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Abstract: Terahertz (THz) spectroscopy is the de facto method to study the vibration modes and
rotational energy levels of molecules and is a widely used molecular sensor for non-destructive
inspection. Here, based on the THz spectra of 20 amino acids, a method that extracts high-dimensional
features from a hybrid spectrum combined with absorption rate and refractive index is proposed. A
convolutional neural network (CNN) calibrated by efficient channel attention (ECA) is designed to
learn from the high-dimensional features and make classifications. The proposed method achieves
an accuracy of 99.9% and 99.2% on two testing datasets, which are 12.5% and 23% higher than the
method solely classifying the absorption spectrum. The proposed method also realizes a processing
speed of 3782.46 frames per second (fps), which is the highest among all the methods in comparison.
Due to the compact size, high accuracy, and high speed, the proposed method is viable for future
applications in THz chemical sensors.

Keywords: terahertz spectroscopy; CNN; ECA; amino acid; sensor

1. Introduction

Terahertz time-domain spectroscopy (THz-TDS) has been applied to non-destructive
testing on many substances due to its stronger penetration into dielectric materials com-
pared with visible light and infrared [1–3]. In frequency domain, the effective band pro-
duced by desktop THz spectrometers ranges between 0.1 to 4 THz, and the upper limit
of the frequency band can reach 6 THz using asynchronous optical sampling [4]. As the
rotational energy levels and some of the vibrational modes of many biomolecules reside in
the THz band, the pulse wave generated by the THz spectrometer is sensitive to the molec-
ular structural changes and the binding between molecules, and thus creates a label-free
approach to detect substances such as proteins, DNA, and explosives [5–8]. The molecular
rotational resonance spectroscopy utilizes the unique THz spectral signatures of gas sam-
ples to analyze isotopic species [9]. However, due to the strong absorption of THz radiation
by water and polar solvent, the restriction of dynamics range, and the significant scattering
attributed to the ∼10 µm to mm wavelength of the THz pulses, many molecular features
are difficult to extricate, which largely constrains the prospects of THz-TDS as a competent
sensing technology [10–12]. Another challenge in applying the THz spectroscopy is that
many molecular species generate non-distinguishable absorption spectra or even no char-
acteristic features in the effective frequency band, which further restricts the identification
based on THz spectroscopy [4,13].

Many methods have been proposed to extract the characteristic features from the
THz spectrum. The principal component analysis (PCA) method is based on the idea that
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the majority of information of a multi-dimensional matrix can be represented by a few
principal eigenvectors so that the minor features such as non-specific jitters are eliminated
and matrices bearing similar features are easier to classify. Thereby, PCA can extract
major features from the THz spectrum and has been used to identify drugs, soybean oil,
and numerous chemicals from a large variety of substances [14–16]. In addition, partial
least-squares (PLS) methods are used to select the absorption wavelength of the molecule
and to find spectral intervals with the highest signal-to-noise ratios (SNR) [17,18], and hence
concentrations of substances in mixtures are quantitatively estimated with high precision.
Several variation of PLS including iPLS, biPLS, mwPLS, and siPLS are employed in the
aforementioned studies. Additionally, the generic algorithm (GA) is a method to globally
optimize parameters such as the absorption wavelength and to extract optical metrics such
as refractive index and absorption rate from the data affected by noise, and is shown to
produce better results than PLS and iterative algorithms [19–21]. However, these methods
are based on numerous metrics of the data, and their performance decays largely for spectra
with no apparent features.

Machine learning is the study of computer algorithms that can improve automatically
through experience and by the use of data. As a novel branch of machine learning, neural
networks can use numerous filters to extract the high-dimensional characteristics of the
input data and study the interconnections between them, which makes it more adaptable
to data lack of apparent features. In recent years, many researchers have used machine
learning algorithms to classify the THz spectra. Hu et al. compared networks built with
convolutional neural network (CNN) and recurrent neural network, and concluded that
the identification based on CNN was more accurate and faster for a dataset containing
12 materials [22]. A network combining CNN and bidirectional gated recurrent network
(BiGRU) was designed to trace the dynamic changes of the absorption spectrum in time
domain, and overcame the difficulties of frequency–domain analysis such as band cutoff but
took much longer time to process data due to the larger size of time signal [23]. However,
previous research mainly focused on extracting features from 1D data such as absorption
spectrum or time-domain spectrum, which did not fully integrate the amplitude and phase
information of the pulsed THz wave, and hence restricts the accuracy of prediction. To date,
no study associated with the classification of THz spectra has adopted the integrated
feature regarding both amplitude and phase such as the combination of absorption rate
and refractive index.

Here, a study is proposed to demonstrate that the combination of absorption rate and
refractive index can reveal high-dimensional spectral information, which is later abstracted
as a feature map and passed to a CNN equipped with efficient channel attention (ECA)
mechanism for calibrating the interdependence among data channels [24]. A chemical
library containing the solid samples of 20 amino acids is established for this study, and low-
lying vibrational modes with respect to the samples are used for the classification of
spectra. The proposed method realizes 100% prediction accuracy on validation data, 99.9%
and 99.2% on two testing datasets. Additionally, comparisons are made among different
classification models and indicate that the proposed method is superior in terms of accuracy
and processing speed. These characteristics makes the proposed ECA network an ideal
algorithm to be integrated on compact THz sensors.

2. Materials and Methods
2.1. Experimental Equipment and Sample Preparation

The experimental device includes an ultra-fast femotosecond laser, an optical delay
line, emitter and receiver photoconductive antennas (PCAs), a lock-in amplifier, and a
computer to control the device and process the signal. The femotosecond laser has a
central wavelength of 1560 nm, a pulse width around 100 fs, a repetition rate of 100 MHz,
and working power of 80 mW. The laser utilizes doped fiber as gain medium, and the
generated power is evenly distributed to two channels, which are used for the generation
and sampling of the THz radiation respectively. Single-mode optical fibers are used to
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transmit laser between modules. An illustration of the experimental device is shown
in Figure 1.
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Figure 1. A schematic of the experimental device.

As shown in Figure 1, the emitter PCA is connected to a bias source that provides
energy for the generation of THz pulses, which have a width of around 1 ps. Afterwards,
the emitted THz beam is collimated and focused by two plano-convex lenses, respectively.
Then, the beam transmits through the sample and is collimated and focused by two other
plano-convex lenses to the receiver PCA, by which the absorption characteristics of the
sample are measured. The temporal shape of the received signal is sampled by a optical
delay line of 90 ps range and intensified by a lock-in amplifier connected to the computer.
The delay line works at 60 Hz, which samples the time–domain THz spectrum 60 times per
second. The system achieves a bandwidth of 4.5 THz and a dynamic range of 80 dB.

The 20 amino acid samples used in the experiment were purchased from Shanghai
Aladdin Reagent Company. The samples were grounded with a pestle and mortar, and fil-
tered with a 180 mesh sieve to exclude the particles larger than 80 µm so that the scattering
effect was attenuated. The samples were then mixed with polyethylene in a 1:1 (w/w) ratio
and pressurized at 30 MPa for approximately 5 min into solid tablets. The tablets were
around 1.2 mm thick and 10 mm in diameter. 5 tablets were made for each amino acid,
and each tablet was measured by continuous acquisition that lasted 40 s to accumulate
about 2400 signals. The measurement chamber was purged with nitrogen gas to reduced
the air humidity to 10%, and the experiment was carried out at 17 ◦C, which was reduced
from the room temperature of 25 ◦C by the nitrogen gas.

2.2. Hybrid Spectrum Combined with Absorption Rate and Refractive Index

An advantage of pulsed THz radiation is that the amplitude and the phase of the
signal can be extracted simultaneously by Fourier analysis. In particular, the attenuation of
amplitude responds to the absorption of the THz wave, and the change in phase reveals the
change of refractive index [25]. As shown in Figure 1, this study uses transmission mode to
measure the properties of the sample. A reference signal is required to extract the spectral
information, explicitly the changes of amplitude and phase, due to the sample. Therefore,
the reference signal was measured by removing the sample from the optical path, and the
data collected by 10 s continuous acquisition were averaged to reduce the white noise
generated by the vibration of the delay line. Meanwhile, the residual noise can be further
attenuated with wavelet shrinkage denoising. The wavelet shrinkage denoising follows the
idea that wavelet coefficients having small absolute values enclose mostly noise, and the
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important information is encoded by coefficients having large absolute values. Thereby,
removing the small absolute value coefficients and then reconstructing the signal could
produce a signal with less noise [26]. Here, a wavelet decomposition with maximum level
of 5 is used to denoise the signal, and the sym4 wavelet is selected for the optimal outcome.
A comparison between the spectrum of D-Glutamic acid, which was averaged over 40 s
continuous acquisition of a single tablet, and the reference signal is shown in Figure 2.

(b)(a)

(c)

Figure 2. A comparison between the reference signal and the D-Gluatamic acid regarding (a) the
time-domain spectra, (b) the amplitudes of the frequency–domain spectra, (c) the phases of the
frequency–domain spectra. The solid black curves in (b,c) denote the amplitude and the phase of the
transfer function, respectively.

In Figure 2a, the main pulse of the D-Glutamic acid spectrum is delayed by approxi-
mately 3 ps from the main pulse of the reference signal, followed by a series of decaying
fluctuations. The delay is attributed to the higher refractive index of the sample, and the
decaying fluctuations can be explained by the etalon effect by which the THz pulse is
reflected by the front and back sides of the sample changeably. The etalon effect also causes
baseline fluctuations in the frequency domain, which is shown in Figure 3. The spectral
information carried by the sample can be extracted in the frequency domain, as given by
Equation (1):

F{E(t)} = Ê(ω) = |Ê(ω)| exp(−iφ(ω)), (1)

where F{E(t)} denotes the Fourier transform of the time–domain spectrum E(t), ω de-
notes the angular frequency, |Ê(ω)| and φ(ω) are the amplitude and phase of the frequency–
domain spectrum, Ê(ω) respectively. The amplitude and phase changes can be obtained
from the transfer function, which follows:

T(ω) =
Êsamp(ω)

Êre f (ω)
= ρ(ω) exp(−i∆φ(ω)), (2)

where T(ω) is the transfer function, Êsamp(ω) is the frequency–domain spectrum of the
sample, Êre f (ω) is the frequency–domain spectrum of the reference signal, ρ(ω) is the
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amplitude ratio between the sample and reference spectra, ∆φ(ω) is the phase change
caused by propagation through the sample. Figure 2b,c denote the changes in amplitude
and phase regarding the D-Glutamic acid spectrum and the reference spectrum. Based on
the transfer function and the assumption that the extinction rate is much smaller than the
refractive index in the THz band, the absorption rate and refractive index of the sample can
be derived from the Fresnel’s law, as given by Equations (3) and (4):

n(ω) =
∆φ(ω)c

ωd
+ 1, (3)

α(ω) =
2
d

ln

{
4n(ω)

ρ(ω)[n(ω) + 1]2

}
, (4)

where n(ω) denotes the refractive index, α(ω) denotes the absorption rate, d is the thickness
of the tablet, c is the speed of light. Figure 3 gives the absorption rate and the refractive
index of D-Glutamic acid sample, where the time-domain spectra in Figure 2 were used in
the calculation.

(a) (b)

1.216

2.038

2.0381.216

2.443

Figure 3. (a) The absorption rate of the D-Glutamic acid. (b) The refractive index of the D-Glutamic
acid. Absorption peaks located at 1.216, 2.038, and 2.443 THz are highlighted by dashed black, green,
and orange lines, respectively. The solid red line located at 2.2 THz marks the frequency, after which
the absorption rate is no longer in accordance with the actual spectrum. Nevertheless, the refractive
index holds with the actual trend after 2.2 THz.

As shown in Figure 3, the absorption peaks of D-Glutamic acid located at 1.216 THz
and 2.038 THz are configured by the absorption rate and refractive index, respectively,
which can be explained by the Kramers–Kronig relations by which the real and imaginary
parts of the complex refractive index are connected [25]. This feature forms the basis of the
input block of the neural network in later discussion. It is noticed that the absorption rate
in Figure 3a becomes highly compromised after 2.2 THz due to absorption and scattering,
and the peak located at 2.443 THz is completely disguised by noise. However, the region
after 2.2 THz in Figure 3b is still explicit, and the peak located at 2.443 THz is discernible,
as highlighted by the dashed orange line. This reveals that the refractive index can hold
spectral features that are not distinguishable from the absorption rate; thus, the combination
of the two metrics would give more explicit description of the spectral information. Table 1
gives the absorption peaks of the 20 amino acids referenced from previous research and
the measurements in this study. For the rest of the paper, all spectra are cutoff from
0.1 to 2.5 THz, which contains 240 points given the frequency step of 0.01 THz. The spectral
information of all the 20 amino acids will be given in Appendix A.

In addition, the effect of combining absorption rate and refractive index can be configured
by PCA. As shown in Figure 4a,b, the first two principal components of the absorption rate
and the refractive index can not separate different categories. In contrast, after stacking the
absorption rate and refractive index to a 2D vector and extracting the first principal component,
the points belonging to different amino acids form clusters, as highlighted by dashed elliptic
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circles in Figure 4c. The hybrid spectrum combined with absorption rate and refractive index
is explained by Figure 4d and will be used to classify the amino acids in later discussions.

Table 1. The absorption peaks of the 20 amino acids.- represents no specific absorption peak is
available in the frequency range.

Amino Acid Peaks from Literature (THz) Measured Peaks (THz)

Beta-Alanine - [27] -
D-Alanine 2.231 [27] 2.226
L-Alanine 2.231 [27] 2.227

D-Arginine 1.003/1.491 [27] 0.99/1.435
L-Arginine 0.99/1.47 [28] 1.002/1.508

D-Aspartic acid - [27] -
L-Aspartic acid - [27] -

D-Glutamic acid 1.234/2.031/2.443 [27] 1.216/2.038/2.443
L-Glutamic acid 1.209/2.031 [27] 1.235/1.967

D-Serine - [27] -
L-Serine - [27] -

DL-Tyrosine - [27] -
L-Tyrosine 0.951/1.929/2.083 [27] 0.975/1.929/2.076

Glycine - [27] -
L-Leucine 0.85/1.46/1.7/2.17 [29] 0.854/1.48/1.683/2.198
L-Lysine 0.9/2.07 [29] 0.956/2.069

L-Methionine - [27] -
L-Threonine 1.42/2.13 [30] 1.418/2.034

L-Tryptophan 1.44/1.851/2.289 [27] 1.447/1.88/2.285
L-Valine 1.7/2.22 [29] 1.678/2.236

(a) (b)

(c)

Absorption Rate (N 1)

Refractive Index (N 1)

2D Hybrid Matrix (N 2)

(d)

Figure 4. PCA is applied for Beta-Alanine, D-Alanine, D-Glutamic acid, and L-Glutamic acid
regarding (a) absorption rate, (b) refractive index, and (c) the 2D hybrid spectrum. Each spot in the
graph is generated by averaging the 40 s continuous acquisition of a single tablet. (d) illustrates the
2D hybrid spectrum, which is stacked by the absorption rate and refractive index to a N × 2 matrix.
N is the size of 1D spectrum, which is 240 in this study.
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2.3. Efficient Channel Attention Network

In response to classification of the amino acids and inspired by the works in [24,31],
a CNN that reshapes the hybrid spectrum to a feature map and identifies it by a convolu-
tional network associated with ECA mechanism is proposed. The structure of the network
is illustrated in Figure 5.

(a)

(b)

ECA Module

Input
5 57 64

Global
Pooling
1 1 64

Conv1D
Kernel Size:

k=3

σ

Sigmoid
1 1 64

Channel
Weights

Input
240 2

Conv1 
1 240 32

Reshape
(Pooling)

32 240 1

Conv2
(Pooling)

25 233 32

Conv3
(Pooling)
5 57 32

Conv4
(Pooling)
5 57 64

ECA

○×  

FC1
256 FC2

128 Output
(Softmax)

20

Input Block ECA Network

Kernel
(1 9)

Kernel
(7 7)

Kernel
(3 3)

Kernel
(1 1)

Classification

Figure 5. (a) A schematic of the ECA network comprised by input block, ECA network, and fully
connected layers for classification; (b) the structure of the ECA module. The two layers in the middle
depict a 1D convolution of the channel-wise data with a kernel size of 3.

As shown in Figure 5a, the hybrid spectrum is passed to a convolutional layer that has
32 filters (Conv1), and the outputs of the layer are 32 filtered versions of the input signal.
These signals are then stacked to a 2D matrix, so that the input to the next layer Conv2
is a single feature map instead of 32 distinct filtered signals. The input and reshaping
layers are combined as the input block. Layers Conv2 and Conv3 use 2D filters to capture
relationships across the filtered signals produced by Conv1, and in turn output 32 channels,
respectively. Layer Conv4 uses 1× 1 kernel to increase the number of channels to 64, which
extracts more channel-wise information for ECA module. As shown in Figure 5b, the ECA
module is composed of a global pooling layer to reduce the dimension to 1× 1× 64, a 1D
convolutional layer to implement the cross-channel interaction, and an activation layer
using sigmoid function to render nonlinearity to channel weights (attention coefficients,
coefficients to enforce the interconnection between neighboring channels). A channel-wise
multiplication is performed to the output of Conv4 and the attention coefficients, so that
the interdependencies between channels are substantially handled. Two fully connected
layers of sizes 256 and 128 are used to reduce the number of hyper parameters passed from
ECA network, followed by a dense layer using softmax activation function, which outputs
the probability of each category, for classification. Batch normalization is applied after each
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convolutional layer to standardize the outputs of the layer for each mini batch. Pooling
layer is added afterwards to reduce the output dimension.

The detailed description of ECA can be found in [24]. A brief introduction regard-
ing the attention mechanism and the adaptive kernel size is given here. To address the
interaction between channels in a CNN, a mechanism to recalibrate the weights of differ-
ent channels is required. As mentioned by [24], ECA is an efficient method to calculate
the channel weights without dimensionality reduction. The estimation of the weights
follows Equation (5):

wi = σ

(
k

∑
j=1

wjyj
i

)
, yj

i ∈ Ωk
i , (5)

where yj
i is the input from the adjacent channel j of channel i, wj is the weight for yj

i , k is the
number of adjacent channels, and Ωk

i is the set of neighboring channels. This mechanism
not only handles the cross-channel interactions but also avoids complete independence
among different groups. As aforementioned, attention are calculated by a 1D convolution
with a kernel size of k. Depending on the total number of channels, C, k can be adaptively
adjusted for the optimal performance. Equation (6) gives the relationship between C and k:

k =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

, (6)

where γ and b are fitting factors, which are set as γ = 2, b = 1 in this study; | · |odd indicates
the nearest odd number. According to Equation (6), k is equal to 3 for the 64 channels given
by Conv4.

2.4. Training Details

To make the training data, 100 signals of a tablet are averaged for a single record.
Thereby, there are about 24 records for each tablet and 120 records for each amino acid.
For the testing data, the signals are averaged 20 and 10 times to form two datasets (Av-
erage20 and Average10) that are noisier than the training data, which are designed to
test the robustness of the model. The training data were shuffled, and 20% of the data
were assigned for validation. The training used stochastic gradient decent (SGD) with an
initial learning rate of 10−3, a learning rate decay of 10−5, a momentum of 0.9, Nesterov
accelerated gradient for faster convergence [32], and a batch size of 128. Cross-entropy
loss function was used to measure the distance between the predicted and target labels
during the training process. The training ran for 300 epochs with the initial learning rate,
and would come to an early stop if the loss did not decrease for 30 consecutive epochs.
Then, the training ran for other 100 epochs with a learning rate of 10−4 to fine-tune the
model. All programs ran on a PC equipped with a RTX 2070 GPU and an 8-core Intel(R)
i7 CPU.

3. Results
3.1. Metrics

The accuracy (Acc) was used to evaluate the classification performance of the model,
and precision (Pr) is used to evaluate the classification performance for each category,
as shown in Equations (7) and (8):

Acc = ∑i nii

∑i,j nij
, (7)

Pri =
nii

∑j nij
, (8)
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where i refers to the index of the label, j denotes the index of the predicted label. nij
represents the number of items belong to category i predicted as category j. Similarly, nii
represents the number of correct predictions associated with category i.

Here, the number of hyper parameters (#.Param.), the floating point operations per
second (FLOPs), training time, and processing speed (test rate, frame per second, fps) are
used to evaluate the efficiency of the model.

3.2. The Effects of Hybrid Spectrum and ECA Module

To demonstrate the effectiveness of the proposed network, the effect of hybrid spec-
trum and ECA module are studied explicitly. First, the absorption rate and the refractive
index were separately taken as the training data, and the model was trained as aforemen-
tioned. The feature maps produced by the input block of the trained models are shown in
Figure 6, where the vertical axis of the image corresponds to the data size of each channel
and the horizontal axis of the image corresponds to the number of channels.

(a) (b) (c)

Figure 6. The feature maps of D-Glutamic acid generated with (a) absorption rate, (b) refractive
index, and (c) 2D hybrid spectrum.

As seen in Figure 6a,b, the feature maps generated with only absorption rate or refrac-
tive index do not have obvious patterns cross different channels. In contrast, the feature
map generated with the hybrid spectrum in Figure 6c encloses patterns that signify the
connection among channels, so that the following convolutional layers could sufficiently
extract the high-dimensional features by applying multiple channels and make more ac-
curate predictions. The results regarding different inputs are given in Table 2, where the
accuracy of ECA network with hybrid spectrum as input is 1.2% and 3.4% higher than
those loaded with only absorption rate and refractive index on Average20 dataset, and 1.9%
and 5.6% higher on the Average10 dataset.
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Table 2. The precision and accuracy of classification of 20 amino acids on Average20 and Average10 datasets. From a to h are: a. ECA network with absorption
rate as input; b. ECA network with refractive index as input; c. plain CNN with hybrid spectrum as input; d. ECA-DDCNN [33] with hybrid spectrum as input;
e. ECA-Resnet50 [24] with hybrid spectrum as input; f. ECA-Resnet101 [24] with hybrid spectrum as input; g. CNN-BiGRU referred from [23]; h. CNN referred
from [22]. Ours denotes the ECA network with hybrid spectrum as input. The values in the table are percentages.

20 Beta-Ala D-Ala L-Ala D-Arg L-Arg D-Asp L-Asp D-Glu L-Glu D-Ser L-Ser DL-Tyr L-Tyr Gly L-Leu L-Tys L-Met L-Thr L-Try L-Val Acc

a 99.2 100 99.8 99.6 100 99.6 100 100 99.8 80.8 97.8 99.4 100 99.8 100 99.8 100 99.6 100 99.8 98.7
b 100 99.6 100 90.6 99.3 100 99.6 100 99.8 54.9 95.4 100 99.8 100 100 99.8 91.3 100 99.8 99.1 96.5
c 99.8 100 99.8 100 99.8 99.8 100 100 99.8 98.0 98.3 99.1 99.6 100 100 99.8 100 100 100 99.8 99.7
d 98.9 98.7 99.8 84.1 100 51.9 49.4 100 97.8 99.6 98.1 97.6 100 100 98.5 99.6 99.8 98.1 100 100 88.6
e 99.6 96.5 89.9 99.1 99.4 91.7 97.2 99.8 99.8 99.4 99.6 98.9 98.3 98.7 100 99.8 98.9 98.2 97.4 98.5 93.1
f 99.6 94.3 92.3 99.3 99.1 93.2 79.7 99.6 99.6 99.8 98.9 98.7 97.8 99.6 100 99.8 98.5 98.2 97.4 98.7 92.2
g 75.9 90.2 83.3 95.9 94.5 87.5 84.3 98.2 97.6 53.2 79.2 91.9 96.9 82.0 94.7 89.9 90.0 96.9 93.7 91.0 87.4
h 99.8 99.8 99.4 100 100 98.5 99.8 100 100 99.3 99.3 99.1 100 99.1 100 100 100 100 99.6 99.8 99.7
a 98.5 99.4 98.0 99.3 99.5 99.1 99.2 99.4 99.4 65.7 96.3 98.7 99.8 98.9 99.9 99.2 100 98.9 98.0 98.9 97.3
b 100 98.6 98.3 77.1 94.5 99.9 98.1 100 99.6 57.1 95.5 99.2 99.6 100 100 100 77.2 99.9 96.1 97.3 93.6
c 99.6 99.6 99.0 99.4 99.2 99.6 99.7 100 99.4 92.2 96.5 97.8 99.4 99.8 99.6 99.9 100 100 98.4 98.4 98.9
d 88.3 97.3 97.2 63.7 99.2 54.8 67.0 100 61.5 88.7 52.0 64.2 99.9 99.4 80.3 96.4 98.8 67.2 99.1 99.5 73.0
e 96.0 93.0 74.4 93.9 99.2 78.5 74.5 99.2 98.8 98.9 97.8 92.2 96.8 96.0 99.2 98.3 94.9 97.9 95.8 97.1 88.7
f 90.6 88.2 82.8 97.2 98.5 61.9 34.7 98.6 97.5 95.7 60.5 90.6 96.0 97.8 98.5 96.3 93.9 95.1 95.4 96.2 83.5
g 59.7 79.5 71.3 87.6 88.6 78.8 68.9 89.9 88.5 48.8 61.3 79.3 92.7 68.2 81.4 67.9 82.9 90.4 83.9 83.7 76.2
h 99.8 99.3 98.1 100 100 97.9 99.6 100 100 98.1 99.0 98.3 100 98.0 100 100 100 100 99.3 99.2 99.3

ours 99.5 100 98.6 100 99.4 99.7 99.7 100 99.6 90.3 99.1 99.5 99.8 99.7 99.9 100 100 99.8 99.6 99.7 99.2
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The effect of ECA module is tested by ablation study, where the Conv4 layer and ECA
module are removed to test the feasibility of the remaining network, which is denoted
as plain CNN in Table 2. The classification accuracy of ECA network is 0.2% higher than
that of plain CNN on the Average20 dataset, and 0.3% higher on the Average10 dataset.
The classification precision of most categories is also higher for the ECA network. However,
the precision of D-Serine is the lowest among all categories, especially for classification by
absorption rate or refractive index. This can be explained by Figure 7.

(a) (b)

(c)

Figure 7. (a) Absorption rate, (b) refractive index, and (c) time-domain spectrum of D-Serine in
training dataset (100) and testing datasets (20 and 10). Offset on the y-axis was used for clarity.

As shown in Figure 7a, the higher bound of high-SNR region is around 1.7 THz,
followed by the low-SNR features that vary largely for different average times. In Figure 7b,
the slope of refractive index is more evident in the training data than in the testing data.
This brings difficulties to the trained model to identify the features in testing data, and thus
lowers the classification precision. To conclude, the ECA network with hybrid spectrum
as input can sufficiently improve the results of classification and achieve considerable
accuracy in complex scenarios such as D-Serine.

3.3. Compare with Other ECA-Based Networks

ECA-based networks referred from [24,33] are compared with the ECA network.
The network in Figure 5a first substituted the ECA network for the aforementioned net-
works, then trained them with the hybrid spectrum. As seen from Table 2, the accuracy of
our ECA network is 11.3% higher than the ECA-DDCNN proposed by [33], 6.8% and 7.7%
higher than the ECA-Resnet50 and ECA-Resnet101 proposed by [24] for the Average20
dataset. For the Average10 dataset, the accuracy is 26.2% higher than ECA-DDCNN, 10.5%
higher than ECA-Resnet50, and 15.7% higher than ECA-Resnet101. A comparison among
different networks is given in Table 3.
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Table 3. Comparison of different models in terms of network depth, network parameters (#.Params),
floating point operations per second (FLOPs), training time, and processing speed on test data
(test rate).

Depth #.Params FLOPs Training Time Test Rate

ECA-DCNN [33] 125 7.33 M 421.42 M 21.60 min 943.93 fps
ECA-Resnet50 [24] 67 24.14 M 588.23 M 11.56 min 1134.35 fps
ECA-Resnet101 [24] 134 43.21 M 675.45 M 19.74 min 675.45 fps
ECA network (ours) 4 4.72 M 64.61 M 3.67 min 3782.46 fps
CNN-BiGRU [23] - 3.23 M 6.31 M 169.63 min 84.00 fps
CNN [22] - 0.93 M 103.07 M 11.4 min 1887.13 fps

As illustrated by Table 3, the depths and number of parameters of previously proposed
ECA-based networks are much greater than the ECA network, which makes the optimiza-
tion more complicated, as verified by the longer training times. As the training dataset
contains about 2400 records of data, the deeper models may experience overfitting in which
the model is too closely aligned to a limited set of data points during the training and hence
is less adaptive to the data outside training dataset. Figure 8 displays the training history
of each ECA-based network, where the divergence between losses belong to training data
and validation data indicates the occurrence of overfitting.

Overfitting Overfitting

Overfitting

(a) (b)

(c) (d)

Figure 8. Training histories of (a) ECA-DCNN, (b) ECA-Resnet50, (c) ECA-Resnet101, and
(d) ECA network.

As shown by Figure 8, all the deep networks experienced overfitting during the
training, which from one aspect explains their lower classification accuracy.

3.4. Compare with Other Methods for Amino-Acid Classification

In previous studies of amino-acid classification, Ref. [23] proposed a network combin-
ing CNN and bidirectional gated recurrent network (BiGRU) to trace the dynamic changes
of THz time spectrum, and [22] proposed a CNN inspired by LeNet5 to classify the 2D
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images composed by frequency spectra [34]. As shown in Table 2, the accuracy of the CNN
is 12.5% lower than ECA network on Average20, and 23% lower on Average10. Meanwhile,
the accuracy of CNN-BiGRU is 0.2% lower than the ECA network on Average20, but 0.1%
higher than ECA network on Average10. However, this can be explained by Figure 7,
where time spectrum only changes by noise level but maintains all the dynamic features
for different average times; on the contrary, the frequency spectrum differs largely for
different average times. This helps CNN-BiGRU achieve higher precision for D-Serine.
In fact, the classification accuracy of ECA network on 19 amino acids excluded Serine is
99.95% for Average20 and 99.68 for Average10. In contrast, the accuracy of CNN-BiGRU
is 99.75% for Average20 and 99.45% for Average10. In real-world applications, the sam-
ples may be contained in packages, and thus the time spectrum varies due to shapes and
materials of the packages. Meanwhile, the frequency spectrum is less influenced by the
environments and hence is widely used in non-destructive inspection [35]. In this regard,
the ECA network is more practical in the real world due to its robustness on noisy test data
and higher processing speed, i.e., the test rate of ECA network is 3782.46 fps, compared to
84 fps of CNN-BiGRU.

4. Discussion

In this paper, the combination of absorption rate and refractive index for extracting
high-dimensional information from the THz spectrum was proposed, and an ECA-based
CNN was designed to classify the combined spectrum with high accuracy. Compared
with other ECA-based networks, the proposed ECA network avoided overfitting during
the training and achieved higher accuracy. The accuracy of the proposed method is
higher than a previous method that classifies solely absorption spectrum [22], and slightly
lower than the method working with time spectrum due to the changed features among
frequency–domain data [23]. The proposed method achieved the highest processing speed
among all the methods and smaller size than other ECA-based networks, which makes it a
viable option for integration to embedded systems. However, this paper only discussed
the classification of pure chemicals, but in real world samples are usually compounds,
therefore extending the ECA network to compound classification will be the next step of
our investigation.
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Appendix A

To get an intuitive picture of the classification problem discussed in main text, the spec-
tral information described by Figure 2b,c as well as Figure 3a,b is given regarding the
20 amino acids used in the classification, as shown in Figure A1.
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(f1) (f2) (f3) (f4)

Figure A1. Cont.
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Figure A1. Cont.
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(p1) (p2) (p3) (p4)
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Figure A1. Cont.
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(s1) (s2) (s3) (s4)

(t1) (t2) (t3) (t4)

Figure A1. (a–t) are Beta-Alanine, D-Alanine, L-Alanine, D-Arginine, L-Arginine, D-Aspatic acid,
L-Aspatic acid, D-Glutamic acid, L-Glutamic acid, D-Serine, L-Serine, DL-Tyrosine, L-Tyrosine,
Glycine, L-Leucine, L-Lysine, L-Methionine, L-Threonine, L-Tryptophan, and L-Valine, respectively.
In each group, 1 and 2 are the amplitude and phase of the frequency–domain spectrum; 3 and 4 are
the absorption rate and the refractive index of the sample.
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