
Genetics and population analysis

VariantTools: an extensible framework for

developing and testing variant callers

Michael Lawrence1,* and Robert Gentleman2

1Department of Bioinformatics, Genentech, South San Francisco, CA, USA and 223andMe, Mountain View, CA, USA

*To whom correspondence should be addressed.

Associate Editor: Oliver Stegle

Received on September 2, 2016; revised on June 3, 2017; editorial decision on July 9, 2017; accepted on July 11, 2017

Abstract

Motivation: Variant calling is the complex task of separating real polymorphisms from errors. The

appropriate strategy will depend on characteristics of the sample, the sequencing methodology

and on the questions of interest.

Results: We present VariantTools, an extensible framework for developing and testing variant call-

ers. There are facilities for reproducibly tallying, filtering, flagging and annotating variants. The

tools are extensible, modular and flexible, so that they are tunable to particular use cases, and they

interoperate with existing analysis software so that they can be embedded in established work

flows.

Availability and implementation: VariantTools is available from http://www.bioconductor.org/.

Contact: michafla@gene.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Variant calling is not an exact science, and we often need to diag-

nose variant caller output, or implement a custom variant caller

when assumptions are violated (Reumers et al., 2012). There are

many contexts in which methods are still evolving, such as RNA

editing, structural variants and alignments to graph-based genomes.

Caller diagnostics assist decision making during the design and

maintenance of variant calling pipelines by elucidating the effect of

filtering parameters and algorithmic changes on the output.

Filtering is fundamental to generating, annotating and diagnos-

ing variant calls. The appropriateness of a filter depends on the data-

set and the question. Therefore, we need a flexible and extensible

filtering framework that enables code reuse, reproducibility and

strategic decision making, where filters operate on standard data

structures and storage formats, so as to enable integration with

existing workflows and tracking of data provenance.

Filter diagnostics require annotating the data with filter results,

without actually removing any data. An example is the quality

tranche annotation generated by the GATK pipeline (Auwera et al.,

2013). Conceptually the result is a matrix with rows corresponding

to variants and columns to filters. A true value in a cell indicates

that a variant passes a filter. Using a matrix of filter results, we

analyze the outcome as if the filters were applied in series, or in par-

allel, i.e. independently, in order to determine which filters are dis-

carding (or not) a particular variant, and which variants a particular

filter is excluding. We call filter-based annotation soft filtering,

while hard filtering refers to the removal of variants that fail a filter.

The VariantTools package extends Bioconductor (Huber et al.,

2015) with a host of filters for exploring variant calls and develop-

ing variant calling pipelines.

2 Results

Filters operate on the standard Bioconductor VRanges data struc-

ture. VRanges extends the generic genomic data container GRanges

(Lawrence et al., 2013) to formally represent variant calls, including

sequence depth information, filter results and filter provenance. The

user can import and export VCF files as VRanges objects. The

gmapR package (Barr et al., 2016) computes tallies from BAM files

and returns them as VRanges objects.

Built-in filters consider minimum coverage, minimum alt count,

minimum alt frequency, strand bias and read position bias. There are

filters for identifying clumping of variants along the chromosome, as

well as for determining whether a variant is unique to a sample within

VC The Author 2017. Published by Oxford University Press. 3311

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 33(20), 2017, 3311–3313

doi: 10.1093/bioinformatics/btx450

Advance Access Publication Date: 14 July 2017

Applications Note

http://www.bioconductor.org/
https://academic.oup.com/


a pair (e.g. tumor-specific variants). VariantTools contains a diploid

genotyper and an algorithm that decides whether a variant is callable,

based on coverage and a power calculation. The filters and algorithms

are meant for exploratory and diagnostic purposes, so we designed

them to be simple, efficient and easy to interpret.

To demonstrate the capabilities of VariantTools, we load some pre-

computed nucleotide tallies from the VariantToolsData package

(Lawrence, 2016). The code for this example is available in the

Supplementary Material. We computed the tallies from the sequencing

of a 50/50 mixture of the HapMap cell lines NA12878 and NA19240.

We biochemically mixed the samples in triplicate and now sum the

read counts over the replicates to maximize effective coverage. For con-

venience, the data have been subset to positions with at least one non-

reference read and within a 1 Mb region around the TP53 gene.

> library(VariantToolsData)

> tallies <- sumDepths(get(data(tallies)))

VariantTools provides filters in sets represented by list-like

FilterRules objects, a standard Bioconductor data structure. Users

can construct filters one at a time and then combine them into ad

hoc pipelines. For quality filtering, the packge includes filters based

on a Fisher test of strand bias and the median distance from nearest

end (MDFNE), a measure of read position imbalance.

> library(VariantTools)

> tallies<- softFilter(tallies, VariantQAFilters())

The call to softFilter() applies the filters, returning the status of all

variants (no removal). We can compute statistics on the filter

results:

> summary(softFilterMatrix(tallies), percent¼TRUE)
<initial> mdfne fisherStrand <final>

1.000 0.758 0.011 0.010

We find that the MDFNE filter passed only about 76% of the pos-

itions, while the Fisher’s Exact Test of strand bias passed all of them

independently. Strand bias does not appear to be an issue but per-

haps mapping artifacts are leading to a position bias, shrinking the

median distance to the nearest end of the read.

The package includes filters for winnowing noisy tallies down to

a working set of variant calls. They are based on the count and fre-

quency of reads supporting each variant. The callVariants() function

applies the default set of calling filters in hard fashion, restricting

the dataset, where only the first filter sees all of the data.

> variants <- callVariants(tallies)

The variants object preserves which filters were applied, so by sup-

pling the original input, we can count how many variants were kept

after each filter, applied in series:

> summary(hardFilters(variants), tallies, serial¼TRUE)
<initial> nonRef nonNRef

75060 75060 75060

readCount likelihoodRatio <final>

8720 8115 8115

From these statistics, the user might decide to tweak a cutoff

value, or drop a filter entirely. They also inform on trends in the

data that will affect other variant calling tasks. Here, we find that

the requirement of 2 or more alt reads is excluding the majority of

the calls.

The FilterRules framework is extensible, so users can define

custom filters to interrogate aspects that are particularly rele-

vant to their data. The user defines a filter with an ordinary

R function, which can consider any attribute of the data. For

example, we can identify those variants that overlap a

homopolymer:

> HomopolymerFilter <-

þ function(genome, which, maxlen) {

þ seq <- getSeq(genome, which)

þ rle <- RleList(lapply(seq, as.raw),

þ
compress¼FALSE)
þ long <- runLength(rle) > maxlen

þ hp <- as(ranges(rle)[long], “GRanges”)

þ function(x) {

þ ! (x

þ }

þ }

> which <- VariantToolsData::TP53Region()

> library(BSgenome.Hsapiens.UCSC.hg19)

> genome <- BSgenome.Hsapiens.UCSC.hg19

> hp <- HomopolymerFilter(genome, which, 8)

> filters <- FilterRules(list(homopolymer¼hp))
> summary(filters, tallies, percent¼TRUE)
<initial> homopolymer <final>

1.000 0.995 0.995

We could easily experiment with different homopolymer length

cutoffs.

We compare our NA12878 variants after 50% dilution with

those of Zook et al. (2015):

> table(raw¼giab
þ called¼giab

called

raw FALSE TRUE

FALSE 16 0

TRUE 0 2080

Our tallies object has 2080 variants also in the Zook data (giab),

and there are 16 variants that are not represented in our tallies.

3 Discussion

We provide a tool for experimenting with different filtering methods

on variant calls, quickly prototyping ideas and assessing the effects

of different methods. For example, we have applied it to an evalu-

ation of the effect of variant frequency on caller performance

(Lawrence et al., 2015).

Filtering tasks rely heavily on vectorized computations, which R

performs efficiently, as well as specialized algorithms implemented

in native code. For example, computing the homopolymer overlap

filter for the NA12878 variants (1.35 million HPs, 3.16 million vari-

ants) takes less than half a second on a modern Macbook Pro lap-

top. When combined with existing parallel computing functionality

in R, simple filter implementations are scalable. For large scale pro-

jects, on the order of thousands of individuals or more, it may be

worth producing optimized special purpose implementations once

3312 M.Lawrence and R.Gentleman



the prototypes have been explored and a final filtering scheme

decided on.

4 Conclusion

VariantTools provides a tool box for exploring different filtering

strategies. It integrates with existing Bioconductor workflows via

standard data structures. There remain many problems in variant

identification where an appropriate filtering strategy is not known

and in those cases VariantTools provides a low cost method for

exploring realistic sized datasets.

Acknowledgement

We acknowledge Jeremiah Degenhardt for his work on the prototype that

evolved into VariantTools.

Conflict of Interest: none declared.

References

Auwera,G.A. et al. (2013) From fastq data to high-confidence variant calls:

the genome analysis toolkit best practices pipeline. Curr. Protoc. Bioinf., 43,

11–10.

Barr,C. et al. (2016) gmapR: An R interface to the GMAP/GSNAP/

GSTRUCT suite. R package version 1.17.1.

Huber,W. et al. (2015) Orchestrating high-throughput genomic analysis with

Bioconductor. Nat. Methods, 12, 115–121.

Lawrence,M. (2016) VariantToolsData: Data for the VariantTools tutorial. R

package version 0.99.0.

Lawrence,M. et al. (2013) Software for computing and annotating genomic

ranges. PLoS Comput. Biol., 9.

Lawrence,M. et al. (2015) Genomic variant calling: flexible tools and a diag-

nostic data set. bioRxiv.

Reumers,J. et al. (2012) Optimized filtering reduces the error rate in detecting

genomic variants by short-read sequencing. Nat. Biotechnol., 30, 61–68.

Zook,J.M. et al. (2015) Extensive sequencing of seven human genomes to

characterize benchmark reference materials. bioRxiv.

VariantTools 3313


