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Although still often considered as
simple unicellular organisms, in

natural settings yeast cells tend to
organize into intricate multicellular com-
munities. Due to specific mechanisms only
feasible at the population level, their
capacity for social behavior is advantageous
for their survival in a harmful environ-
ment. Feral Saccharomyces cerevisiae strains
form complex structured colonies, which
display many properties typical of natural
biofilms causing (among others) serious
infections in the human body. In our
recent paper, we looked inside a growing
colony using two-photon confocal micro-
scopy. This allowed us to elucidate its
three-dimensional colony architecture and
some mechanisms responsible for com-
munity protection. Moreover, we showed
how particular protective mechanisms
complement each other during colony
development and how each of them
contributes to its defense against attacks
from the environment. Our findings
broaden current understanding of micro-
bial multicellularity in general and also
shed new light on the enormous resistance
of yeast biofilms.

Microbial multicellular communities can
be found in various (even extreme)
environments in the wild.1 Yeast cells can
form diverse structures when attached to
solid surfaces (e.g., biofilms,2 colonies3),
when growing at a liquid/air interface
(e.g., cell films on the surface of sherry
wine that are called “flors”4) or when they
mutually interact in a liquid environment
and form cell clumps called “flocs”5. Each
of these structures possesses some level
of internal cell organization and comple-
xity connected with the formation of

differentiated cell subpopulations and
also possesses a significant resistance to
environmental impacts. Pathogenic yeasts
(i.e., of Candida sp.) can colonise various
surfaces within the human body, including
host tissues and artificial medical devices,
and form biofilms that resist otherwise
effective drug therapy. Biofilms are thus
very difficult to eliminate and serve as a
source of serious systemic infections.6,7

The questions of how yeast multicellular
populations orchestrate their development
and how they achieve their environmental
protection are therefore also important in
terms of medical care. However, as it is
difficult to grow artificial biofilms in the
laboratory that have properties similar to
those of fully developed natural biofilms,
many aspects of biofilm formation are still
rather elusive.

Single cells of feral S. cerevisiae strains
plated on solid medium retain the ability
to develop into structured colonies with
typical “fluffy” morphology3,8 within a
couple of days of growth. As shown below,
such colonies share many properties with
natural biofilms, and we therefore call
them biofilm colonies. The biofilm colony
model enabled us to discover the spatio-
temporal localization of specific cell sub-
populations with different functions and
determine their impact on the protection
and survival of the whole colony.

After relatively few cell divisions occur
and a simple mound colony is formed,
particular cell subpopulations begin to
diverge and play different roles. Cells at
the colony base form elongated cell chains
called pseudohyphae.9 These filaments
invade the agar medium, anchoring the
structure to the solid substrate. Cells in
peripheral layers surrounding the entire
colony (including subsurface parts) are
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equipped with drug-efflux pumps (Pdr5p
and Snq2p) localized to the plasma mem-
brane, the expression of which is con-
trolled by Pdr1p together with another,
as yet unidentified transcription factor
(Fig. 1). These proteins that belong to
the family of pleiotropic drug resistance
membrane transporters are capable of
removing various (including toxic) sub-
stances from the cells10 and protect them
(and thus also the whole colony) against
external attacks. It has been demonstrated
that various drug-efflux pumps play a
role in yeast biofilm resistance against
extracellularly added toxic compounds.
However, this has usually been based on
the overall change in behavior of mutated
strains or expression differences between

biofilms and planktonic cells,11,12 without
more detailed information on the trans-
porter’s function over the course of
community development. In addition to
the presence of these pumps, cells at the
surface layers of the aerial colony part enter
the stationary phase and thus become
more resistant to potential environmental
stress (Fig. 1). Meanwhile, cells in inter-
nal colony areas start to produce extra-
cellular polymeric matrix (ECM; Fig. 1) of
unknown composition and thus become
fully embedded in this matrix. The ECM
apparently adopts the role of a protective
barrier, because it blocks the penetration
of even harmful compounds. ECM is one
of the defining components of many
yeast multicellular communities including

biofilms.2,13,14 Despite the sequestration
potential of the ECM in clinical biofilms
being implied,15,16 its contribution to bio-
film resistance is unclear and sometimes
even doubted.7,17 As a colony develops, the
area of cells embedded in ECM expands
(Fig. 1); in later stages, the ECM encloses
almost all colony cells. Complementarily,
the layer of cells containing functional
drug-efflux pumps surrounding the colony
becomes thinner as the transporters are
degraded (Fig. 1) and almost completely
disappears in an older, fully developed
colony. Only the tips of the pseudohyphae
in the agar not covered with ECM still
maintain functional drug efflux pumps on
the membrane, thus enabling the active
defense of these exposed cells.

Figure 1. Internal structure of colony of feral Saccharomyces cerevisiae strain. Thirty-six h-old (left) and 72 h-old (right) colony. Boxes in vertical colony
cross-sections summarize structure and function of cell subpopulations in upper aerial and bottom subsurface colony parts; the localization of dividing,
non-dividing and stationary cells is depicted, as well as cells with active drug efflux pumps Pdr5p and Snq2p. The presence of ECM is marked with
black line hatching. Flo11p-dependent fibers interconnect cells in both aerial and subsurface colony parts.
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From the early developmental stage
(34–42 h), a cell-free cavity in the colony
interior is formed. As the timing of its
formation correlates with the appearance
of ECM, we can speculate that the cavity
could be filled with ECM. The ECM may
also be involved in the storage of water
and possibly nutrients, as the extracellular
material isolated from colonies possesses a
high water retention capacity.8 Moreover,
it may provide a porous nutrient-rich
space for dividing cells in the colony inter-
ior. Together with the division of internal
cells, site-specific ECM production and
its subsequent swelling can lead to rapid
colony expansion in both the horizontal
and vertical direction. As a result, the aerial
surface layer undulates and forms ridges
containing other cavities, giving the colony
its typical “fluffy” appearance.

In addition to ECM that may provide
stability to the 3-D colony structure, the
flexibility and undulation of the surface
colony layer could be dependent on the
presence of fibrous interconnections
between the cells. These interconnections

are observed throughout the entire colony,
including subsurface filamentous cells
invading the agar (Fig. 1). Cell-cell and
cell-substrate adhesion is another feature
typical of multicellular communities18,19

and is often ascribed as a function of cell
wall adhesive proteins, including the FLO
family of S. cerevisiae.19,20 From mutants in
individual FLO genes, only those lacking
FLO11 are unable to develop a 3D colony
architecture and they form smooth and
flat colonies.8,21 Dflo11 colonies also lack
intercellular connections, suggesting that
Flo11p has a unique function in the for-
mation of fibrous cell-cell interconnections
in biofilm colonies.

In plentiful and stable laboratory con-
ditions, colonies no longer need the traits
described above. They are therefore
switched off and energy, otherwise con-
sumed in e.g., the production of an ECM
rich in polysaccharides, could be used in
a more profitable way.1 Thus, laboratory
and domesticated strains (those arising
after passages of feral strains on complex
media)3 form non-adhesive, smooth flat

colonies expanding predominantly in the
horizontal direction.3,8,22 Cells within such
colonies are tightly packed and neither
pores nor cavities can be observed.3,22 In
contrast, the strategy of feral strains is to
quickly occupy territory ahead of com-
petitors, to build a complex structure
protected by several cooperating mecha-
nisms so as to provide a sheltered space for
new cell generations. Despite the high
energy costs, it is advantageous to build
such a complicated structure, because it
enables the community to effectively cope
with a hostile environment. Thus, a
structured biofilm yeast colony should be
considered to be a multicellular organism,
where everything is subordinated to the
success of the community, regardless of
individual cell fate.
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