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ABSTRACT
Introduction: Diabetic ketoacidosis (DKA) is associated with inflammation and increased
lipolysis. The macrophage activation marker, soluble CD163 (sCD163), is associated with
obesity, non-alcoholic fatty liver disease and type 2 diabetes. We aimed to investigate
whether sCD163 correlates with key elements of lipolysis in type 1 diabetes patients dur-
ing mild DKA.
Materials and Methods: We investigated nine patients with type 1 diabetes twice
during: (i) euglycemic control conditions and a bolus of saline; and (ii) hyperglycemic keto-
tic conditions induced by lipopolysaccharide administration combined with insulin depri-
vation. Blood samples, indirect calorimetry, palmitate tracer and adipose tissue biopsies
were used to investigate lipid metabolism.
Results: We observed a significant increase in plasma sCD163 levels after lipopolysac-
charide exposure (P < 0.001). Concentrations of sCD163 were positively correlated with
plasma concentrations of free fatty acids, palmitate rate of appearance and lipid oxidation
rates, and negatively correlated to the expression of G0/G1 switch 2 gene messenger
ribonucleic acid content in adipose tissue (P < 0.01 for all). Furthermore, sCD163 levels
correlated positively with plasma peak concentrations of cortisol, glucagon, tumor necrosis
factor-a, interleukin-6 and interleukin-10 (P < 0.01 for all). Data on lipolysis and inflamma-
tion have previously been published.
Conclusions: Macrophage activation assessed by sCD163 might play an important role
in DKA, as it correlates strongly with important components of lipid metabolism including
free fatty acids, palmitate, lipid oxidation, G0/G1 switch 2 gene and pro-inflammatory
cytokines during initial steps of DKA. These results are novel and add important knowl-
edge to the field of DKA.

INTRODUCTION
Diabetic ketoacidosis (DKA) is a life-threatening condition in
patients with type 1 diabetes. The condition is characterized by
accelerated lipid metabolism, resulting in the generation of
ketone bodies in the liver often combined with systemic inflam-
mation. Low-grade inflammation is a cornerstone in a broad
variety of metabolic disorders; for example, obesity, non-
alcoholic fatty liver disease and type 2 diabetes, and it is evident
that macrophages play an important role in such conditions1–3.
Soluble CD163 (sCD163) is shed from the surface of

macrophages during inflammation4. Recently, it has been
shown that baseline concentrations of sCD163 in type 1 dia-
betes are comparable with the concentrations of sCD163 in
type 2 diabetes, which in turn could indicate similar baseline
macrophage activation in type 1 diabetes5,6.
Lipopolysaccharide (LPS) has long been used as a model

mimicking the inflammatory response observed in septic
patients7. The LPS molecule, being the major virulence factor
of Gram-negative bacteria, binds to Toll-like receptors in the
cell membrane of innate immune cells (e.g., macrophages) and
an intracellular signaling cascade is initiated, which eventually
leads to the transcription and release of a wide range of pro-Received 11 December 2017; revised 8 April 2018; accepted 18 May 2018
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and anti-inflammatory cytokines; for example, tumor necrosis
factor-a (TNF-a)8,9. The same mechanisms lead to shedding of
sCD16310.
Along with inflammation, altered lipid metabolism plays a

critical role in metabolic disorders, including DKA, NAFLD
and type 2 diabetes. Lipid droplet-associated proteins control
lipolysis; for example, adipose triglyceride lipase and G0/G1
switch gene 2 (G0S2), the latter being mainly responsible for
decelerating lipolysis by directly inhibiting adipose triglyceride
lipase11,12. Previous studies on acute inflammation have shown
that administration of TNF-a or LPS in individuals without
diabetes increases circulating levels of stress hormones and
stimulates lipolysis13,14.
The primary objective of the present study was to investigate

whether plasma sCD163 correlates with changes in lipid meta-
bolism during the initial steps of DKA in type 1 diabetes
patients. We used a model combining LPS exposure and insu-
lin deficiency to induce DKA.

METHODS
Participants and study protocol
Data originate from a previously published human randomized,
controlled, cross-over trial consisting of two experimental days,
separated by at least 3 weeks15 in which data on lipid metabo-
lism and inflammatory responses have been given. In short,
nine male volunteers with type 1 diabetes were selected using
inclusion criteria as follows: male, aged 20–40 years, C-peptide
negative, no medication other than insulin, body mass index
19–26 kg/m2 and no comorbidities, including diabetic compli-
cations.
The two study days were characterized by: (i) euglycemic,

non-inflammatory control conditions (CTR) with a bolus of
saline (154 mmol/L NaCl); and (ii) hyperglycemic, inflamma-
tory, ketotic conditions (KET) induced by a LPS bolus adminis-
tration combined with insulin deprivation to 15% of the
participants’ regular basal rates15. The time-course of the study
days was 0–300 min. The study was carried out at Aarhus
University Hospital, Aarhus, Denmark.
The study was carried out in accordance with the

Declaration of Helsinki, and all study participants gave their
written and oral informed consent to participate. The Local
Ethics Committee approved the study protocol (1-10-72-98-
14) and registered at www.clinicaltrials.gov (ID number:
NCT02157155).

Lipid metabolism
Indirect calorimetry (Oxycon Pro; Intramedic, Gentofte, Den-
mark) was applied at 150 min to measure lipid oxidation rates
as described by Ferrannini16.
Albumin-bound [9,10-3H]-palmitate (PerkinElmer, Meche-

len, Belgium; Department of Clinical Physiology and Nuclear
Medicine, Aarhus University Hospital, Aarhus, Denmark) was
infused (0.3 mCi/min) at 200–260 min and analyzed in tripli-
cate samples using previously described calculations17.

An abdominal subcutaneous adipose tissue biopsy was
obtained at 270 min. Messenger ribonucleic acid (mRNA) was
isolated using TRIzol (Gibco BRL; Life Technologies, Roskilde,
Denmark), and quantitative polymerase chain reaction was car-
ried out in a LightCycler 480 (Roche Life Science, Indianapolis,
IN, USA). The primer sequence used for G0S2 was 50 CGA
GAG CCC AGA GCC GAG ATG 30 and 50 AGC ACC ACG
CCG AAG AG 30, 137 bp. The G0S2 gene was quantified
using the housekeeping gene, glyceraldehyde 3-phosphate dehy-
drogenase. Glyceraldehyde 3-phosphate dehydrogenase was
tested and found to be similar during both conditions.
Serum concentrations of b-hydroxybutyrate (hydrophilic

interaction liquid chromatography tandem mass spectrometry),
free fatty acids (FFA; in vitro enzymatic colorimetric method
assay NEFA-HR(2); Wako Chemicals GmbH, Neuss, Ger-
many), serum concentrations of cortisol (enzyme-linked
immunosorbent assay; DRG Diagnostic, Marburg, Germany)
and glucagon (EMD, Darmstadt, Germany) were all analyzed
in accordance with the manufacturer’s recommendations. All
blood samples were stored at -20°C and analyzed in the same
assay after all participants had completed both days.

Inflammation
To mimic infection, an Escherichia coli endotoxin/LPS (10,000
USP Endotoxin, lot HOK354; U.S. Pharmacopeial Convention,
Rockville, MD, USA) was diluted in isotonic saline and infused
intravenously as a bolus of 1 ng/kg bodyweight at 0 min.
Serum concentrations of TNF-a, interleukin (IL)-6 and IL-10
were measured in a magnetic Bio-Plex Pro Human Chemokine
Assay (Bio-Rad, Hercules, CA, USA). An in-house assay was
used to measure sCD163 (BEP-2000 enzyme-linked
immunosorbent assay analyzer; Dade Behring, Marburg, Ger-
many) essentially as previously described18. The peak increment
(D) in plasma concentration was calculated as peak concentra-
tion - baseline concentration.

Statistical analysis
Statistical graphing and analyses were completed using Sigma-
plot 11 (Systat Software, San Jose, CA, USA) and Stata 13 (Sta-
taCorp, College Station, TX, USA), respectively. P-values <0.05
were considered significant. Two-way repeated measures ANOVA

was used to test for interactions in sCD163 concentrations dur-
ing time 9 groups (CTR and KET). In the event of a signifi-
cant interaction, multiple pairwise comparisons were carried
out using the Student–Newman–Keuls method. Correlations
were evaluated using parametric linear regression including tests
to assure that the correlations were linear. Normal distribution
of data was ensured by inspection of Q-Q plots.

RESULTS
All nine participants completed both study days and were
included in the analyses. Clinical and biochemical characteristics
have previously been published15. In brief, the participants had
been diagnosed with diabetes for 14 – 2 years. They had an
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average glycated hemoglobin of 7.7% (61 mmol/mol), a body
mass index of 25 – 1 kg/m2, an insulin dose of 0.7 – 0.4 U/kg/
day and a median age of 30 years (range 21–40 years).

SCD163
At the time of LPS bolus infusion, all participants had compa-
rable concentrations of sCD163 ~1.5 mg/L (P = 0.4). However,
the concentration promptly rose 2–3-fold in KET condition
and remained elevated throughout the trial (P < 0.001). During
CTR conditions, sCD163 did not change from baseline concen-
trations (Figure 1).

Lipid metabolism
The sCD163 levels correlated positively with concentrations
of FFA, b-hydroxybutyrate and lipid oxidation (P < 0.01; Fig-
ure 2), and with the palmitate rate of appearance (P < 0.001;
Figure 2). Furthermore, polymerase chain reaction analysis of
G0S2 mRNA content from the adipose tissue biopsies
showed a negative correlation with sCD163 (P < 0.001;
Figure 2).

Inflammation
We found a positive correlation between DsCD163 and plasma
cytokines DTNF-a, DIL-6 and DIL-10 (P < 0.001; Figure 3).
Additionally, there was a strong positive correlation between
plasma DsCD163 and plasma Dglucagon and Dcortisol
(P < 0.001; Figure 3).
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Figure 1 | Plasma soluble CD163 (sCD163) concentrations. The mean
plasma concentration (–standard error of the mean) of sCD163 during
the study period is shown for control (○) and ketotic (●) conditions.
Repeated measurements two-way ANOVA analysis was used to test for
differences between groups (n = 9).
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Figure 2 | Lipid metabolism and soluble CD163 (sCD163). Data is presented as dot plots showing (a) plasma concentrations of free fatty acids
(FFA), (b) plasma concentrations of b-hydroxybutyrate (BHB), (c) lipid oxidation rates, (d) rate of appearance for palmitate (palmitate[Ra] and (e)
messenger ribonucleic acid (mRNA; G0G1 switch gene 2 [G0S2] on the x-axis and concentrations of sCD163 on the y-axis after exposure to control
[○] and ketotic [●] conditions). All measurements were carried out at approximately 300 min. A parametric linear regression analysis was used to
test for correlations (n = 9, P < 0.01 for all).
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DISCUSSION
The present study shows how sCD163 increases in type 1 dia-
betes patients during the early stages of DKA induced by LPS
exposure and lack of insulin. We found significant positive cor-
relations between sCD163 and central elements of lipid meta-
bolism and cytokines during early phases of DKA combined
with a negative correlation with G0S2 mRNA content in adi-
pose tissue samples. These results bring new insight into the
field of DKA, suggesting a central role for the macrophages in
the lipid metabolic adaptions characterizing this condition.
In agreement with previous studies investigating sCD163

after LPS administration, we found rapidly increased sCD163
concentrations, that remained elevated throughout the study
period4. Lipolysis was studied in our trial by well-established
techniques, including indirect calorimetry, palmitate tracer tech-
nique, blood sampling, and adipose tissue biopsies in the CTR
and KET condition. We showed, in early stages of DKA, a sig-
nificantly positive correlation between sCD163 and increases in
lipid oxidation, palmitate rate of appearance, and FFA. This
in vivo correlation was found within a short-term elevation of
FFA (5 h). An in vitro study examined long-term exposure
(24 h) of FFA to monocytes, and found diminished CD163
expression and consequently lower sCD16319. In contrast,
NAFLD patients with chronically elevated FFA had a strong

positive correlation between sCD163 and the severity of
NAFLD and increased FFA20,21.
Additionally, we found a significant negative correlation

between sCD163 and G0S2 mRNA expression. G0S2 is a criti-
cal node in reducing lipolysis. It is regulated primarily by adre-
nalin and insulin11,22. The downregulation of G0S2 at protein
and mRNA levels during catabolic conditions, such as fasting,
strenuous exercise and sepsis, has previously been extensively
reviewed11. Recently, an in vitro study showed that omega-3
polyunsaturated fatty acids alter TNF-a-induced inhibition of
G0S2 expression23. Data from the present paper show a signifi-
cant negative correlation between sCD163 and G0S2 in the
catabolic state of acute DKA, which might suggest that macro-
phage activation affects G0S2 expression, most likely indirectly
through cytokine production; for example, TNF-a.
One other study used the same concentration of LPS, but in

healthy volunteers, and also showed a strong positive correla-
tion between sCD163 and TNF-a. Although the concentration
of TNF-a was roughly half of the concentration measured in
the present study (400 pg/mL vs 800 pg/mL), we discovered
only a slightly higher increase in sCD163 of approximately
3.5 mg/L vs 3.0 mg/L24. Others have used higher doses of LPS,
2–4 ng/kg vs 1 ng/kg, resulting in a TNF-a response somehow
similar to ours (~600 pg/mL vs ~800 pg/mL in the present
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study). However, in these studies, approximately twofold higher
concentrations of sCD163 were measured (3.5 mg/L vs 7.0 mg/
L)10,25. The lower peak concentration found might to some
extent be explained by the negative feedback from TNF-a,
which is chronically elevated in type 1 diabetes, hence a down-
regulation of CD163 on macrophages and less shedding in
response to LPS26,27. Furthermore, sCD163 correlated positively
with the two associated inflammatory cytokines, IL-6 and
IL-10, in line with previous findings in septic patients28.
Stress hormones (cortisol and glucagon) were also positively

correlated to sCD163. The cellular expression of CD163 is
strongly upregulated by glucocorticoid, and this can lead to a
protracted increase in sCD163 during inflammatory condi-
tions29. In vitro, several studies have shown that sCD163
shedding results from various other stimuli than LPS; for exam-
ple, oxidative stress30, thrombin31 and phorbol 12-myristate
13-acetat32. Our data supply new in vivo evidence that macro-
phages might be involved in the lipid metabolic adaptions during
LPS-induced DKA in type 1 diabetes patients, as emphasized by
the strong positive correlations found, and underscore sCD163
as an important biomarker in these cases.
Most of the studies elaborating on the biological role of

sCD163 rely on in vitro designs. Therefore, the randomized,
controlled, cross-over design of the present in vivo study exam-
ining human type 1 diabetes patients adds valuable data to the
existing literature in regard to sCD163, and the study suggests
that macrophage activation is involved in DKA inflammation
and lipolysis. It should be borne in mind that the study and its
conclusions are limited to male type 1 diabetes patients. Fur-
thermore, due to the study design, it is not possible to dissect
the contribution from LPS and insulin withdrawal separately
from our data. In addition, the present study was an acute
study and it is therefore not possible to exclude changes in
sCD163 in a more chronic setting; for example, fasting. In such
a condition, growth hormone is the dominating regulator of
lipolysis, and the according correlations between sCD163 and
lipolytic parameters might be different.
To conclude, macrophage activation assessed by sCD163

might play an important role in DKA, as it correlates strongly
with important components of lipid metabolism, including
FFA, palmitate, lipid oxidation and G0S2. The response in
sCD163 and the associated correlations are similar to those
found in healthy individuals after LPS exposure. Cumulatively,
these original findings add information on macrophages,
sCD163 and involvement of DKA in type 1 diabetes.
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