involve samples collected from the field.

Ethics oversight All in vivo experiments were performed in accordance with the rules of the IACUC at Rice University and at the University of Texas 
Medical Branch at Galveston.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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