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Abstract

Unstructured clinical narratives are continuously being recorded as part of delivery of care in

electronic health records, and dedicated tagging staff spend considerable effort manually

assigning clinical codes for billing purposes. Despite these efforts, however, label availability

and accuracy are both suboptimal. In this retrospective study, we aimed to automate the

assignment of top-level International Classification of Diseases version 9 (ICD-9) codes to

clinical records from human and veterinary data stores using minimal manual labor and fea-

ture curation. Automating top-level annotations could in turn enable rapid cohort identifica-

tion, especially in a veterinary setting. To this end, we trained long short-term memory

(LSTM) recurrent neural networks (RNNs) on 52,722 human and 89,591 veterinary records.

We investigated the accuracy of both separate-domain and combined-domain models and

probed model portability. We established relevant baseline classification performances by

training Decision Trees (DT) and Random Forests (RF). We also investigated whether

transforming the data using MetaMap Lite, a clinical natural language processing tool,

affected classification performance. We showed that the LSTM-RNNs accurately classify

veterinary and human text narratives into top-level categories with an average weighted

macro F1 score of 0.74 and 0.68 respectively. In the “neoplasia” category, the model trained

on veterinary data had a high validation accuracy in veterinary data and moderate accuracy

in human data, with F1 scores of 0.91 and 0.70 respectively. Our LSTM method scored

slightly higher than that of the DT and RF models. The use of LSTM-RNN models represents

a scalable structure that could prove useful in cohort identification for comparative oncology

studies. Digitization of human and veterinary health information will continue to be a reality,

particularly in the form of unstructured narratives. Our approach is a step forward for these

two domains to learn from and inform one another.
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Introduction

Motivation

The increasingly worldwide adoption of electronic health records (EHRs) has populated clini-

cal databases with millions of clinical narratives (descriptions of actual clinical practice). How-

ever, given the nature of the medical enterprise, a big portion of the data being recorded is in

the form of unstructured free-text clinical notes. Cohorts of individuals with similar clinical

characteristics require quality phenotype labels, oftentimes not readily available alongside clin-

ical notes, to be studied adequately.

In place of such labeling, diagnostic codes are the most common surrogates to true pheno-

types. In routine clinical practice, dedicated tagging staff read clinical narratives and assign

these diagnostic codes to patients’ diagnoses from one or both of two coding systems: the

International Classification of Diseases (ICD) and the Systematized Nomenclature of Medicine

(SNOMED) [1]. However, this time-consuming, error-prone task leads to only 60–80% of the

assigned codes reflecting actual patient diagnoses [2], misjudgment of severity of conditions,

and/or omission of codes altogether. The relative inaccuracy of oncological medical coding

[3–6] affects the quality of cancer registries [7] and cancer prevalence calculations [8–10], for

example. Poorly-defined disease types and poorly-trained coding staff who overuse the “not

otherwise specified” code when classifying text exacerbate the problem.

Challenges in clinical coding also exist in veterinary medicine in the United States, where

neither clinicians nor medical coders regularly apply diagnosis codes to veterinary visits.

There are few incentives for veterinary clinicians to annotate their records; a lack of 1) a sub-

stantial veterinary third-party payer system and 2) legislation enforcing higher standards of

veterinary EHRs (the U.S. Health Information Technology for Economic and Clinical Health

Act of 2009 sets standards for human EHRs) compound the problem. Billing codes are thus

rarely applicable across veterinary institutions unless hospitals share the same management

structure and records system; even then, hospital-specific modifications exist. Less than five

academic veterinary centers of a total of thirty veterinary schools in the United States have

dedicated medical coding staff to annotate records using SNOMED-CT-Vet [11], a veterinary

extension of SNOMED constructed by the American Animal Hospital Association (AAHA)

and maintained by the Veterinary Terminology Services Laboratory at the Virginia-Maryland

Regional College of Veterinary Medicine [12].

The vast majority of veterinary clinical data is stored as free-text fields with very low rates

of formal data curation, making data characterization a tall order. Further increasing variance

in the data, veterinary patients come from many different environments, including hospitals

[13], practices [14], zoos [15], wildlife reserves [16], army facilities [17], research facilities [18],

breeders, dealers, exhibitors [19], livestock farms, and ranches [20].

It is thus important that a general method, agnostic of patient environment, is able to cate-

gorize EHRs for cohort identification solely based on free-text.

A primer on automatic text classification

Automatic text classification is an emerging field that uses a combination of tools such as

human medical coding, rule-based systems queries [21], natural language processing (NLP),

statistical analyses, data mining, and machine learning (ML) [22]. In a previous study [23], we

have shown the feasibility of automatic annotation of veterinary clinical narratives across a

broad range of diagnoses with minimal preprocessing, but further exploration is needed to

probe what we can learn from human-veterinary comparisons. Automatically adding mean-

ingful disease-related tags to human and veterinary clinical notes using the same machinery
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would be a huge step forward in that exploration and could facilitate cross-species findings

downstream.

Said integration has the potential to improve both veterinary and human coding accuracy

as well as comparative analyses across species. Comparative oncology, for example, has acceler-

ated the development of novel human anti-cancer therapies through the study of companion

animals [24], especially dogs [25–28]. The National Institute of Health recently funded a

multi-center institution called the Arizona Cancer Evolution Center (ACE) that aims to inte-

grate data from a broad array of species to understand the evolutionarily conserved basis for

oncology. As this group utilizes animal clinical and pathology data to identify helpful traits like

species-specific cancer resistance, they would greatly benefit from improved cohort discovery

through automated record tagging.

15 out of 30 veterinary schools across the United States have formed partnerships with their

respective medical schools in order to perform cross-species translational research within the

Clinical and Translational Science Award One Health Alliance (COHA, [29]). Of these

schools, only two have active programs to assign disease codes to their medical records. The

data for the rest represents the very use case of automatic text classification.

Automatic medical text classification aims to reduce the human burden of handling

unstructured clinical narratives. These computational NLP methods can be divided into two

groups: a) semantic processing and subsequent ML; and b) deep learning.

Semantic processing and subsequent ML. Semantic processing methods range from sim-

ple dictionary-based keyword-matching techniques and/or direct database queries to tools

capable of interpreting the semantics of human language through lemmatization (removal of

inflectional word endings), part-of-speech tagging, parsing, sentence breaking, word segmen-

tation, and entity recognition [30]. Building the underlying dictionaries and manually crafting

the rules that capture these diverse lexical elements both require time and domain expertise.

There is a growing interest in medical concept classification for clinical text; as such, many

domain-specific semantic NLP tools (with various objectives, frameworks, licensing condi-

tions, source code availabilities, language supports, and learning curves) have been developed

for the medical setting. Such tools include MedLEE [31], MPLUS [32], MetaMap [33], KMCI

[34], SPIN [35], HITEX [36], MCVS [37], ONYX [38], MedEx [39], cTAKES [40], pyCon-

TextNLP [41], Topaz [42], TextHunter [43], NOBLE [44], and CLAMP [45]. However, there is

no single NLP tool that can handle the broad problem of general medical concept classifica-

tion. Instead, each method solves specific problems and applies its unique set of constraints.

After clinical narratives are fed into the above semantic NLP tools, various clinical “con-

cepts” or “terms” (e.g. conditions, diseases, age, body parts, periods of time, etc.) are extracted.

These concepts can then be represented in a “term-document matrix,” which shows frequen-

cies of the terms across documents. These frequencies can be used raw as features in a ML

model, but more often than not, choices are made to transform these features to more mean-

ingful spaces. This can be done via term frequency-inverse document frequency (tf-idf, which

assigns weights to terms based on the frequency of the term in both the document of interest

as well as the corpus at large), other vectorization techniques like Word2Vec [46], or manually

curated rules.

Predictive ML models (like Decision Trees [DTs], Random Forests [RFs], and Support Vec-

tor Machines [SVMs] [47]) that operate on the raw or transformed term-document matrix use

this training data (input features and “ground-truth” labels) to make accurate predictions or

decisions on unseen test data without explicit instructions on how to do so. They have been

shown to achieve high classification accuracy in human [48, 49] and veterinary [50] free-text

narratives for diseases well-represented in training datasets (e.g. diabetes, influenza, and diar-

rhea). However, these models generally do not classify under-represented diseases or
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conditions well, and opportunities for both public data generation and methodological inno-

vation lie in this space [50].

Deep learning. Deep learning (DL) methods eliminate the need of feature engineering,

harmonization, or rule creation. They learn hierarchical feature representations from raw data

in an end-to-end fashion, requiring significantly less domain expertise than traditional ML

approaches [51].

DL is quickly emerging in the literature as a viable alternative method to traditional ML for

the classification of clinical narratives [47]. The technique can help in the recognition of a lim-

ited number of categories from biomedical text [52, 53]; identify psychiatric conditions of

patients based on short clinical histories [54]; and accurately classify whether or not radiology

reports indicate pulmonary embolism [55, 56] whilst outperforming baseline non-DL-based

methods (e.g. RFs or DTs). Previous studies have shown the possibility of using DL to label

clinical narratives with medical subspecialties [57] (e.g. cardiology or neurology) or medical

conditions [58] (e.g. advanced cancer or chronic pain), outperforming concept-extraction

based methods. Furthermore, the use of DL to analyze clinical narratives has also facilitated

the prediction of relevant patient attributes, such as in-hospital mortality, 30-day unplanned

readmission, prolonged length of stay, and final discharge diagnosis [59].

Traditional NLP methods boast interpretability and flexibility but come at the steep cost of

data quality control, formatting, normalization, domain knowledge, and time needed to gener-

ate meaningful heuristics (which oftentimes are not even generalizable to other datasets).

Automatic text classification using DL is thus a logical choice to bypass these steps, classifying

medical narratives from EHRs by solely leveraging big data. We expect that our efforts could

facilitate rapid triaging of documents and cohort identification for biosurveillance.

Materials and methods

Ethics statement

This research was reviewed and approved by Stanford’s Institutional Review Board (IRB),

which provided a non-human subject determination under eProtocol 46979. Consent was not

required.

Study design

This retrospective cross-sectional chart review study uses medical records collected routinely

as part of clinical care from two clinical settings: the veterinary teaching hospital at Colorado

State University (CSU) and the Medical Information Mart for Intensive Care (MIMIC-III)

from the Beth Israel Deaconess Medical Center in Boston, Massachusetts [60]. Both datasets

were divided in two smaller datasets—training datasets containing 70% of the original datasets

(used to build TensorFlow [61] DL models), and validation datasets containing 30% of the

original datasets.

The goal of our model was to predict top-level ICD version 9 (ICD-9) codes, which we con-

sidered our “ground-truth” labels. These codes are organized in a hierarchical fashion, with

the top levels representing the grossest possible descriptors of clinical diseases or conditions

(e.g., “neoplasia”). The MIMIC-III dataset provides ICD-9 codes for all its patients as-is. How-

ever, veterinary codes from the CSU were coded using SNOMED-CT, and thus needed to be

converted to their closest equivalent top-level ICD-9 codes. Mapping between SNOMED-CT

and ICD-9 codes was a challenging task but promoted semantic interoperability between our

two domains. Table 1 shows our mapping between ICD (versions 9 and 10) codes and their

counterparts in SNOMED-CT (including the Veterinary extension, SNOMED-CT-Vet). This

mapping, which then allowed us to generate “ground-truth” labels for the veterinary data,was
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manually curated by two board-certified veterinarians trained in clinical coding (co-authors

AZM and RLP). We also wanted to investigate the effect of using MetaMap [33], a NLP tool

that extracts clinically-relevant terms, on our clinical narratives. Specifically, we explored

whether or not training our models on these “MetaMapped” free-texts (that only contain

extracted UMLS terms) would improve accuracy.

Finally, we measured the validation accuracy of the models, calculating the F1 score of our

model and relevant non-DL baselines in each top-level disease category. We also explored the

possibility of out-of-domain generalization, testing the MIMIC-trained model on the CSU val-

idation data and vice versa (and ran separate tests for “MetaMapped” versions of each dataset,

as well). Finally, we investigated the effect of merging the MIMIC and CSU training datasets to

test the efficacy of data augmentation. Fig 1 shows a diagram of our study design. Our code to

run all models can be found in a public repository (https://github.com/rivas-lab/FasTag).

Data

Veterinary medical hospital at Colorado State University (CSU). The CSU is a tertiary

care referral teaching hospital with inpatient and outpatient facilities, serving all specialties of

veterinary medicine. After consultation, veterinarians enter patient information into a cus-

tom-built veterinary EHR, including structured fields such as entry and discharge dates,

patient signalment (species, breed, age, sex, etc.), and SNOMED-CT-Vet codes. There are also

Table 1. Top-level coding mapping between ICD-9, ICD-10, and SNOMED-CT.

Top-level

category

Description ICD-9 ICD-10 SNOMED-CT

1 Infectious and parasitic diseases 001-139 A00-B99 105714009, 68843000, 78885002, 344431000009103, 338591000009108,

40733004, 17322007

2 Neoplasms 140-239 C00-D49 723976005, 399981008

3 Endocrine, nutritional and metabolic diseases,

and immunity disorders

240-279 E00-E90 85828009, 414029004, 473010000, 75934005, 363246002, 2492009,

414916001, 363247006, 420134006, 362969004

4 Diseases of blood and blood-forming organs 280-289 D50-D89 271737000, 414022008, 414026006, 362970003, 11888009, 212373009,

262938004, 405538007

5 Mental disorders 290-319 F00-F99 74732009

6 Diseases of the nervous system 320-359 G00-G99 118940003, 313891000009106

7 Diseases of sense organs 360-389 H00-H59,

H60-H95

50611000119105, 87118001, 362966006, 128127008, 85972008

8 Diseases of the circulatory system 390-459 I00-I99 49601007

9 Diseases of the respiratory system 460-519 J00-J99 50043002

10 Diseases of the digestive system 520-579 K00-K93 370514003, 422400008, 53619000

11 Diseases of the genitourinary system 580-629 N00-N99 42030000

12 Complications of pregnancy, childbirth, and

the puerperium

630-679 O00-O99 362972006, 173300003, 362973001

13 Diseases of the skin and subcutaneous tissue 680-709 L00-L99 404177007, 414032001, 128598002

14 Diseases of the musculoskeletal system and

connective tissue

710-739 M00-M99 105969002, 928000

15 Congenital anomalies 740-759 Q00-Q99 111941005, 32895009, 66091009

16 Certain conditions originating in the perinatal

period

760-779 P00-P96 414025005

17 Injury and poisoning 800-899 S00-T98 85983004, 75478009, 77434001, 417163006

Mapping of top-level categories was manually curated by two board-certified veterinarians trained in clinical coding.

https://doi.org/10.1371/journal.pone.0234647.t001
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options to input free-text clinical narratives with various sections including history, assess-

ment, diagnosis, prognosis, and medications. These records are subsequently coded; the final

diagnostic codes represent single or multiple specific diagnoses or post-coordinated expres-

sions (a combination of two or more concepts). For our study, we used the free-text clinical

Fig 1. Diagram of the training and evaluation design. Relevant acronyms: MIMIC: Medical Information Mart for

Intensive Care; CSU: Colorado State University; MetaMap, a tool for recognizing medical concepts in text; LSTM: long-

short term memory recurrent neural network classifier; RF: Random Forest classifier; DT: Decision Tree classifier.

https://doi.org/10.1371/journal.pone.0234647.g001
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narratives (data input) and the SNOMED-CT-Vet codes (labels), which we subsequently con-

verted to ICD-9 top-level codes as per Table 1.

Medical Information Mart for Intensive Care (MIMIC-III). The Beth Israel Deaconess

Medical Center is a tertiary care teaching hospital at Harvard Medical School in Boston, Mas-

sachusetts. The MIMIC-III database, a publicly available dataset which we utilize in this study,

contains information on patients admitted to the critical care unit at the hospital [60]. These

records are coded for billing purposes and have complete diagnoses per patient (the database

is publicly available, and thus represents the best possible medical coding annotation scenario

for a hospital). We were interested in the free-text hospital discharge summaries (data input)

and the corresponding ICD-9 codes (labels) for the patients in this database. Free-text fields in

MIMIC-III have been de-identified to protect privacy.

Comparing the sources. The CSU dataset contains medical records from 33,124 patients

and 89,591 hospital visits between February 2007 and July 2017. Patients encompassed seven

mammalian species, including dogs (Canis Lupus, 80.8%), cats (Felis Silvestris, 11.4%), horses

(Equus Caballus, 6.5%), cattle (Bos Taurus, 0.7%), pigs (Sus Scrofa, 0.3%), goats (Capra hircus,
0.2%), sheep (Ovis Aries, 0.1%), and other unspecified mammals (0.1%). In contrast, the

MIMIC-III database contains medical records from 38,597 distinct human adult patients

(aged 16 years or above) and 7,870 neonates admitted between 2001 and 2008, encompassing

52,722 unique hospital admissions to the critical care unit between 2001 and 2012. Table 2

summarizes the category breakdowns of both databases. For this analysis, only those patients

with a diagnosis in their record were considered.

MetaMap

Our hypothesis was that there would be a plethora of extraneous information, domain- and

setting-specific misspellings, abbreviations, and jargon in the clinical narratives in both

human and veterinary settings. In order to potentially resolve some of these issues, we used

MetaMap Lite [62], a NLP tool which leverages the Unified Medical Language System (UMLS)

Metathesaurus to identify SNOMED [63] or ICD-9 [64] codes from clinical narratives. Meta-

Map’s algorithm includes five steps: 1) parsing of text into simple noun phrases; 2) variant gen-

eration of phrases to include all derivations of words (i.e. synonyms, acronyms, meaningful

spelling variants, combinations, etc.); 3) candidate retrieval of all UMLS strings that contains

at least one variant from the previous step; 4) evaluation and ranking of each candidate, map-

ping between matched term and the Metathesaurus concept using metrics of centrality, varia-

tion, coverage, and cohesiveness; 5) construction of complete mappings to include those

mappings that are involved in disjointed parts of the phrase (e.g. ‘ocular’ and ‘complication’

can together be mapped to a single term, ‘ocular complication’). MetaMap incorporates the

use of ConText [65], an algorithm for the identification of negation in clinical narratives.

We proceeded to make a “MetaMapped” version of each training and validation dataset to

see whether extracting and inputting only clinical terms from the narratives into the models

would increase their accuracy. For additional information and examples of how we used and

evaluated MetaMap, please refer to S1 Text and S1–S3 Tables.

Model architecture

We chose a long short-term memory (LSTM) recurrent neural network (RNN) architecture

(which is able to handle variable-length sequences while using previous inputs to inform cur-

rent time steps) for this multi-label text classification task [66]. The LSTM shares parameters

across time steps as it unrolls, which allows it to handle sequences of variable length. In this

case, these sequences are a series of word “embeddings” (created by mapping specific words to

PLOS ONE FasTag

PLOS ONE | https://doi.org/10.1371/journal.pone.0234647 June 22, 2020 7 / 18

https://doi.org/10.1371/journal.pone.0234647


corresponding numeric vectors) from clinical narratives. Words are represented densely

(rather than sparsely, as in Bag-of-Words or tf-idf models) using the Global Vectors for Word

Representation (GloVe) [67] word embeddings. These embeddings learn a vector space repre-

sentation of words such that words with similar contexts appear in a similar vector space and

also capture global statistical features of the training corpus.

LSTMs have proven to be flexible enough to be used in many different tasks, such as

machine translation, image captioning, medication prescription, and forecasting disease diag-

nosis using structured data [66]. The RNN can efficiently capture sequential information and

theoretically model long-range dependencies, but empirical evidence has shown this is difficult

to do in practice [68]. The sequential nature of text lends itself well to LSTMs, which have

memory cells that can maintain information for over multiple time steps (words) and consist

of a set of gates that control when information enters and exits memory, making them an ideal

candidate architecture.

Table 2. Database statistics of patients, records, and species (records with diagnosis).

CSU MIMIC

Data

Medical Records 89,591 52,722

Patients 33,124 41,126

Hospital Visits 89,591 49,785

Species

Humans (Homo Sapiens) n.a. 52,722

Dogs (Canis Lupus) 72,420 n.a.

Cats (Felis Silvestris) 10,205 n.a.

Horses (Equus Caballus) 5,819 n.a.

Other mammals 1,147 n.a.

Category

Infectious 11,454 10,074

Neoplasia 36,108 6,223

Endo-Immune 17,295 24,762

Blood 10,171 13,481

Mental 511 10,989

Nervous 7,488 9,168

Sense organs 15,085 2,688

Circulatory 8,733 30,054

Respiratory 11,322 17,667

Digestive 22,776 14,646

Genitourinary 8,892 14,932

Pregnancy 136 133

Skin 21,147 4,241

Musculoskeletal 22,921 6,739

Congenital 3,347 2,334

Perinatal 54 3,661

Injury 9,873 16,121

The mappings in Table 1 were used to generate the categories and numbers presented here in Table 2. The seventeen

categories represent the text classification labels.

https://doi.org/10.1371/journal.pone.0234647.t002
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We first trained FasTag, the LSTM model, over a variety of hyperparameters on MIMIC

data and calculated the model’s validation accuracy over all combinations of them, finding the

set of [learning rate = 0.001, dropout rate = 0.5, batch size = 256, training epochs = 100, hidden

layer size = 200, LSTM layers = 1] to be the optimal setting. We proceeded to use this hyper-

parameter set for all FasTag models trained, assuming that this set would be amenable to the

task at hand regardless of training dataset. We then proceeded to train a set of six models on

three datasets (MIMIC, CSU, and MIMIC+CSU) where each dataset had a version that was

processed with MetaMap and a version that was not.

Evaluation

We aimed to characterize the performance of FasTag in both absolute and relative senses by

establishing its empirical classification accuracy and the accuracy of non-DL alternatives.

Several ML classifiers have similarly aimed to classify clinical narratives [47, 69]. We

selected two of these classifiers (DTs and RFs) as relevant non-DL baseline comparator

methods. DTs are ML models constructed around a branching boolean logic [70]. Each

node in the tree can take a decision that leads to other nodes in a tree structure; there are no

cycles allowed. The RF classifier is an ensemble of multiple DTs created by randomly select-

ing samples of the training data. The final prediction is done via a consensus voting mecha-

nism of the trees in the forest.

We featurized the narratives using tf-idf, a statistic that reflects word importance in the con-

text of other documents in a corpus and a standard ML modeling strategy for representing

text, to convert the narratives into a text-document matrix [47]. The hyperparameters of both

baseline models (DT and RF), like for FasTag, were tuned on the validation set.

For all models we trained (FasTag, DT, and RF), we used the same validation set evaluation

metrics previously reported for MetaMap [62]: a) precision, defined as the proportion of docu-

ments which were assigned the correct category; b) recall, defined as the proportion of docu-

ments from a given category that were correctly identified; and c) F1 score, defined as the

harmonic average of precision and recall. Formulas for these metrics are provided below:

Precision ¼
True Positive

True Positiveþ False Positive
ð1Þ

Recall ¼
True Positive

True Positiveþ False Negative
ð2Þ

F1 ¼ 2 �
Precision � Recall
Precisionþ Recall

ð3Þ

Our task is framed as a multi-label classification problem, where each approach predicts

multiple top-level ICD-9 categories for each observation using a single model. In order to

combine all class-specific F1 scores, we averaged the F1 score for each label, weighting the

labels by their supports (the number of true instances for each label, to account for label

imbalance).

Domain adaptation. The portability of trained algorithms on independent domains has

previously been used as a metric of model robustness in systems that leverage NLP and ML

[71]. We evaluated the ability of our trained FasTag LSTM models to be used in a cross-species

context. We utilized the MIMIC-trained model to classify the medical records in the CSU

database and vice versa, assessing performance as before. We also assessed the classifier trained

on the combined training set.
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Results

We investigated the application of FasTag to free-text unstructured clinical narratives on two

cohorts: veterinary medical records from CSU, and human medical records in the MIMIC-III

database.

We trained FasTag (as well as DT/RF baselines) on the human, veterinary, and merged

(human and veterinary) datasets and tested each on their own domain as well as the other

domains. We built FasTag using the Python programming language (version 2.7), Tensor-

Flow [61] (version 1.9), and the scikit-learn library (version 0.19.2) [72]; we built the base-

lines using Python and scikit-learn as well. The training was performed on an Amazon1

Deep Learning AMI, a cloud-based platform running the Ubuntu operating system with

pre-installed CUDA dependencies. FasTag’s training procedure was epoch-based; that is,

our data was split into “batches” of size 256, and we calculated cross-entropy loss and

updated the model using the Adam optimizer after each of these batches were input into the

model. An “epoch” is said to have finished every time the entire dataset has passed through

the model in batches. As is standard with most epoch-based model-training procedures, we

trained FasTag until our validation loss increased between epochs three consecutive times.

For the DT and RF baselines, we performed validation-set model selection across a grid of

hyperparameters, including: information criterion; max features; max depth (of tree[s]);

number of estimators; and tf-idf vector normalization type (L1 or L2). Average weighted

macro F1 scores for models across all categories are shown in Table 3; a full list of F1 scores

by category can be found in S4 Table. The “neoplasia” category results, which we found

notable, are shown in Table 4.

Table 3. Average F1 scores using various training and validation dataset combinations for all categories.

Configuration Model evaluation (Weighted F1 score)

Training Validation MetaMap DT RF LSTM

MIMIC MIMIC No 0.60 0.64 0.65

Yes 0.60 0.63 0.70

CSU CSU No 0.55 0.61 0.72

Yes 0.54 0.60 0.75

MIMIC CSU No 0.22 0.24 0.28

Yes 0.23 0.20 0.31

CSU MIMIC No 0.31 0.20 0.23

Yes 0.28 0.19 0.36

MIMIC + CSU CSU No 0.57 0.62 0.67

Yes 0.57 0.62 0.76

MIMIC + CSU MIMIC No 0.60 0.63 0.58

Yes 0.60 0.63 0.60

MIMIC + CSU MIMIC + CSU No 0.59 0.64 0.68

Yes 0.59 0.63 0.71

Average 0.489 0.506 0.571

Evaluation metrics for Decision Tree (DT), Random Forest (RF), and the FasTag Long Short Term Memory (LSTM) Recurrent Neural Network on validation datasets

with and without MetaMap term extraction. Bolded and underlined numbers represent the best scores for the specific configuration of training data, validation data,

and MetaMap toggle.

https://doi.org/10.1371/journal.pone.0234647.t003
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Discussion

Applying DL to unstructured free-text clinical narratives in electronic health records offers a

relatively simple, low-effort means to bypass the traditional bottlenecks in medical coding. Cir-

cumventing the need for data harmonization was very important for the datasets, which con-

tained a plethora of domain- and setting-specific misspellings, abbreviations, and jargon

(these issues would have greatly impacted the performance of standard ML models, and

indeed, these were the cause of misclassifications by FasTag, as well). MetaMap was useful in

this regard given its ability to parse clinical data, but much work is still needed to improve rec-

ognition of terms in veterinary and human domains (as evidenced by only low-to-moderate

gains, and in some cases, losses, in performance in “MetaMapped” datasets [S4 Table]).

There is moderate evidence of domain adaptation (where a model trained on MIMIC data

is useful in the CSU validation set, or vice versa) in the “neoplasia” category, with F1 scores of

0.69-0.70 (Table 4). This process involved training a model on the data in one database and

testing on the data in the other without fine-tuning. It is evident that the high classification

accuracy (F1 score = 0.91) obtained by the CSU model in the neoplasia category is decreased

when testing the same model on the MIMIC data. One possible explanation is the difference in

clinical settings; CSU is a tertiary care veterinary hospital specializing in oncological care, and

the clinical narratives that arise in a critical care unit like in the MIMIC dataset do not neces-

sarily compare. Moreover, the records were not coded in the same way, the clinicians did not

receive the same training, and the documents apply to different species altogether (see S3

Table for an example of an example narrative unique to veterinary care). Despite these differ-

ences, however, our LSTM model was general enough to be able to accurately classify medical

narratives at the top level of depth independently in both datasets. The achieved cross-domain

Table 4. F1 scores using various training and validation dataset combinations for the “neoplasia” category.

Configuration Model evaluation (Weighted F1 score)

Training Validation MetaMap DT RF LSTM

MIMIC MIMIC No 0.39 0.45 0.66

Yes 0.4 0.45 0.76

CSU CSU No 0.81 0.86 0.91

Yes 0.8 0.86 0.91

MIMIC CSU No 0.3 0.53 0.69

Yes 0.45 0.37 0.75

CSU MIMIC No 0.46 0.58 0.70

Yes 0.5 0.58 0.54

MIMIC + CSU CSU No 0.74 0.8 0.87

Yes 0.74 0.8 0.87

MIMIC + CSU MIMIC No 0.4 0.47 0.67

Yes 0.42 0.45 0.72

MIMIC + CSU MIMIC + CSU No 0.81 0.86 0.85

Yes 0.81 0.86 0.90

Average 0.574 0.637 0.771

Evaluation metrics for the “neoplasia” category Decision Tree (DT), Random Forest (RF), and the FasTag Long Short Term Memory (LSTM) Recurrent Neural

Network on validation datasets with and without MetaMap term extraction. Bolded and underlined numbers represent the best scores for the specific configuration of

training data, validation data, and MetaMap toggle.

https://doi.org/10.1371/journal.pone.0234647.t004
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accuracy is thus nonetheless encouraging. Given enough training data and similar-enough

clinical narratives, one could conceivably imagine a general model that is highly effective

across domains.

Models performed usually better on their respective validation datasets in those categories

with more training samples. For example, the CSU-trained model (25,276 samples) had signifi-

cantly better performance in the “neoplasia” category than the MIMIC-trained model (4,356

samples), while the MIMIC-trained model (21,038 samples) had better performance in the dis-

eases of the circulatory system category than the CSU-trained model (6,133 samples). The cor-

ollary to this is that the biggest impediment to model performance within a category was the

lack of training data. Unlike in the genetics community, where there exist hundreds of thou-

sands of research samples available to researchers through DUAs [73], there is definitely a

dearth of de-identified clinical text narratives alongside quality labels like in MIMIC-III.

Along the same vein, when training on a mixed dataset of MIMIC and CSU data, we observed

that the performance of the resultant classifier was significantly better on CSU than MIMIC

validation data across various top-level categories (S4 Table). We hypothesize that a combina-

tion of the inherent differences in data across the two domains and the larger number of CSU

records in the training set led to this performance gap. We additionally hypothesize that mix-

ing training data from more similar data sources, in contrast, would result in strictly better

performance outcomes on test data from both sources.

Insights gained through this work on generalizing across clinical and veterinary domains

could be informative in training models attempting to generalize across different clinical insti-

tutions but within the same clinical domain. Linguistic variation within a clinical domain is

due to factors like geography, clinical specialty, and patient population, among others. This

variation manifests across many characteristics such as syntax [74–76], semantics [77], and

workflow procedures [78]. The common practices to address domain heterogeneity are to re-

train models from scratch [78] or to utilize domain adaptation techniques like distribution

mapping [79] for the task of interest. Overall, we hypothesize that adapting models across clin-

ical institutions will bear better results than when adapting them across clinical domains (like

we have attempted in this work).

The usefulness of even top-level characterizations in the veterinary setting cannot be under-

stated; usually, a veterinarian must read the full, unstructured text in order to get any informa-

tion about the patient they are treating. Rapid selection of documents with specific types of

clinical narratives (such as oncological cases, which our model performed well on) could lead

to better cohort studies for comparative research. The repeated use of a series of such LSTM

models for subsequent, increasingly-specific classifications thus represents a scalable, hierar-

chical tagging structure that could prove extremely useful in stratifying patients by specific dis-

eases, severities, and protocols.

Conclusion

In this era of increasing deployment of EHRs, it is important to provide tools that facilitate

cohort identification. Our deep learning approach, FasTag, was able to automatically classify

medical narratives with minimal human preprocessing. In a future with enough training data,

it is possible to foresee a scenario in which these models can accurately tag every clinical con-

cept, regardless of data input. The expansion of veterinary data availability and the subse-

quently enormous potential of domain adaptation like we saw in the neoplasia category could

prove to be exciting chapters in reducing bottlenecks in public health research at large; it is

thus of critical importance to continue studying novel sources of data that can rapidly be used

to augment classification models.
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A reliable addition to existing rule-based and natural language processing strategies, deep

learning is a promising tool for accelerating public health research.
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female dog patient with recurrent otitis and allergic dermatitis. Both the narrative (left) and

the “MetaMapped” version (right) show that the treatment included prednisone (among other

important clinical details). For the purposes of this manuscript, the pet and owner’s name
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S4 Table. Classification performance across categories and methods. Sheet 1: Long Short

Term Memory (LSTM) Recurrent Neural Network (RNN) [FasTag]; Sheet 2: Decision Trees

(DT); Sheet 3: Random Forests (RF).
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