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Head and neck squamous cell carcinomas (HNSCC) include heterogeneous group of
tumors, classified according to their anatomical site. It is the sixth most prevalent cancer
globally. Among South Asian countries, India accounts for 40% of HNC malignancies with
significant morbidity and mortality. In the present study, we have performed exome
sequencing and analysis of 51 Head and Neck squamous cell carcinoma samples.
Besides known mutations in the oncogenes and tumour suppressors, we have identified
novel gene signatures differentiating buccal, alveolar, and tongue cancers. Around 50% of
the patients showed mutation in tumour suppressor genes TP53 and TP63. Apart from
the known mutations, we report novel mutations in the genes AKT1, SPECC1, and
LRP1B, which are linked with tumour progression and patient survival. A highly curated
process was developed to identify survival signatures. 36 survival-related genes were
identified based on the correlation of functional impact of variants identified using exome-
seq with gene expression from transcriptome data (GEPIA database) and survival. An
independent LASSO regression analysis was also performed. Survival signatures
common to both the methods led to identification of 4 dead and 3 alive gene
signatures, the accuracy of which was confirmed by performing a ROC analysis
(AUC=0.79 and 0.91, respectively). Also, machine learning-based driver gene
prediction tool resulted in the identification of IRAK1 as the driver (p-value = 9.7 e-08)
and also as an actionable mutation. Modelling of the IRAK1 mutation showed a decrease
in its binding to known IRAK1 inhibitors.
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INTRODUCTION

Head and Neck cancer (HNC) is a heterogeneous disease that
encompasses tumors of majorly three regions, oral cavity,
oropharynx, and larynx, and together they account for more
than 660000 new cases and over 320000 deaths worldwide wide,
while India has contributed to 36%, 20.9% and 18.8% of the total
cases of each type respectively, in 2020 (https://gco.iarc.fr) (1).
More than 90% of the HNCs are diagnosed as squamous cell
carcinomas (HNSCC). The common risk factors worldwide are
smoking tobacco, alcohol consumption, improper diet, whereas
chewing areca nuts, chewing tobacco, smoking bidis, etc., are
rampant in India (1, 2). Over the past 3-4 decades, various
treatment regimens like surgery, adjuvant chemotherapy,
radiation therapy, immunotherapy, etc. have been employed,
yet only 50 % improvement in survival rates have been achieved
for HNSCC (3–5).

Several studies have reported drivers of Head and Neck
cancer oncogenesis. The drivers can be broadly classified into
tumor suppressors and oncogenes. Alterations in oncogene
families like ras family of genes, myc family and EGFR family
have been implicated in oral and head and neck cancers. High
frequency of mutations in HRAS, copy number alterations and
aberrant expression levels in KRAS, NRAS, MYC and EGFR
have been reported in relation with development of many
squamous cell carcinomas. Driver Genes like CCND1, MAPK
family and PIK3CA are involved in the progression of HNSCC
(4, 6, 7). Early stages of head and neck cancers have been
associated with inactivated CDKN2A and TP53, loss of
function copy alterations is associated with aggressive
cancers. HPV+ve HNSCC cancers are characterized by
frequent mutations and chromosomal deletions in tumor
suppressors like PTEN, E-cadherins and RB1 (4, 6, 8). One of
the first steps of oncogenesis involves the evasion of immune
system. In HNSCC, IRAK1 overexpression is associated with
tumor progression and low survival (9). IRAK1 is a kinase,
activated downstream of TLRs and is activated upon radiation
therapy in HNSCC (10, 11)

Several models have been proposed as predictive biomarkers
for the prognosis of HNSCC patients. A recent study reported a 6
gene signature for predicting survival in patients using random
forest sampling and Cox regression analysis. Exome seq analysis
has led to the identification of SNPs in the genes, which can be
used as independent prognostic markers (12, 13). Oncogenic
driver mutations in genes commonly associated with HNSCC,
like P53, PI3-AKT pathway, HRAS, CCND1 and others, have
been associated with poor survival and have been identified as
important factors for outcome predictions in HNSCC cohorts
(4, 8). Accumulation of structural variants such as Copy number
variation (CNV), Loss of Heterozygosity (LOH) in oncogenes,
and tumor suppressors like c-MYC, EGFR, CDKN2A,
respectively, have been associated with recurrence of squamous
cell carcinomas, and poor prognosis and outcome predictions
have been linked to rapid occurrence rates of SCNAs across
tumor genomes (4, 14, 15). The genomic analyses of HNSCC
from (110 patients) Indian population led to the identification of
5 new frequently mutated (10-22% of the patients) genes
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associated with OSCC-GB, namely, USP9X, MLL4, ARID2,
UNC13C and TRPM3 (16).

In this study, we have performed exome sequencing of 51
individuals from diverse anatomical sites and correlated the
clinical phenotype to the genotype. We report distinct
anatomical site-specific signatures and heterogeneity within
each group. We have also identified novel driver mutations
using Oncodrivclustl. We identified alive and dead signatures
using two different approaches. The first approach was based on
the correlation of functional impact of variants using exome-seq
with gene expression using transcriptome data (GEPIA database)
and the second was LASSO regression. The signatures were
validated using a receiver operating characteristics (ROC)
model. We have identified 2 missense mutations in IRAK1,
one of which causes structural changes in the protein, possibly
leading to change in its activity.
METHODOLOGY

Subjects for the Study
We obtained 51 FFPE (Formalin Fixed Paraffin Embedded)
samples diagnosed with oral cancer at the Healthcare Global
Enterprises Ltd, Bengaluru, Karnataka, India. The protocol was
approved by the institutional review board of HCG and Institute
of Bioinformatics and Applied Biotechnology. The clinical details
of every patient are mentioned in Table 1. Informed consent was
obtained from all the participants.

Exome Library Preparation
To prepare libraries for Whole Exome Sequencing, 100ng-1µg of
genomic DNA was sheared with the Covaris S220 (Covaris,
Woburn, MA, USA), followed by end-repair, 3’ end Adenylation
and ligation with paired-end adaptors. Post ligation, 15µl of the
purified libraries were PCR amplified, all the above steps were
performed using the Agilent SureSelectXT kit and every step was
followed by DNA purification on a magnetic stand using
AMPure XP Reagent beads (Beckman Coulter Genomics,
Danvers, MA, USA). Afterward, size (approx 225-275 bp) and
quantity (>800ng) were verified employing the Agilent
November 2021 | Volume 11 | Article 723162
TABLE 1 | A table summarizing clinical data of the samples in the study.

Characteristics Number of Samples

Age (years) <= 55 25
> 55 21

Survival Status Alive 23
Dead 14

Gender Female 15
Male 31

Tumor Stage T1 9
T2 5
T3 5
T4 11

Habits Smoking 18
Alcohol 8
Quit 3
None 15
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Tapestation 2200 system followed by hybridization and probe
capture using Exome SureSelect Human All Exon V6+UTR
probes (Agilent). Dynabeads MyOne Streptavidin T1 magnetic
beads (Thermofisher). Finally, Captured Libraries were amplified
with 12 cycles of PCR using indexing primers containing 8-bp
indices, followed by an amplification using AMPure XP beads
(Beckman Coulter). Final libraries were checked for quality (each
fragment size approx. 300-400 bp) and quantity using Agilent
Tapestation 2200 system.

Whole Exome Sequencing and Analysis
The libraries were multiplexed and pooled followed by a 100-bp
paired-end sequencing with ~100X exome coverage depth per
sample (Approx. 60-90 mb exome size) on the Illumina HiSeq
2500 platform. The exome sequencing raw data is available at
https://www.ncbi.nlm.nih.gov/sra/PRJNA740146. Filtered high
exome-sequencing reads generated on HiSeq 2500 were
analyzed using FastQC for quality checking (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Bowtie2 (17)
aligner was used for alignment and mapping of reads against
the hg38 version of the human genome, with default parameter
settings. SAMtools (18) was used for conversion of SAM files to
BAM files. PCR duplicates were removed using Picard tools
(http://broadinstitute.github.io/picard/). Variant calling was
performed using the best practices Mutect2 module of GATK
(Genome Analysis Toolkit, Broad Institute) including local
realignment around insertions/deletions and base-quality score
recalibration (19). Duplicate removed alignment files were
subjected to another format Variant calling using pileup
utilities from BCFtools (18). Variants common to pileup
approach and GATK process, and the ones being spanned by
more than 3 reads were annotated using the SnpEff and SnpSift
tools (20, 21). Only the variants not present in the 1000G
database were considered for further analysis (22).

Obtaining Mutation Profiles
All the vcf files were primarily processed using shell scripts.
Mutation frequency of genes known to be implicated in Head
and Neck cancer was depicted using a waterfall plot from the R
package GenVisR (23). The samples were grouped into
categories based on age (0-40 yrs.; 40-50 yrs.; 50-60 yrs.; 60-70
yrs.; 70-80 yrs.), habits (alcohol; tobacco; all; none; quit), stage of
tumor at the time of biopsy (early; advanced; recurrent) and site
of tumor (alveolar; buccal mucosa; tongue). Total number of
mutations, number of high impact mutations and number of
protein coding mutations (high impact + missense variants), per
sample, from each category were obtained. Mutation signatures
were obtained using the SomaticSignatures package of R (24).
CNV analysis was performed using CNVkit (25).

Driver Gene Analysis
To predict the driver genes, vcf files of all the samples were
merged into a single file using the BCFtools toolkit which
included all the mutations present in each and every sample.
This merged vcf file was given as an input to OncodriveCLUSTL
for driver gene analysis (24, 26). The resulting genes were filtered
based on their p-value significance and frequency of mutation.
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Further we checked for the effect of mutations being harbored by
these genes on patient survival and it was seen that none of the
mutations showed a significant difference in survival. We also
checked for an association between expression patterns of these
genes and patient survival from the GEPIA database (24, 26, 27)
and the genes showing a significant correlation were further
shortlisted followed by generating a lolliplots of the mutations
present in the shortlisted genes using G3Viz (28).

IRAK1 Structure Modeling and Validation
The IRAK1 protein (identified as one of the driver genes)
structure and its two mutants S532L and F196S were modeled
using the 712-residue sequence from UniProt (UniProt ID:
P51617) on the Robetta web server (29). The structure
obtained is further energy minimized on Swiss-PdbViewer
using a GROMOS 43B1 force field to repair distorted
geometries (30). The energy minimized protein structure of
IRAK1 was further validated using the SAVES webserver
(https://saves.mbi.ucla.edu/) which employs tools such as
ERRAT (30, 31), PROVE (32), PROCHECK (32, 33),
WHATCHECK (34) and VERIFY 3D (35). Site Directed
Mutator (SDM) and I-Mutant 2.0 (36, 37). Webservers were
used to predict the effect of mutation on the stability of the
protein structure and the Gibbs free energy change(ddG).
Autodock 4.0 was used to blind dock the ligand JH-X-119-01
(a selective inhibitor for IRAK1) (36–38) with the wild type
IRAK1 structure as well as the S532L and F196S mutant
structures to study the change in ligand binding upon
mutation. The active site of IRAK1 (Serine/Threonine Protein
Kinase) corresponds to residues 336-348. The binding site of
IRAK1(Protein Kinase, ATP Binding Site) corresponds to
residues 218-239 as indicated by InterPro. LigPlot+ software
(36–39) was used to visualize the ligand interactions. To
understand the change in interaction between the residues in
the protein structure upon mutation, Residue Interaction
Analysis was performed. RING web server was used to
generate a Residue Interaction Network (RIN) wherein the
nodes represent the residues and the arcs represent the
physico-chemical interactions (40). The network thus
generated is visualized in Cytoscape to study the change in
interactions of residue 196 and 532 upon mutation (41).

Survival Models
Mutation profiles and the associated clinical data of 178 Oral
cancer patients from Indian Cohort were downloaded from the
ICGC database. For survival analysis, ICGC and inhouse data
were clubbed. To associate demographic and clinical parameters
with survival time and to assess the effect of variants on it,
construction of Kaplan-Meyer plots and hazard ratio (HR with
95% CI) calculations were performed by employing univariate
and multivariate Cox analysis using the survminer (https://
github.com/kassambara/survminer) and survival (42) packages
of R. From the inhouse data, a total of 36 genes were shortlisted
based onan initial scrutiny, 19fitting the dead signature criteria and
17 fitting the alive signature criteria, 6 genes were shortlisted based
on the significant association of their mutation profiles with alive
and dead samples (Chi-square analysis performed in R) and an
November 2021 | Volume 11 | Article 723162
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association of expression patterns with survival analysis from
GEPIA database (Gene Expression Profiling Interactive Analysis).
Further functional annotations were performed using information
databases such as UCSC and GeneCards.

Lasso Regression Model
LASSO stands for Least Absolute Shrinkage and Selection
Operator. It is a linear form of regularization technique (to
minimize the error because of overfitting of data while
constructing a model). As the name suggests, it uses a
“shrinkage/penalty term(lambda)” in its regression equation to
be able to predict with accuracy and precision.

Mathematical equation:
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where, l, the penalty factor (or the shrinkage parameter) and
b are the coefficients related to p features (43). The significant
genes were found by computing the coefficients of Lasso
regression of the cox survival data. This was achieved by using
the “sksurv” or “scikit-survival” module of python, present as a
part of “scikit-learn”.
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This equation represents the “elastic net regression”. Here a is
the same as g which is mentioned in the Lasso regression
introduction equation. By giving a l1_ratio value of 1.0 we are
eliminating the Ridge regression term (second term) and only
keeping the Lasso regression term. Steps followed for each dataset;
1. The dataset was processed by “CoxnetSurvivalAnalysis” with a
subset of 100 random alpha values, a l1_ratio of 1.0(complete Lasso
regression), alpha_min_ratio is set to auto depending on the no. of
samples and no. of features. This gives us a subset of coefficients
corresponding to that particular alpha value. To obtain the best
alpha value by a 5-fold cross validation, we use the following
modules and their utility classes a. Sklearn.pipeline.make_pipeline
b. sklearn.preprocessing.StandardScaler c. sklearn.model_
selection.KFold d. sklearn.model_selection.GridSearchCV. After
the best alpha value for the dataset is obtained, we obtain the
coefficients for all the features pertaining to that alpha value.

Statistical Analysis
Chi-square analysis was performed to determine the significance
in difference between number of alive and dead patients per gene.
Survival time was defined as days from the initial diagnosis to the
death or the last follow-up. The hazard ratio and their 95%
confidence intervals (95% CI) for the associations of clinical
variables with survival time were calculated by univariate Cox
proportional hazard analysis using the survival and survminer
packages of R (42). The associations between SNPs and patient
survival (for the additive 4 dead and 3 alive gene models) were
analyzed by multivariate Cox regression models. The difference
Frontiers in Oncology | www.frontiersin.org 4
in survival time between different patients based on genotypes of
the dead and alive signature genes, using an additive model, was
assessed by Kaplan-Meier curves, the significance of the
influence of the clinical parameters and the additive gene
models on patient survival was determined using log-rank test.
Receiver Operating characteristic (ROC) curve was constructed
and the area under the curve (AUC) was used to assess the
performance of the model. The results were considered
significant if the p-value was less than 0.05.
RESULTS

Identification of Mutation Burden and
Signatures Associated With the Age and
Stage of HNC Tumor
Variant analysis was performed for 50 Head and Neck Squamous
Cell Carcinoma (HNSCC) tumor samples using exome-seq. The
depth covered per sample was approximately 100X with an
average of 61 million reads (Supplementary Table 1). To
identify if there was a chromosome bias for mutations, we
analyzed the mutations from all the samples. The number and
density of mutation was highest on ChrX (average 794 variants)
followed by Chr1 (average 400 variants), while chr18 had the
least number of variants (average 60 variants) (Figure 1A).

To check whether the number of mutations correlate with
disease progression, habit and age of the individual, we
catalogued the number of mutations per individual, habit and
age. On comparison across different age groups, we observed the
lowest number of total variants (approx. 3000/sample) in
patients aged < 40 years, while the number was as high as
5000 variants/sample in patients belonging 70-80 years of age
(Figure 1B). Patients consuming alcohol or tobacco had
relatively a smaller number of variants (approx. 2500/sample)
as compared to the patients consuming both (approx. 3000/
sample) and the ones having quit these habits, surprisingly,
showed the least number of mutations (Figure 1C). Recurrent
tumor samples obtained from the buccal mucosa and alveolar
sockets harbored the maximum number of variants (approx.
5000/sample) as compared to tumors of other sites in the oral
cavity (Figure 1D). Interestingly, a stage-wise distribution
showed that tumors at the earliest stage have the highest
number of mutations, followed by a gentle decline in the
number of variants in the case of advanced and recurrent
stages (Figure 1E). We further investigated mutational
signatures mutational burden/Mb in tumors from patients with
different habits and mild distinctions were observed. C>T
followed by T>C mutations were seen in high abundance
across all the habits with the highest being in the quit category,
while the patients with alcohol consumption showed a relatively
higher C>A signature and the ones with tobacco consumption
had higher levels of C>G mutation as compared to other habit
categories (Figure 1F). Patients consuming both alcohol and
Tobacco displayed the maximum tumor mutational burden
(TMB) and yet again, the samples having quit these habits
show the lowest TMB (Figure 3A).
November 2021 | Volume 11 | Article 723162
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Unique Signature in Cell Cycle, Apoptotic
and Wnt Signaling Pathway Segregate
Tumors of the Buccal Cavity From Tongue
and Alveolus
A set of genes known to harbor somatic mutations and classified
as driver genes in HNSCC were identified and a waterfall plot
generated (Figure 2). As expected, TP53, a known tumor
suppressor, and TP63 had the highest frequency of mutation
(greater than 60%) in the HNSC cohort. Transcription factors
like NOTCH1 (16%) and KMT2B (16%), UNC13C (14%),
another tumor suppressor, ERCC2 (14%) involved in
nucleotide excision repair pathway, were recurrently mutated,
whereas genes like CDKN2A, MLH1, FGFR1, EGFR, etc. had a
less than 10% mutation frequency. Interestingly, CCND1, known
to be associated with HNSCC due to copy number alterations,
and APEX1 which is known to be associated with a high risk of
HNC showed negligible mutation frequency (Figure 2). Notably,
among variations in the coding region, missense variants, stop
gained variants, and structural interaction variants showed the
highest frequency (Figure 2).

We categorized 19 patients based on anatomical sites,
alveolar, buccal mucosa, and tongue and constructed waterfall
plot. The genes uniquely mutated in each category were from a
Frontiers in Oncology | www.frontiersin.org 5
known list of proteins belonging to various categories namely,
tumor suppressors, WNT signaling, Cell cycle, Apoptosis, EMT,
Replication, etc. Tumor site data was available for only 19 of the
patients. Tumour site data was available for only 19 of the
patients. It was seen that APC4, a gene involved in Cell cycle
progression, harboring a structural interaction variant showed
the highest frequency being present in 18 out of 19 patients
across all the tumor sites. 50-60% of the samples showed
mutations in genes involved in Apoptosis, like CASP10, ATF4,
PARP1, and TNFSF10, most of which were either missense or
structural interaction variants, respectively. The alveolar
tumours were characterized by mutations in cell cycle genes,
PRKCG, RBL2, RFC2, WEE1, MCM2, CDKN2A, SMAD4,
MCM3, and PRKDC proto-oncogenes like HRAS, NRAS,
LMNB2. Mutational signatures in the patients with buccal
mucosa category belong to the Apoptosis pathway (MAPK10,
CTSW, DAXX, ATM, HTRA2, BIRC3, CASP6) and WNT
signaling pathway (WISP1, NOTUM, NFATC1, ROR2,
CTNNB1, CACYBP) and EMT pathway related genes, namely,
RNASEH2B, DAB2IP, MMP9 and SNAI were observed.
Interestingly, the mutation in transcription factor TFDP1
involved in the cell cycle was observed only in 2 samples both
of them had recurrence. The least number of genes with
A B

C

D

E

F

FIGURE 1 | (A) A boxplot showing an aggregate of number of mutations in every sample per Mb of across all the chromosomes. It can be seen that chrX shows
the highest number of mutations with the highest number of variations between the samples, with the next highest being chr1. X-axis shows the chromosome
numbers and Y-axis depicts the number of mutations per Mb. (B–E) The scatter plots here show varying patterns of average number of all mutations and average
number of coding mutations per category. (A) shows the average numbers across age groups, (C) shows the average numbers across patient habits, (D) shows
average numbers across tumor sites and (E) shows the numbers across stages of tumors. (F) This is a bar graph showing the relative contribution of 6 mutational
signatures in patients categorized by habits.
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mutational signatures were obtained in tongue cancer. Tongue
cancer was characterized by unique mutations in the cell cycle
genes MCM4, RNASEH2A, HDAC1, CCNB1, WNT signalling
pathway LRP5, NFATC4, and WNT11, and TP53 tumour
suppressor gene (Supplementary Figure S1). We also observed
patient specific mutation within each category depicting
heterogeneity in each of the samples.
Combination of Radiotherapy,
Chemotherapy, and Surgery Is Associated
With Worse Patient Survival Compared to
Surgery and Chemotherapy or Surgery
and Radiotherapy
Differential survival within different clinical properties was
illustrated using Kaplan-Meier plots. Within the habit’s
category, significantly (p=0.0083 < 0.01) low survival was
observed for patients who consumed alcohol and tobacco,
compared to patients having neither and the ones who have
quit (Figure 3B). Among various forms of treatment, patients
having undergone only Surgery and the ones with Surgery +
Radiotherapy had a significantly higher probability of survival as
compared to the patients having been administered with all
three, Chemotherapy + Surgery + Radiotherapy (p<0.0001)
(Figure 3C). For comparison, Oral cancer whole exome data
of the Indian Cohort consisting of 178 samples, was downloaded
from the ICGC database along with the clinical parameters of the
Frontiers in Oncology | www.frontiersin.org 6
patients. On clubbing the in-house and ICGC survival data, it
was observed that patients that underwent surgery + radiation
therapy showed significantly better survival (p=0.00036) as
compared to the ones with only surgery and surgery +
chemotherapy + radiation. In conclusion, the samples that
were given surgery + chemotherapy + surgery showed the
lowest probability of survival in both scenarios. As expected,
the patients with no treatment administered exhibited the least
survival probability (Figure 3D). The tumor stage of patients
along with recurrence was also analyzed and it was seen that
patient showing recurrence at any stage of the tumor displayed a
significantly lower probability of survival (p<0.0001) with the
recurrent T4 stage showing the lowest of survival as compared to
the patients with stages without recurrence. A similar trend was
seen in the inhouse data but the result was only mildly significant
(p-value=0.07) (Figure 3E, Supplementary Figure S2A). A
multivariate Cox proportional hazards analysis of the clinical
parameters revealed that the tumor stage and treatment (Hazard
Ratio 1.6 and 2.0 respectively) significantly (p-value < 0.001)
influence the patients’ risk of death (Figure 3F).

Identification of IRAK1 and UMODl1 as
Driver Genes and Potential Therapeutic
Targets
After getting a general idea of the mutation spectrum and
survival trends associated with clinical parameters, we checked
for oncogenic driver genes using OncodriveCLUSTL. Among the
FIGURE 2 | Waterfall plot depicting mutation frequency of genes known to be implicated in HNSCC across patients with the highest frequency being that of TP53
and the lowest being that of ACRV1 along with a varying frequency across tumor suppressors, cell cycle genes, DNA damage and repair genes etc.
November 2021 | Volume 11 | Article 723162
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significant genes obtained, top two genes THAP7 and CDK3 (p-
value=1.11e-19, had mutations present in almost all the samples)
(Figure 4A). THAP7 harbored a missense mutation which was
present in 48 out of 51 samples whereas CDK3 had a downstream
gene variant being a part of CDK3-TEN1 fusion present in 42
samples. Further, in order to screen the other genes from the
output, we started by referring to the GEPIA database. From the
significant list of genes, we checked for the ones displaying a
significant difference in survival from the HNSCC transcriptome
dataset in GEPIA and we obtained two driver genes that had a
significantly high frequency of mutations across all the patients.
The first was IRAK1, with two missense mutations, present in 21
and 19 patients respectively (Figure 4D), on either side of its
kinase domain with a p-value for its mutation cluster being
9.70e-08 (Figure 4F) and significant differential survival from
GEPIA (Hazards Ratio = 1.3, p-value = 0.038) (Figure 4C). The
second was UMODL1 with one missense mutation in its EGF-
like calcium-binding (EGF_CA) domain, present in 29 patients
(Figure 4E) as part of a significant mutation cluster with p-value =
1.11e-19 (Figure 4F) and yet again, a significant differential survival
from GEPIA (Hazards Ratio = 0.74, p-value = 0.029) (Figure 4B).
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Mutations in IRAK1 Lead to Structural
Changes Impacting Stability and Binding
of an Inhibitor
We chose IRAK1 for further analysis based on its function as a
modulator of the innate immune system and its association with
survival. It is known that cancer cells escape the immune system
due to faulty signalling.

The IRAK1 protein structure and its two mutants S532L and
F196S were modeled using the 712-residue sequence from
UniProt (UniProt ID: P51617) on the Robetta web server. The
modeled structure was then energy minimized, validated and the
effects of the two mutations on stability and Gibbs free energy
were analyzed. The energy of the structure modeled was found to
decrease drastically upon energy minimization, from -22736.7 to
-33353.3 for wildtype, from -22663.424 to -33286.121 for S53L
and from -23651.352 to -33606.613 for F196S, indicating better
structures for all the three (Table 2). The overall quality factor of
the three structures, as predicted by SAVES web server was above
94, with the Wild structure having a factor of 96.1207 and S532L
and F196S structures having a quality factor of 95.265 and
94.1176 respectively. In the case of S532L, the stability of
A B C

D E F

FIGURE 3 | (A) A boxplot of average tumor mutation burden of patients categorized by habits. Patients having both the habits of alcohol consumption and tobacco
usage, show the highest amount of average tmb, lowest is seen to be in the patients with alcohol consumption and those who have quit either of the habits.
Surprisingly, it is seen to be high in the patients having none of the habits. (B–E) Kaplam-Meier plots showing significant differential survival probabilities between
different clinical categories. (B) This plot shows a significantly lower survival in patients with the habit of smoking as compared to any other category. (C) This
Kaplan-Meier plot depicts a significantly lower survival probability in patients with a combined treatment regimen of chemotherapy, radiation therapy and Surgery as
against any other individual or combined treatment type. This pattern gets reflected again in (D) where the data from ICGC Indian oral cancer cohort has been
combined with in-house data and finally, (E) shows A differential survival plot of patients from ICGC and in-house data showing a significantly lower survival
probability in patients with recurrent tumor stages as against their non-recurrent counterparts. (F) A cox-proportional hazard ratios forest plot, depicting the fact that
there is a significant difference between various categories tumor stage and treatment regimens.
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IRAK1 structure increased up to a ddG value of 1.53 and
decreased to a value of -0.52 for the F196S mutant as shown
by Site Directed Mutator (SDM). Similar results were obtained
using I-Mutant 2.0 (Table 3). JH-X-119-01, an inhibitor of
IRAK1 (36) was docked on to the wild type IRAK1 structure as
well as the S532L and F196S mutant structures to study the
change in ligand binding upon mutation. The active site of
IRAK1 (Serine/Threonine Protein Kinase) corresponds to
residues 336-348. The binding site of IRAK1(Protein Kinase,
Frontiers in Oncology | www.frontiersin.org 8
ATP Binding Site) corresponds to residues 218-239. JH-X-119-
01 interacts with Tyr236, Val235, and Arg228 on the wild type
structure with a binding energy of -6.66 (Figure 5A, Table 4) and
residues Arg232 and Tyr236 on the F196S mutant structure, with
a slightly reduced binding energy of -5.46 (Supplementary
Figure S3A, Table 4). The ligand did not have any favorable
interactions with active site or binding site residues in the S532L
mutant structure (Table 4). Ser532 on the wild type structure
interacts with residue Ala535 only (Figure 5C) but Leu532 on
the mutant type structure interacts with three residues (Val528,
Ser536 and Ala535) (Figure 5D). This increase in residue
interaction could explain the increase in stability upon
mutation. Phe196 on the wild type structure interacts with
three residues (Pro13, His17 and Phe18) but Ser196 on the
mutant structure interacts with only one residue (Tyr20). This
loss of two interactions could explain the decrease in stability
upon mutation (Supplementary Figures S3B, C).

Multivariate Prediction of Prognostic
Markers Based on Survival Trends
To identify survival associated markers, we used two approaches:
we had the survival details of 37/51 samples, of which 23 were
alive and 14 dead. To start with, we defined cut-off percentages
for mutations to be considered as alive or dead signatures. We
considered a particular variant as an alive signature only if the
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FIGURE 4 | This entire panel of figures represents results from driver genes prediction and the subsequent analyses performed. (A) This is a quantile plot generated
by oncodriveclutstl that depicts significant driver genes predicted as per frequency of mutations. This plot shows THAP7 and CDK3 as the most significant driver
genes. (B, C) Show expression-based survival plots of two more driver genes, UMODL1 and IRAK1, respectively, from the HNSCC dataset in GEPIA2 database.
Both have a significant difference in survival probability between high and low expression categories. (F) Table showing the details of the UMODL1 and IRAK1
mutations. It can be seen that the missense mutations in both of them have been previously reported, are deleterious and probably damaging based on the SIFT
and PolyPhen values. The p-value in the last column is the significance measure from oncodriveclustl prediction. (D, E) Are lollipop plots depicting the amino acid
position and the number of patients of the missense mutations in UMODL1 and IRAK1 linear protein structures respectively.
TABLE 2 | Change in structure energy upon minimization.

Molecule Type Structure Energy before
minimization (in KJ/mol)

Structure Energy after
minimization (in KJ/mol)

Wild -22736.748 -33353.344
S532L -22663.424 -33286.121
F196S -23651.352 -33606.613
TABLE 3 | ddG values for S532L and F196S mutants on SDM and I-Mutant 2.0.

Mutation S532L F196S

SDM 1.53 -0.52
I-Mutant 2.0 1.02 -1.62
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variant in a gene was present in at least 70% of the alive patients
(~16/23) and present in utmost 40% (~6/14) or 50% (~7/14) of
the dead patients. Similarly, for a variant to be considered a dead
signature, we stated that it should be present in at least 60% of the
dead patients (~10/14) and utmost 40% (~9/23) to 50% (~12/23)
of the alive patients. Additionally, we also selected genes having
mutations exclusively in alive or dead patients. By following
these criteria, we shortlisted 17 genes for the alive signature and
19 genes for the dead signature (Supplementary Table 1). To
screen these 36 genes further, we again referred to the HNSC
differential survival dataset, based on the transcriptome, from the
GEPIA database which resulted in 6 genes (Supplementary
Figure S4). For alive signatures, we identified mutations in 3
genes, BCAP31, TCEB2 and NID1. For dead signatures, we
identified missense mutations in 3 genes, AHRR, ZNF568 and
CEP112. On performing a Chi-squared comparison test, there
Frontiers in Oncology | www.frontiersin.org
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was a significant difference found between the alive and dead
percentages of individuals for these 6 genes (Figure 6A). To
check for differential survival concerning these 6 genes, Kaplan
Meier plots were generated. Out of the 6 genes, NID1 was the
only gene that showed a significant differential survival between
patients with mutations present in NID1 and those with no
mutation (p-value=0.014) (Figure 6B). The rest of the 5 genes,
individually, did not show any significant differential survival
with respect to presence or absence of mutat ions
(Supplementary Figures S5A–E), though BCAP31 showed
borderline significance in its Kaplan-Meier plot (p-
value=0.093) (Supplementary Figure S5A), and a significant
difference in survival on clubbing it with TP53 a known tumor
suppressor (p=0.031) (Supplementary Figure S5F). Next, on
clubbing the 3 genes alive and the 3 dead signature mutation data
separately, we find a significant difference in survival (p-
value=0.0048) for the dead signature as compared to the alive
signature (p-value = 0.073) (Supplementary Figures S5G,
Figure 6C). Additionally on performing a Multivariate Cox
Proportional Hazards analysis of all the Clinical parameters
clubbed with all the genes, it was observed that treatment
group variables have a significant influence on patients’ risk of
death (HR=18.7, p-value=0.044) (Supplementary Figure S5H)
and in cases where clinical properties were clubbed with the
individual genes one by one, only TCEB2 and Treatment group
variables, showed a significant influence on patient’s probability
of survival (HR=0.013, p-value=0.021) and their risk of death
(HR=17.003, p-value=0.002), respectively (Supplementary
Figure S5I). Finally, we looked for the survival probabilities of
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FIGURE 5 | (A) A ligplot interaction image showing the interaction of JH-X-119-01 an IRAK1 inhibitor interacting with 3 residues of the wild type IRAK1 molecule.
(B) Ligplot interaction image showing the interaction of JH-X-119-01 with just one residue of the S532L mutant IRAK1 molecule. The interactions in a and b have
been marked in red circles. (C) A cytoscape screen shot showing the interaction of just two residues within the IRAK1 wildtype molecule. (D) Cytoscape screen shot
showing increased interaction of 4 residues within the S532L mutant IRAK1 molecule.
TABLE 4 | Docking energies and ligand-residue interactions.

Mutation
Type

IRAK1 residues JH-X-119-01 interacts with Binding
Energy

Wild Arg228 -6.66
Val235
Tyr236

F196S Thr141 -5.46
Arg232
Tyr236

S532L None of the docking conformations interacted with the
active site or the binding site
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these 6 genes in the HNSCCWEX data from the TCGA database
and none of them showed a significant difference in survival. On
analyzing the initial 36 genes again, independent of the GEPIA
transcriptome data, we found significant differences in survival
trends of 6 genes with an alive signature, MRPL23, TNS2,
SPECC1, TBP and PLXNA3, and 2 genes, MARCH10 and
COL4A6 as dead signature. The second approach was LASSO
regression detailed below.

Lasso Regression Models for Prediction of
Prognostic Markers
In order to additionally screen for prognostic genes, we used
LASSO regression to perform reduction analysis on two sets of
genes; 1) The set of 36 genes obtained by applying our own cut-
off criteria for dead and alive signatures, 2) Genes with only
missense mutations present in at least 4 patient samples. The
datasets were analyzed using python’s Scikit-learn module. The
data was processed using 100 random penalty (alpha) values for
10000 iterations to obtain the best alpha value after 5-fold cross-
validation. The best alpha values for both the datasets were 0.09
and.0817, respectively. On obtaining the best alpha value, we
further obtained the coefficients for that particular alpha value
which determine the significance of the associated genes. The
Frontiers in Oncology | www.frontiersin.org 10
genes with coefficients of 0 were eliminated. From the first
dataset, we obtained MRPL23 (-0.85), COL4A6 (0.45), TBP
(-0.45), MARCH10 (0.38), SPECC1 (-0.35), TNS2 (-0.3)
CEP112 (0.28), and NID1 (-0.3) as the genes with significant
variants (Figure 7A). The same signatures were obtained from
the second dataset: MRPL23, TNS2, NID1, and MARCH10
(Figure 7B). Individual Kaplan-Meier plots of these genes
showed significant di ffe rences in surviva l as wel l
(Supplementary Figures S6A–C). Taking the genes common
to the LASSO regression results using the two datasets and our
initial independent scrutiny of significant survival genes, we
observe that MARCH10, MRPL23, NID1 and TNS2 are
statistically robust genes for a prognostic model prediction. All
the above results were confirmed using the R package glmnet. To
check if MRPL23, TNS2 and NID1 would act as better alive gene
signatures, we combined the survival data of all three and the
difference in survival was significant (p-value < 0.0001)
(Figure 6D). Adding MARCH10 to the existing dead signature
(AHRR, ZNF568 and TCEB2), resulted in a significant 4 gene
signature (p-value = 0.012) (Supplementary Figure S6D). To
check the accuracy of both the models, we performed and
Receiver Operating Curve analysis (ROC) for both of them
and the 3 gene alive model ROC curve resulted in an accuracy
A C E
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FIGURE 6 | (A) A mosaic plot for chi square test showing significant difference between the number of alive and dead patients harboring mutations in BCAP31,
TCEB2, AHRR, ZNF568, CEP112 and NID1. (B) A Kaplan Meier plot showing significant difference in survival probability between patients with and without NID1
mutation. (C, D) Are differential survival plots for the 3 dead and 3 alive gene signatures respectively. In (C) AH stands for AHRR, ZN stands for ZNF568 and CE
stands for CEP112 where the difference in survival probabilities is much more significant with p=0.0023. In (D) NI stands for NID1, MR stands for MRPL23, and TN
stands for TNS2, and the difference in survival between presence of mutations in different combinations of genes is significant with p<0.0001. (E) This is an ROC
curve representing the 3 gene dead signature model with a high accuracy of 79% (AUC=0.79). (F) An ROC curve representing the 3 gene alive signature model with
an even higher accuracy of 91% (AUC=0.91).
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of 91% (AUC=0.91) and the 4 gene dead model (including
MARCH10) had an accuracy of close to 80% (AUC=0.79).
These results confirm the presence of two robust and accurate
survival models; a 3 gene alive signature; NID1, MRPL3 and
TNS2 and a 4 gene dead signature, AHRR, ZNF568, CEP112 and
MARCH10 (Figures 6E, F). On comparing results from models
of three sets of iterations, i.e., 10000, 1000, and 100 we observe a
recurring occurrence of 2 genes EDDM3A, a secretory protein,
and TOR1AIP1, nuclear laminar protein involved in the mTOR
pathway (Figure 7B). Interestingly, both the genes also showed
significant differences in survival when plotting Kaplan Meier
graphs individually (Supplementary Figure S6E, F).

Identification of a Novel and Deleterious
Variant in Cancer Gene Census in Indian
HNSCC
To check for the presence of novel variants in our data, from the
merged vcf file of all the samples containing all the mutations, we
separated out the first 5 columns namely the chromosome, the
position of the mutation, reference allele, alternate allele, and the
quality score and uploaded it onto the Ensembl Variant Effect
Predictor (VEP). From the output file of VEP we filtered out the
variants having neither a dbSNP -rs ID nor any COSMIC ID
associated with it and termed these 10767 variants as novel
variants. Further, we extracted pathogenic variants based on the
“deleterious” factor from Sift and “probably_damaging” factor
from the PolyPhen databases and obtained a list of unique genes
associated with 114 novel variants of which 35 were oncogenes
Frontiers in Oncology | www.frontiersin.org 11
and 11 were tumor suppressors (Figure 8A, B). On referring to
the HNSCC whole exome data of these 114 genes from TCGA
database we found that only 8 of them were a part of the Cancer
Gene Census of which only 3 genes, AKT1, LRP1B, and SPECC1
showed a significant difference in survival from the TCGA whole
exome data associated with these genes (Figure 8A). Further, we
looked into the association of the variants and the survival of the
above-mentioned 3 genes in our data and found that SPECC1
showed a significant difference in survival (p=0.035)
(Supplementary Figure 7A). Surprisingly, the SPECC1 variant
that showed significant survival difference was an intron variant.
We performed a network analysis of 114 genes associated with
novel variants using the STRING and REACTOME database.
Interestingly, the pathways with variants belonged to Collagen
biosynthesis and degradation, mTOR signalling, and ECM
signalling pathways (Figure 8C, D , Supplementary
Figure 7B). The gene AKT1, a known oncogene, had the most
significant number of interactions, interconnecting all the three
major clusters observed.

Copy Number Analysis
CNVkit was used to perform CNV analysis of all the samples.
Varying patterns of copy number gains and losses were seen in
all the chromosomes across all the samples (Figure 9A). Based
on initial results, 10 samples were excluded from further analysis
as their patterns were collectively distinct from the rest 41. The
remaining 41 samples chr3, chr7, chr8, chr17, chr19, and chrX
(Figure 9C) showed distinct variations in copy number across
A B

FIGURE 7 | (A) Bar graph showing genes obtained as significant prognostic markers from Lasso regression algorithm of the initial 36 alive/dead genes. (B) Bar
graph showing genes obtained as significant prognostic markers from Lasso regression algorithm of all genes with missense mutations, run using 100 random alpha
values and 10000 iterations. It is interesting to note that MRPL23, TNS2 and MARCH10, marked with red arrows, are common to both the results.
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their chromosome lengths. On continuing with chr3, which had
the most striking number of variations, it was seen that within
the chromosome, samples 21, 40, 41, 43, 50, 65, 71, and 72
displayed the most significant difference in copy number gain
and loss between extreme ends of the chromosome (Figures 9B,
C). Further, the last 70 Mb region of the chromosome in these 8
samples was analyzed and it was seen that ZBTB38, ATP1B3, GK5,
ZIC4, AGTR1, GYG1, and SERP1 genes showed a significant gain in
Copy number (Figure 9D).
DISCUSSION

One of the main objectives of our study was to identify
prognostic signatures linked to survival prediction in the
Indian HNSCC cohort. In HNSCC, mutations in a known set
of tumor suppressors and oncogenes, namely TP53, CCND1,
NOTCH1, PIK3CA, MYC, CDKN2A, PTEN, and FBXW7,
have been reported, but most of them are not associated with
survival (4, 44). Several studies have reported a correlation of
survival with specific signatures using either exome, or
transcriptome, or small RNA signature (13, 45, 46). Several
predictive models using machine learning algorithms such as
random forest and lasso- cox regression have been developed to
identify genes associated with treatment outcomes, survival,
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and prognosis of head and neck cancers (47, 48). There are no
studies from India correlating survival with gene signatures. We
have utilized LASSO-COX and developed a new method using
integrated variant signature and gene expression to identify
survival-associated genes. The variants identified from exome-
see segregated the cancer of the buccal cavity from the tongue
and alveolus. Previous studies from the Indian subpopulation
on oral cancer and oesophageal cancer have identified
mutations specific to the population (16, 49). We have
identified novel mutations in AKT1, LRP1B, and SPECC1.
Network analysis using all the novel variants identified
Collagen biosynthesis and degradation, mTOR signalling, and
ECM signalling pathways.

Preliminary variant analysis revealed that of the genes known
to be mutated in HNSCC patients, TP53 and TP63 were the ones
with the highest frequency of mutation. Both these tumor
suppressors are known to be mutated in HNSCC and loss of
expression of the same has been linked to cancer progression
while TP63 is known to promote survival in HNSCC patients (4,
50, 51). Most of the other proto-oncogenes likeNOTCH1, FGFR1,
EGFR, CCND1 or tumor suppressors like CDKN2A, ARID2 and
MLH1, a mismatch repair gene, that are known to be frequently
mutated in oral or head and neck squamous cell carcinomas in
general were seen to have less than or equal to 20% mutation
frequency. The frequency of these proteins being lower than
usual, suggests heterogeneity especially in the Indian cohort.
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FIGURE 8 | (A) A flowchart explaining the pipeline followed for prediction of novel deleterious variants from in-house data. (B) This diagram shows the classification
of 114 novel deleterious variants into 11 Tumor suppressor genes, 35 oncogenes and 2 DNA damage and Repair genes. (C) This figure shows the distribution
of the 114 novel deleterious variants into 3 significant pathway interaction networks, namely Collagen Biosynthesis and Degradation, mTOR signaling and ECM
Signaling. (D) A bar graph showing all the significantly mutated pathways by the number of genes mutated with the most significant pathway being receptor
tyrosine kinase signaling.
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On performing a tumor site-based signature analysis we came
across several interesting results. To start with, APC,
Adenomatous Polyposis Coli, a tumor suppressor in the WNT
pathways, previously seen to have very low mutation rates in
HNSCC was seen to have a structural interaction variant in 18
out of the 19 patients categorized. This suggests that the
mutation was an inactivating mutation, contributing to the
progression of HNC (52). Next, GPC4, Glypican 4, a known
regulator of WNT signaling, known to be downregulated in
breast cancer and ovarian cancer, and upregulated in colorectal
cancer was seen to be mutated in 50% of the patients (52–54).
The other genes with approximately 50% mutation frequency
WNT16, PARP1 and ATF4. PARP1 is known to have high
expression levels in oral cancer and hence a more than 30%
mutation frequency in our data, suggests an activating mutation
in all tumor sites (55). The role of WNT16, a part of the
canonical WNT signaling pathway family of genes, in cancer
progression remains unknown, although expression of WNT16
is downregulated in Basal cell carcinoma (56).

Alveolar signatures were associated with mutations in cell
cycle regulators such as PRKCG, WEE1 and RBL2. PRKCG and
WEE1, when upregulated, are known to be good prognostic
markers in Glioblastoma, while high mRNA levels of RBL2 are
known to be associated with HPV+ head and neck tumors (57).
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Oncogenes like FGFR1, HRAS, NRAS, and a tumor suppressor
CDKN2A are known to have mutations in HNSCC (4). Tumor
suppressor SMAD4, involved in the EMT pathway was seen to
have a stop gained mutation. It has been reported earlier that a
somatic LOHmutation was present in a high frequency of lymph
node metastatic tumors in HNSCC (58). The Buccal cavity
signatures revealed a mutation in the cell cycle associated gene
TFDP1, specific to the recurrent buccal sample. TFDP1
amplification has been associated with lung cancer in a
previous study and has been stated as a potential oncogene. Its
role in head and neck cancer is unknown (59). CASP8 and ATM
were the signatures present in buccal cavity. Mutation frequency
of 34% has been observed in CAPS8 gene which is also associated
with reduced survival in hnscc patients (60). Mutations in ATM,
which is a well characterized tumor suppressor has been
associated with oral cancer, lung cancer and breast cancer (61–
63). The presence of a missense variant in a buccal mucosa tumor
patient indicates that the mutation might be an inactivating
mutation. Apart from TP53, which has previously been identified
as a driver gene in oral tongue squamous cell carcinoma (64),
novel gene cluster specific to tongue cancer has been identified
which needs validation in larger cohort..

We investigated several potential prognostic markers based
on a correlation of mutations occurring in genes and their
A B
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FIGURE 9 | (A) A comprehensive heatmap showing copy number variation in all the samples across all the chromosomes. (B) Heatmap showing copy number
variation across the entire length of chr3 in all the samples. Samples 21, 40, 41, 43, 50, 65, 71, and 72 are indicated by a red arrow since they show the most
significant amount of variation amongst all the 41 samples. (C) A heatmap representing the above-mentioned subset of samples with a high amount of variation
towards the end of chromosome 3. The last ~70 Mb (150Mb-200Mb) have been highlighted with a green oval which have been zoomed into in (D).
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corresponding survival outcomes. A comparison with the
transcriptome data from the GEPIA database resulted in an
initial set of 6 genes, 3 genes as a survival signature and 3 as dead.
The most important finding out of the 6 survival signatures is the
third alive signature gene NID1. Apart from showing a
significant difference in survival from GEPIA, it was the only
one that showed a significant difference in survival with in-house
exome data. Nidogen 1 is a protein that interacts with several
components of the extracellular matrix and its overexpression is
known to correlate with drug resistance in ovarian cancer and
increased metastasis in women affected with Breast Cancer (65,
66). Also, from GEPIA, high NID1 levels correspond to low
survival probability, while patients with NID1 mutation show
higher probability in our dataset, which suggests that the
mutation is an inactivating mutation. Since the none of the
other individual genes showed any significant difference in
survival, we were encouraged to go back to our initial list of 36
genes and additionally screen through all the missense mutations
in the data. A lasso regression model was built using python and
R and the two datasets (36 genes and all missense mutations)
were screened in order to obtain significant prognostic markers.
From the algorithms and the initial curation results, we obtained
3 common alive signatures genes, MRPL23, TNS2 and NID1,
and four dead signatures, MARCH10, AHRR, ZNF568 and
CEP112. The individual association of survival probabilities of
MRPL23, TNS2, MARCH10 and NID1 was significant.

Interestingly combined association of dead signatures showed
a significant difference in survival. AHRR, an Aryl hydrocarbon
receptor repressor, a known tumor suppressor has been
associated with smokers in lung cancer patients in an
epigenetic manner (67, 68). A mutation in the gene
contributing to a dead signature suggests that its tumor
suppressor potential was inactivated. The second dead
signature gene was CEP112, a centrosomal protein involved in
cell division, known to play a key role in the maintenance of
genomic stability in association with BRCA1 (69) and ZNF568,
with the most significant contribution to the dead gene signature
with a particular mutation present in 12 dead and 10 alive
patients, indicating ZNF568 role in tumor suppression.

Two ROC models were built to assess the accuracy of the 3
gene additive alive and the 4 gene dead signatures and it was
observed that the alive signature was more accurate with an AUC
of 0.91 while the accuracy of the dead signature was 0.79. There
have been cancer studies where prognostic ROC models have
been greater than 0.65 but have rarely crossed 0.87, which
suggests that an AUC of 0.91 represents a significant predictive
model (70, 71). Combining two different methods and selecting
genes based on functionality rather than just the top signatures
gave better accuracy than alone any of the methods, suggesting
the potential robustness of this alternative approach towards
screening of prognostic markers.

From these different sets of results, it is noteworthy that the
predictive survival signatures are quite different when one
considers the only exome as compared to when it is considered
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in concert with transcriptome analysis. Since the focus was on
missense mutations, the same analysis also revealed targets with
clinical implications and survival. We are aware that the cohorts
for transcriptome and exome are not the same, exome is from
our in-house Indian cohort while transcriptome is from GEPIA,
representing mostly Caucasian population, nevertheless, the
expression pattern with some degree of difference, more or less
would be similar.

None of the Survival signatures showed significant survival
differences in the Caucasian HNSCC cohort, which suggests the
presence of population specific prognostic markers. We also
performed preliminary Copy number analysis and obtained a
signature differentiating a set of samples from another.
Correlations between the clinical data/survival parameters with
the copy number results are being investigated.

From the driver gene analysis, we saw that the second
mutation of IRAK1, S532L showed significant results. S532L
IRAK1mutant depicted the greatest deviation from the wild type
in Docking studies and Residue Interaction Studies. The
inhibitor (JH-X-119-01) was unable to interact with any active/
binding site residues on the S532L mutant while it formed
hydrogen bonds with the ATP binding site residues of the wild
type and F196S variant. S532L mutant residue had added
interactions with two residues which could have played a role
in blocking the binding of the ligand to the binding site of the
S532L mutant structure. F196S mutant residue had a loss of two
interactions but was able to provide the binding pocket for ligand
binding similar to the wild type. Further residue interaction
analysis with the range of active site and binding site residues
may shed light on the deviation in inhibitor binding behavior of
the S532L mutant from the Wild Type IRAK1. Hence S532L
seems to have a greater effect on the structure and ligand binding
and can be targeted for further studies.

The small sample size of patients in the study is a definite
shortcoming, but the use of multiple statistically significant
methods supporting the findings of our alternate screening
method, also resulting in a druggable protein target, reflects on
the potential robustness of our method but the signatures
obtained in this study need to be validated with a large set of
patient samples.
CONCLUSION

Exome sequencing and analysis of 51 HNSCC samples identified
tumor site-specific biomarkers and a recurrence signature. The
combined LASSO-COX and exome-transcriptome analysis of
mutational profiles with clinical data resulted in 4 dead and 3
alive gene signatures linked to survival. The three genes alive
signature identified can predict survival of HNSCC patients with
91% accuracy. We also identified novel mutations and a
druggable driver gene target IRAK1. However, our results need
validation with a larger sample size.
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Supplementary Figure S1 | A waterfall plot showing site wise signatures
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Supplementary Figure S2 | (A) A K-M plot showing difference in survival
probabilities between different stages of tumor. (B) A K-M plot showing significant
difference in survival probabilities between different types of chemotherapy
regimens.

Supplementary Figure S3 | (A) A ligplot image showing the interaction of JH-X-
119-01 with F196S mutant IRAK1 molecule, marked in red circles. (B) A cytoscape
image showing internal IRAK1 wildtype interactions. (C) Cytoscape image showing
a reduced number of interactions within the IRAK1 molecule.

Supplementary Figure S4 | A panel of KM plots from GEPIA showing significant
differences in survival probabilities of BCAP31, AHRR, ZNF568, TCEB2, CEP112
and NID1 based on high and low expression categories.

Supplementary Figure S5 | (A–E) Showing K-M plots of BCAP31, AHRR,
ZNF568, CEP112 and TCEB2 based on presence or absence of mutations. Note
that the differences in survival probabilities are not significant. (F) A KM plot of
BCAP31 and TP53 combined showing significant difference in survival based on
presence or absence of mutations in both the genes. (G) An additive differential
survival plot of the initial 3 alive gene signature, BCAP31, TCEB2 and NID1, showing
a low significance value of 0.073. (H) A multivariate analysis forest plot showing
significant influence of Treatment group of variables on patients’ risk of death. (I) A
multivariate forest plot showing significant influence of Treatment group of variables
on patients’ risk of death.

Supplementary Figure S6 | (A–C) K-M plots showing significant difference in
survival probabilities between absence and presence of mutations in 3 genes,
MRPL23, MARCH10 and TNS2. (D) And additive differential plot of the 4 gene dead
signature, AHRR, ZNF568, CEP112 and MARCH10, showing significant difference
in survival probabilities. (E) A K-M plot showing significant difference in survival
between two categories of EDDM3A gene based on presence or absence of
mutations. (F) A K-M plot showing significant difference in survival between two
categories of TOR1AIP1 gene based on presence or absence of mutations.

Supplementary Figure S7 | (A) A K-M plot showing significant difference in
survival between two categories of SPECC1 gene based on presence or absence of
an intron variant. (B) An interaction network obtained from the STRING database,
showing 3 significant pathways from the novel deleterious genes linked by AKT1.
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Casadevall J, Garcıá-Girón C, et al. Oncogenic Driver Mutations Predict
Outcome in a Cohort of Head and Neck Squamous Cell Carcinoma (HNSCC)
Patients Within a Clinical Trial. Sci Rep (2020) 10. doi: 10.1038/s41598-020-
72927-2

45. Rock LD, Minatel BC, Marshall EA, Guisier F, Sage AP, Barros-Filho MC,
et al. Expanding the Transcriptome of Head and Neck Squamous Cell
Carcinoma Through Novel MicroRNA Discovery. Front Oncol (2019)
9:1305. doi: 10.3389/fonc.2019.01305

46. Serafini MS, Lopez-Perez L, Fico G, Licitra L, De Cecco L, Resteghini C.
Transcriptomics and Epigenomics in Head and Neck Cancer: Available
Repositories and Molecular Signatures. Cancers Head Neck (2020) 5:1–10.
doi: 10.1186/s41199-020-0047-y

47. Plath M, Gass J, Hlevnjak M, Li Q, Feng B, Hostench XP, et al. Unraveling
Most Abundant Mutational Signatures in Head and Neck Cancer. Int J Cancer
(2021) 148:115–27. doi: 10.1002/ijc.33297

48. Schomberg J. Identification of Targetable Pathways in Oral Cancer Patients
via Random Forest and Chemical Informatics. Cancer Inform (2019)
18:1176935119889911. doi: 10.1177/1176935119889911

49. Mangalaparthi KK, Patel K, Khan AA, Manoharan M, Karunakaran C,
Murugan S, et al. Mutational Landscape of Esophageal Squamous Cell
Carcinoma in an Indian Cohort. Front Oncol (2020) 10:1457. doi: 10.3389/
fonc.2020.01457

50. Lakshmanachetty S, Balaiya V, High WA, Koster MI. Loss of TP63 Promotes
the Metastasis of Head and Neck Squamous Cell Carcinoma by Activating
MAPK and STAT3 Signaling. Mol Cancer Res (2019) 17:1279–93. doi:
10.1158/1541-7786.MCR-18-1355

51. Rocco JW, Leong C-O, Kuperwasser N, DeYoung MP, Ellisen LW. P63
Mediates Survival in Squamous Cell Carcinoma by Suppression of P73-
Dependent Apoptosis. Cancer Cell (2006) 9:45–56. doi: 10.1016/
j.ccr.2005.12.013
November 2021 | Volume 11 | Article 723162

https://doi.org/10.3389/fonc.2019.01174
https://doi.org/10.18632/aging.102655
https://doi.org/10.3389/fonc.2020.00372
https://doi.org/10.1002/hed.20861
https://doi.org/10.1038/ng.3051
https://doi.org/10.1038/ncomms3873
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/ng.806
https://doi.org/10.4161/fly.19695
https://doi.org/10.3389/fgene.2012.00035
https://doi.org/10.3389/fgene.2012.00035
https://doi.org/10.1038/nature15393
https://doi.org/10.1093/bioinformatics/btw325
https://doi.org/10.1093/bioinformatics/btv408
https://doi.org/10.1371/journal.pcbi.1004873
https://doi.org/10.1093/bioinformatics/btz501
https://doi.org/10.1093/bioinformatics/btz501
https://doi.org/10.1093/nar/gkx247
https://doi.org/10.1093/bioinformatics/btz631
https://doi.org/10.1093/nar/gkh468
https://doi.org/10.1093/nar/gkh468
https://doi.org/10.1093/bioinformatics/bti770
https://doi.org/10.1002/pro.5560020916
https://doi.org/10.1002/pro.5560020916
https://doi.org/10.1006/jmbi.1996.0628
https://doi.org/10.1107/S0021889892009944
https://doi.org/10.1038/381272a0
https://doi.org/10.1126/science.1853201
https://doi.org/10.1093/nar/gkr363
https://doi.org/10.1093/nar/gki375
https://doi.org/10.1021/acsmedchemlett.0c00378
https://doi.org/10.1021/ci200227u
https://doi.org/10.1093/nar/gkw315
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1002/(sici)1097-0258(19970228)16:4%3C385::aid-sim380%3E3.0.co;2-3
https://doi.org/10.1038/s41598-020-72927-2
https://doi.org/10.1038/s41598-020-72927-2
https://doi.org/10.3389/fonc.2019.01305
https://doi.org/10.1186/s41199-020-0047-y
https://doi.org/10.1002/ijc.33297
https://doi.org/10.1177/1176935119889911
https://doi.org/10.3389/fonc.2020.01457
https://doi.org/10.3389/fonc.2020.01457
https://doi.org/10.1158/1541-7786.MCR-18-1355
https://doi.org/10.1016/j.ccr.2005.12.013
https://doi.org/10.1016/j.ccr.2005.12.013
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Desai et al. IRAK1, A Novel HNSCC Driver
52. Takei S, Ueno Y, Yoda J, Tamura S, Hotomi M, Fujihara K, et al. Roles of Beta-
Catenin Overexpression and Adenomatous Polyposis Coli Mutation in Head
and Neck Cancer. Nihon Jibiinkoka Gakkai Kaiho (2003) 106:692–9. doi:
10.3950/jibiinkoka.106.692

53. Li N, Spetz MR, Ho M. The Role of Glypicans in Cancer Progression and
Therapy. J Histochem Cytochem (2020) 68:841–62. doi: 10.1369/
0022155420933709

54. Munir J, Van Ngu T, Na Ayudthaya PD, Ryu S. Downregulation of Glypican-4
Facilitates Breast Cancer Progression by Inducing Cell Migration and
Proliferation. Biochem Biophys Res Commun (2020) 526:91–7. doi: 10.1016/
j.bbrc.2020.03.064

55. Kossatz S, Brand C, Gutiontov S, Liu JTC, Lee NY, Gönen M, et al. Detection
and Delineation of Oral Cancer With a PARP1 Targeted Optical Imaging
Agent. Sci Rep (2016) 6:21371. doi: 10.1038/srep21371

56. Carmo NG DO, Sakamoto LHT, Pogue R, DO Couto Mascarenhas C, Passos
SK, Felipe MSS, et al. Altered Expression of PRKX, WNT3 and WNT16 in
Human Nodular Basal Cell Carcinoma. Anticancer Res (2016) 36:4545–51.
doi: 10.21873/anticanres.11002

57. Johnson ME, Cantalupo PG, Pipas JM. Identification of Head and Neck
Cancer Subtypes Based on Human Papillomavirus Presence and E2F-
Regulated Gene Expression. mSphere (2018) 3. doi: 10.1128/mSphere.00580-
17

58. Lin L-H, Chang K-W, Cheng H-W, Liu C-J. Somatic Mutations in Head and
Neck Carcinoma Are Associated With Tumor Progression. Front Oncol
(2019) 9:1379. doi: 10.3389/fonc.2019.01379

59. Castillo SD, Angulo B, Suarez-Gauthier A, Melchor L, Medina PP, Sanchez-
Verde L, et al. Gene Amplification of the Transcription Factor DP1 and
CTNND1 in Human Lung Cancer. J Pathol (2010) 222:89–98. doi: 10.1002/
path.2732

60. Singh R, Das S, Datta S, Mazumdar A, Biswas NK, Maitra A, et al. Study of
Caspase 8 Mutation in Oral Cancer and Adjacent Precancer Tissues and
Implication in Progression. PloS One (2020) 15:e0233058. doi: 10.1371/
journal.pone.0233058

61. He Y, Chen Q, Li B. ATM in Oral Carcinogenesis: Association With
Clinicopathological Features. J Cancer Res Clin Oncol (2008) 134:1013–20.
doi: 10.1007/s00432-008-0365-7

62. Choi M, Kipps T, Kurzrock R. ATM Mutations in Cancer: Therapeutic
Implications. Mol Cancer Ther (2016) 15:1781–91. doi: 10.1158/1535-
7163.MCT-15-0945

63. Schneider J, Illig T, Rosenberger A, Bickeböller H, Wichmann H-E. Detection
of ATM Gene Mutations in Young Lung Cancer Patients: A Population-Based
Control Study. Arch Med Res (2008) 39:226–31. doi: 10.1016/j.
arcmed.2007.08.004

64. Campbell BR, Chen Z, Faden DL, Agrawal N, Li RJ, Hanna GJ, et al. The
Mutational Landscape of Early- and Typical-Onset Oral Tongue Squamous
Cell Carcinoma. Cancer (2021) 127:544–53. doi: 10.1002/cncr.33309
Frontiers in Oncology | www.frontiersin.org 17
65. Zhou Y, Zhu Y, Fan X, Zhang C, Wang Y, Zhang L, et al. NID1, a New
Regulator of EMT Required for Metastasis and Chemoresistance of Ovarian
Cancer Cells. Oncotarget (2017) 8:33110–21. doi: 10.18632/oncotarget.16145

66. Urooj T, Wasim B, Mushtaq S, Haider G, Shah SNN, Ghani R, et al. Increased
NID1 Expression Among Breast Cancer Lung Metastatic Women; A Comparative
Analysis Between Naive and Treated Cases. Recent Pat Anticancer Drug Discov
(2020) 15:59–69. doi: 10.2174/1574892815666200302115438

67. Zudaire E, Cuesta N, Murty V, Woodson K, Adams L, Gonzalez N, et al. The
Aryl Hydrocarbon Receptor Repressor Is a Putative Tumor Suppressor Gene
in Multiple Human Cancers. J Clin Invest (2008) 118:640–50. doi: 10.1172/
JCI30024

68. Grieshober L, Graw S, Barnett MJ, Thornquist MD, Goodman GE, Chen C,
et al. AHRR Methylation in Heavy Smokers: Associations With Smoking,
Lung Cancer Risk, and Lung Cancer Mortality. BMC Cancer (2020) 20:905.
doi: 10.1186/s12885-020-07407-x

69. Panda S, Setia M, Kaur N, Shepal V, Arora V, Singh DK, et al. Noncoding
RNA Ginir Functions as an Oncogene by Associating With Centrosomal
Proteins. PloS Biol (2018) 16:e2004204. doi: 10.1371/journal.pbio.2004204

70. Liu Y, Yin S. A Novel Prognostic Index Based on the Analysis of Glycolysis-
Related Genes in Head and Neck Squamous Cell Carcinomas. J Oncol (2020)
2020. doi: 10.1155/2020/7353874

71. Liu Z, Cao Y, Diao W, Cheng Y, Jia Z, Peng X. Radiomics-Based Prediction of
Survival in Patients With Head and Neck Squamous Cell Carcinoma Based on
Pre- and Post-Treatment F-PET/CT. Aging (2020) 12:14593–619. doi:
10.18632/aging.103508

Conflict of Interest: Authors AS and VR are employed by HealthCare Global
Enterprises Ltd.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Desai, K, Jain, Bawa, Dutta, Atre, Subhash, Rao, J, Srinivasan and
Choudhary. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s) are
credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.
November 2021 | Volume 11 | Article 723162

https://doi.org/10.3950/jibiinkoka.106.692
https://doi.org/10.1369/0022155420933709
https://doi.org/10.1369/0022155420933709
https://doi.org/10.1016/j.bbrc.2020.03.064
https://doi.org/10.1016/j.bbrc.2020.03.064
https://doi.org/10.1038/srep21371
https://doi.org/10.21873/anticanres.11002
https://doi.org/10.1128/mSphere.00580-17
https://doi.org/10.1128/mSphere.00580-17
https://doi.org/10.3389/fonc.2019.01379
https://doi.org/10.1002/path.2732
https://doi.org/10.1002/path.2732
https://doi.org/10.1371/journal.pone.0233058
https://doi.org/10.1371/journal.pone.0233058
https://doi.org/10.1007/s00432-008-0365-7
https://doi.org/10.1158/1535-7163.MCT-15-0945
https://doi.org/10.1158/1535-7163.MCT-15-0945
https://doi.org/10.1016/j.arcmed.2007.08.004
https://doi.org/10.1016/j.arcmed.2007.08.004
https://doi.org/10.1002/cncr.33309
https://doi.org/10.18632/oncotarget.16145
https://doi.org/10.2174/1574892815666200302115438
https://doi.org/10.1172/JCI30024
https://doi.org/10.1172/JCI30024
https://doi.org/10.1186/s12885-020-07407-x
https://doi.org/10.1371/journal.pbio.2004204
https://doi.org/10.1155/2020/7353874
https://doi.org/10.18632/aging.103508
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles

	Multidimensional Mutational Profiling of the Indian HNSCC Sub-Population Provides IRAK1, a Novel Driver Gene and Potential Druggable Target
	Introduction
	Methodology
	Subjects for the Study
	Exome Library Preparation
	Whole Exome Sequencing and Analysis
	Obtaining Mutation Profiles
	Driver Gene Analysis
	IRAK1 Structure Modeling and Validation
	Survival Models
	Lasso Regression Model
	Statistical Analysis

	Results
	Identification of Mutation Burden and Signatures Associated With the Age and Stage of HNC Tumor
	Unique Signature in Cell Cycle, Apoptotic and Wnt Signaling Pathway Segregate Tumors of the Buccal Cavity From Tongue and Alveolus
	Combination of Radiotherapy, Chemotherapy, and Surgery Is Associated With Worse Patient Survival Compared to Surgery and Chemotherapy or Surgery and Radiotherapy
	Identification of IRAK1 and UMODl1 as Driver Genes and Potential Therapeutic Targets
	Mutations in IRAK1 Lead to Structural Changes Impacting Stability and Binding of an Inhibitor
	Multivariate Prediction of Prognostic Markers Based on Survival Trends
	Lasso Regression Models for Prediction of Prognostic Markers
	Identification of a Novel and Deleterious Variant in Cancer Gene Census in Indian HNSCC
	Copy Number Analysis

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


