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Abstract

For many disease conditions, tissue samples are colored with multiple dyes and stains to

add contrast and location information for specific proteins to accurately identify and diag-

nose disease. This presents a computational challenge for digital pathology, as whole-slide

images (WSIs) need to be properly overlaid (i.e. registered) to identify co-localized features.

Traditional image registration methods sometimes fail due to the high variation of cell den-

sity and insufficient texture information in WSIs–particularly at high magnifications. In this

paper, we proposed a robust image registration strategy to align re-stained WSIs precisely

and efficiently. This method is applied to 30 pairs of immunohistochemical (IHC) stains and

their hematoxylin and eosin (H&E) counterparts. Our approach advances the existing meth-

ods in three key ways. First, we introduce refinements to existing image registration meth-

ods. Second, we present an effective weighting strategy using kernel density estimation to

mitigate registration errors. Third, we account for the linear relationship across WSI levels to

improve accuracy. Our experiments show significant decreases in registration errors when

matching IHC and H&E pairs, enabling subcellular-level analysis on stained and re-stained

histological images. We also provide a tool to allow users to develop their own registration

benchmarking experiments.

Introduction

Histological assessment is a critically important feature in the diagnosis, prognosis, and treat-

ment of disease. Tissues are frequently viewed under a traditional light microscope after some

type of tissue staining–most commonly hematoxylin & eosin (H&E) and immunohistochemis-

try (IHC). High-throughput whole-slide scanners are now enabling quantitative assessments

of histologic features from whole-slide images (WSIs).

While exciting, these new advances in digital pathology also bring new challenges. One

such challenge is co-locate features from the same tissue after it has been stained, imaged,

washed, stained again, and imaged again. This type of procedure is common when features

need to be compared at the sub-cellular level. Unlike serial sectioning, where pieces of tissue
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are cut sequentially, re-staining does not suffer from the potential distortions associated with

architectural changes from differences in the tissue sections. Serial sections are commonly

used to identify characteristics of a tumor (e.g. estrogen receptor positivity in breast cancer)

but not for the same cell.

From a computational perspective, this means the re-staining scenario is more suitable for

rigid image registration, while serial sectioning is more suitable for non-rigid image registra-

tion. Most of the previous work in the WSI registration field has been focused on aligning

serial sections of tissues for cross-sectional observations (e.g., 3-dimensional tissue visualiza-

tion) [1–5]. Methods such as those proposed by Mueller et al. [6] use a deformable multi-

modal WSI registration technique are well suited for serial section registration. However,

using deformable registration does not explicitly model the fact that pixels in multi-modal

images do not belong to the same cell, which may introduce errors into downstream analysis.

Here, we only focus on the re-stained histological WSI co-registration use case.

The need for a rigid image registration is based on the fact that re-stained tissues have a

fixed relative position to the slide glass, meaning there should be some (x, y) shifting, but mini-

mal rotation. Several state-of-the-art rigid image registration methods could potentially be

used to handle this problem. Scale Invariant Feature Transform (SIFT) [7] is one of the most

popular “key points”-based image registration method, in which strongly differentiable pixel

areas are detected, filtered, and matched based on their local features. Key points can be fil-

tered based on the differences in slope between matched key point pairs. In other words, lines

connecting matched pairs of key points in the stationary and corresponding floating image

should be parallel. Enhanced Correlation Coefficient (ECC) [8] has also been shown to suc-

cessfully align single channel images to generate multi-channel images. Finally, Fast Fourier

Transform (FFT) [9] image registration methods are generally insensitive to translation, rota-

tion, scaling, and noise, with the added benefit of being computationally efficient. Each of

these methods can return a success rate and similarity score (as a measure of alignment confi-

dence) for each registration by calculating the image similarity after image registration.

The computational cost of directly aligning gigapixel WSIs can be prohibitively high, so a

smaller “image patch”-based method is often required. By virtue of their smaller size, patch-

based methods do not contain as much texture information to use for registration, which can

ultimately lead to poor image alignments. To address these issues, Rosetti et al.[4] proposed a

method to align images at lower resolution level and propagate the registration offset to high

resolutions. However, they assume that tissue contours are relatively unchanged in the gray-

scale space–which is not the case between H&E and IHC. Obando’s method [10] refines the

common information between downsampled images before attempting registration, whereas

Trahearn’s method [2] filters regions based on entropy, thresholds, and texture features.

There are several drawbacks to all these methods. First, WSIs with different stains may look

quite different not only in hue and contrast, but also different in local details, because H&E

stains both nucleus and cytoplasm, while IHC only highlights the location of the target protein.

This can cause methods that rely on finding key points (key point matching) to fail, yielding

more failures to align as too few suitable correlations in the images can be found. The other

major problem is that the registration errors in low-resolution images will be magnified dozens

of times if the transformation is directly applied to high-resolution levels. Therefore, a more

accurate way to leverage the information from lower resolution to high resolution is needed.

In this paper, we proposed a robust strategy for WSI co-registration which can precisely

and efficiently align re-stained WSIs of the same tissue sections. Our approach leverages image

patches from the information-rich low resolution layers, weights their offsets by kernel density

estimation (KDE), and then regresses against the hierarchical nature of WSIs to refine the off-

set parameters between two WSIs. Our results suggest that simple rigid image registration that

Image co-registration with KDE
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incorporates the unique structure of WSI file hierarchy is well suited to address the re-stained

WSI registration tasks.

Method

The main workflow of our registration strategy has been illustrated in Fig 1. There are multiple

scaled image levels in WSIs. We extracted image patches from the top three image levels (the

lowest resolution), and adopted Fourier transforms-based image registration to align H&E

and IHC pairs to each level. Since there are linear relationships between image levels, we pro-

posed a weighted hierarchical linear regression method to get the optimal registration offset

and rotation angle. Generally, our approach consists of three main parts: 1) image patch-based

registration; 2) KDE; 3) hierarchical resolution regression.

Image patch-based registration

In order to leverage low-level image features in WSIs, we introduced Fourier transform based

image registration [11]. The goal of image registration is to determine a transformation that

maximizes the similarity between two images. The image registration problem can be formu-

lated as: I0 = T�I, in which I denotes the original image, and I0 denotes the transformed image.

In our histological image registration task, there is no scale and affine transformation, because

we want to align the re-stained slides under the same magnification. For a two-dimensional

image registration problem, the transformation matrix T can be written like below.

T ¼
0 Dx

0 Dy

" #

; ð1Þ

where Δx and Δy denote x and y offsets, respectively. If f2(x,y) is a translated and rotated replica

of f1(x,y) with translation (Δx,Δy), then

f2ðx; yÞ ¼ f1ðx � Dx; y � DyÞ: ð2Þ

According to the Fourier translation and rotation properties, transforms of f1 and f2 are

related by

F2ðx; ZÞ ¼ e� j2pðxDxþZDyÞ � F1ðx; ZÞ: ð3Þ

The cross-power spectrum of two images is defined as

F1 � F�2
jF1 � F�2 j

¼ ej2pðxDxþZDyÞ; ð4Þ

where F�
2

is the complex conjugate of F2. The shift theorem guarantees that the phase of the cross-

Fig 1. An overview of our proposed method. The first step is get raw registration result from top three whole slide

image levels. The second step is adopting Kernel Density Estimation to weight the raw registration. The last step is

using hierarchical linear regression to get the optimal co-registration for whole slide images.

https://doi.org/10.1371/journal.pone.0220074.g001
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power spectrum is equivalent to the phase difference between the images. By taking the inverse

Fourier transform of the representation in the frequency domain, we have an impulse function

that is approximately zero everywhere except at the displacement that is needed to optimally regis-

ter the two images. We choose the “imreg_dft” library [12] as the basis of our framework, which is

an implementation of discrete Fourier transformation based image registration [13].

Kernel density estimation

Fourier transforms-based image registration method provides a straightforward approach to

align two image patches. We initially tried to directly register pathological image pairs together

in highest resolution with this method, and found that most pairs of patches can be aligned

well, but several failed due to limited texture information for use in defining key points. To

overcome this limitation, offsets were computed from multiple patches sampled from the

same WSI and at the same resolution. At first, we simply computed the mean offset in the x

and y planes, but found this approach was highly variable (Fig 2). Instead, we introduced a

KDE algorithm [14] to estimate the most possible offset for a robust image alignment.

KDE is a non-parametric method to estimate the probability density function of a random

variable, which can be defined as follows:

f̂ h xð Þ ¼
1

n
Pn

i¼1
Khðx � xiÞ ¼

1

nh
Pn

i¼1
Kð

x � xi
h
Þ; ð5Þ

where xi is a sampled observation, n is the sample size, f̂ ð�Þ is an estimate the probability den-

sity function of x, K(�) is a non-negative kernel function, and h> 0 is the bandwidth smooth-

ing parameter. This formula can also estimate image rotation, θ. In our study, the registration

offset (x,y) is a two-dimensional variable, so the KDE with a Gaussian kernel can be defined as:

f̂ h x; yð Þ ¼
1

nhxhy

Pn
i¼1
Kð

x � Xi

hx
;
y � Yi

hy
Þ: ð6Þ

Fig 2. Registration offsets (mean and 1 standard deviation) including four different methods on four image levels.

The first row represents the horizontal offset; the second row represents the vertical offset. Each column represents the

offset between an H&E-IHC WSI pair. Ideally, the error should be clustered toward zero. The high variance in level 0

indicates frequent registration failures.

https://doi.org/10.1371/journal.pone.0220074.g002
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We apply the Scott’s rule [15] to define bandwidth, and let the bandwidth be the same on

both x and y directions, such that

hx ¼ n
� 1
ðdþ4Þ; ð7Þ

where d is the dimensionality of each data point. In our study, we let hx = hy = hxy = hyx because

we have no prior knowledge about the offset distribution.

Since there is no bias in the choice of image patches during image registration, we can arbi-

trarily use Gaussian approximation as our kernel function:

g xð Þ ¼
1

s
ffiffiffiffiffiffi
2p
p e�

1
2

x� u
sð Þ

2

: ð8Þ

With a Gaussian kernel, the estimator is the weighted sum of the bivariate normal densities:

f̂ hðx; yÞ ¼
1

2pn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðHH2Þ

p
Pn

i¼1
exp �

1

2
ðx � Xi; y � YiÞHðx � Xi; y � YiÞ

T
� �

; ð9Þ

where (X,Y) denotes the registration offsets. The matrix H is the covariance matrix expressed

in terms of bandwidth, as defined in formula (7).

We can regard the density estimates as the measures of confidence to weight the offset and

angle for image pairs. Density estimation for every registration offset can be denoted as

f̂ ðxi; yiÞ, and normalized the confidence to [0, 1]. By applying KDE, we mitigate the influence

of registration errors by down-weighting their contribution to estimates of overall registration

offsets and rotation angles.

Hierarchical resolution regression

There are several levels in a WSI (Fig 1), which are defined by the multi-resolution pyramidal

data structure. The histological image pairs could be very different in details at lower levels

(with high resolution), but appear similar in higher levels (with low resolution). This phenom-

enon is especially common in consecutive tissue sections. If the registration is performed only

at the lowest resolution, the image registration may fail due to the weak texture information in

some areas. Considering there are many image patches available at each image level, we can

develop a robust method by calibrating the registration offsets across different image levels.

To find the pixel correlations across image levels, we investigated the relationship of regis-

tration offsets for two image levels. If we denote a pixel offset p(x,y) in level 1 with image reso-

lution R1, and denote the corresponding pixel offset p(x0,y0) in level 2 with image resolution

R2, and the downsampling factor between image levels is known and fixed, it follows that pixel

correlations can be defined as:

p x; yð Þ ¼
R1

R2
p x0; y0ð Þ; ð10Þ

So, if we apply image registration on two different image levels, in ideal conditions, the lin-

ear regression of offsets should be a line that goes through the origin. A weighted linear regres-

sion strategy can be used to adaptively learn the exact linear relationship. Therefore, the cost

function of the regression problem can be interpreted as:

c mð Þ ¼
1

N
PL

l¼1

PN
i¼0
Rl � f̂lðx

l
i; y

l
iÞ � ðy

l
i � mxliÞ ð11Þ

where Rl2{0.25,0.25,0.5} denotes the resolution ratio of current image level to lower image

Image co-registration with KDE
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level, L2[1,3] denotes the image levels, N represents the number of image patches used at each

level, and f̂ ðxi; yiÞ is calculated from formula (9). By minimizing this cost function, the optimal

slope m for cross-level image registration can be determined.

Experimental data

Data description

We collected 30 WSI pairs (90 slides in total) of an H&E and an IHC image of the same tissue

section (H&E vs Caspase3, KI67 and PHH3). OpenSlide [16], a public C library was intro-

duced to extract image patches from a specific coordinate and image level. There are four

image levels in each WSI: levels 0–3, where level 0 denotes the original image with highest res-

olution and level 3 denotes the down-sampled image with lowest resolution. The resolution

ratio of image levels for our dataset is 1:4:16:32 (from level 3 to level 0), with a pixel size is

0.25μm at the highest resolution.

For destaining H&E sections, the slides are placed in xylene until the coverslips float off the

slide. The slides are placed in three containers of xylene for 5 minutes each, followed by two

containers of absolute alcohol for 1 minute each, three containers of 95% alcohol for one min-

ute each and one container of 70% alcohol for one minute. The slides are rinsed in tap water

until clear.

IHC staining was performed at the Pathology Research Core (Mayo Clinic, Rochester, MN)

using the Leica Bond RX stainer (Leica). FFPE tissues were sectioned at 5 microns and IHC

staining was performed on-line. Slides were retrieved for 20 minutes using Epitope Retrieval 2

(EDTA; Leica) and incubated in protein block (Rodent Block M, Biocare) for 30 minutes. The

phospho-Histone H3 primary antibody (Catalog #9701; Cell Signaling) was diluted to 1:50 in

Bond Antibody Diluent (Leica). The cleaved-Caspase 3 primary antibody (Rabbit Polyclonal–

Catalog 9661L; Cell Signaling) was diluted to 1:200 in Bond Antibody Diluent (Leica). The Ki-

67 primary antibody (Clone MIB-1, Dako) was diluted to 1:300 in Bond Antibody Diluent

(Leica). All primary antibodies were incubated for 15 minutes.

The detection system used was Polymer Refine Detection System (Leica). This system

includes the hydrogen peroxidase block, post primary and polymer reagent, DAB, and Hema-

toxylin. Immunostaining visualization was achieved by incubating slides 10 minutes in DAB

and DAB buffer (1:19 mixture) from the Bond Polymer Refine Detection System. To this

point, slides were rinsed between steps with 1X Bond Wash Buffer (Leica). Slides were coun-

terstained for five minutes using Schmidt hematoxylin and molecular biology grade water (1:1

mixture), followed by several rinses in 1X Bond wash buffer and distilled water, this is not the

hematoxylin provided with the Refine kit. Once the immunochemistry process was completed,

slides were removed from the stainer and rinsed in tap water for five minutes. Slides were

dehydrated in increasing concentrations of ethyl alcohol and cleared in 3 changes of xylene

prior to permanent coverslipping in xylene-based medium.

All breast cancer specimens were excess tissue at surgical resection and were obtained with

IRB approval (ID: 17–007998). The specimens were fixed in buffered formalin following the

ASCO/CAP guidelines for HER2 testing for between 6 to 72 hours.

Ground truth annotation

There is no general quantified evaluation metric for image registration of multiple WSIs. To

evaluate the registration accuracy, we developed an image visualization tool to manually align

two WSIs. Ground truth was obtained by adjusting a floating image’s offset with respect to a

fixed image (Fig 3). The ground truth of image registration for our dataset was determined by

Image co-registration with KDE
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comparing the details at the same position after careful manual adjustment of the floating

image. We have made this tool freely available for others to use in their own projects. 1https://

github.com/smujiang/Re-stained_WSIs_Registration

Experiments and results

Our experiments were conducted as illustrated in the workflow (Fig 1), which consists of three

main steps: 1) raw registration, 2) KDE weighting, and 3) hierarchical linear regression.

Raw registration

For each pair of H&E-IHC WSIs, an initial offset was obtained by align the thumbnails of the

WSIs. Image brightness thresholding was used to locate content rich area, from which we ran-

domly sample image patches for raw registration. We co-registered pairs of H&E-IHC patches

on all WSI levels using three rigid registration methods: ECC [8], FFT [9], and SIFT [7]. To

improve registration accuracy, we also tried to add an extra filter to distill the matched key

points detected by RANSAC [17] in traditional SIFT output, which is denoted as SIFT-ENH.

The extra filter keeps key points that share a similar slope. All implementations of these meth-

ods are based on the OpenCV API [18]. We applied FFT together with these three methods to

our dataset, the statistical features of registration results are shown in Fig 2. ECC, FFT, SIFT

and SIFT_ENH all performs well on lower resolutions (levels 2–3), but poor at level 0.

KDE weighting

To reduce the variance in the predicted offsets, we attempted two different types of procedures:

weighting based on raw registration score and kernel density estimation (KDE). All the image

registration methods assessed here return a score to measure the success of registration.

Fig 3. Screen shot of WSI registration tool. After loading WSIs, the image on the right can be shifted and rotated by adjusting the x

and y offset positions. A green cross is attached to mouse cursor, so that details of two images at the same location can be compared

easily. Source code of this tool can be found at our GitHub: https://github.com/smujiang/Re-stained_WSIs_Registration.

https://doi.org/10.1371/journal.pone.0220074.g003

Image co-registration with KDE
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However, we found that these scores do not always reflect the registration success for many

patch-level registrations. The reason might come from the fact that H&E and IHC images are

very different in hue and texture, and some have sparse unique local details. To reveal this phe-

nomenon, we show an example (Fig 4, top row) by drawing the registration offsets in two

dimensional coordinates, where each registration is represented as a dot, colored by confi-

dence score. High scores mean the registration algorithm has high confidence in its offset esti-

mation. We found that offsets close to the ground truth are not necessarily those with higher

scores. This deficiency implies that confidence score based on image similarity cannot effec-

tively measure the registration accuracy, and a more efficient way should be adopted. Hence,

we show the KDE algorithm is more accurate at predicting the higher scoring alignments than

native scoring methods (Fig 4, bottom row).

Hierarchical resolution regression

As shown in Fig 2, the error in offset prediction is strongly correlated with level being viewed.

Since image offsets across WSI levels obey a linear downsampling strategy to build their intrin-

sic pyramidal structure, we introduced linear regression to extrapolate the level 0 offsets. Fig 5,

we draw the registration results of each image level as scatters, and also draw the line to show

their weighted linear regressions. For each WSI pair, the FFT-based regression performed well,

with the regression based on either the raw image registration scores was not different from the

KDE-weighting scheme. However, the same WSI pair using an alternative raw image registra-

tion method (SIFT) was more varied and showed substantial improvement when using the

KDE weights rather than the scoring weights. In order to statistically evaluate the performance

of our methods, we tested the difference in absolute registration error of each of the four meth-

ods (ECC, FFT, SIFT, SIFTenh) using only level 0 image patches or our KDE-weighted linear

regression (Fig 6). The ECC method improved for the y axis error, but not the x-axis (p = 0.24,

Student’s T-test). For all other methods, a marked decrease in registration error was observed

for both x and y dimensions. The ‘t.test‘function in R [19] was used for calculations.

Discussion

In this paper, we proposed an approach that combines traditional rigid image registration

methods into a framework that leverages the hierarchical nature of WSIs. We showed the

Fig 4. Comparison of KDE and similarity score on reflecting registration success at the patch level. Scatterplots of

co-registration offsets at different image levels. Top row: colored with similarity score; Bottom row: colored with KDE.

In each subplot, a dot with cold color means registrations with low confidence level, while a dot with hot color means

registrations with high confidence level.

https://doi.org/10.1371/journal.pone.0220074.g004

Image co-registration with KDE

PLOS ONE | https://doi.org/10.1371/journal.pone.0220074 July 24, 2019 8 / 11

https://doi.org/10.1371/journal.pone.0220074.g004
https://doi.org/10.1371/journal.pone.0220074


strong advantages of incorporating KDE to better estimate the true offsets compared to the

similarity score based approaches. By comparing multiple image registration methods, includ-

ing FFT, ECC SIFT, and SIFT-ENH, we found that the FFT-based method outperformed than

others for our image registration tasks. However, we were able to further increase the precision

of the all four registration methods by incorporating our KDE-weighted linear regression.

The main limitation of our research is that our method has only been tested on 30 re-

stained WSI pairs of H&E and IHC. Consecutive sections are not identical in their cellular

structure and composition, thus requiring non-rigid image registration techniques. However,

we posit that KDE will still provide a more reliable estimate in this scenario. Furthermore, as

our method can be used to match large numbers of image pairs with reliable alignment scores,

it provides a scalable framework to collect samples to train a deep neural network, where deep

textural patterns beneficial for image alignment can be learned.

The most distinctive part of our work is that we introduced KDE to distill the raw registra-

tion result. As most registration methods may return a confidence value for each registration,

improper trust in such scores can lead to poor quality results. We show that similarity of the

Fig 5. An example of hierarchical linear regression registration. Registration results of each image level were displayed into dots

with different shapes for a single WSI. Weighted with similarity score and KDE confidence value, linear regression results are shown

in straight lines with different colors. Ground truth is shown in a blue cross.

https://doi.org/10.1371/journal.pone.0220074.g005

Fig 6. Performance enhancement using the KDE method. All the 30 pairs of WSIs were tested with estimated offsets and ground truth.

Registration error was measured with Euclidean distance between the method outputs and ground truth. A Students T-test was used to assess

whether the mean absolute erorr in registration was identical between the raw and our KDE-based method. The ideal error profile should be

centered as close to zero as possible. Each dot represents the average offset error for each of 30 slides. The left panel is the error in the ‘x’ slide

dimension while the right is for the ‘y’ dimension.

https://doi.org/10.1371/journal.pone.0220074.g006
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two images after transformation does not always reflect whether the registration was a success

or not. Moreover, these approaches do not fully utilize linear relationship across image levels

saved in WSI files to ensure maximal accuracy. For example, it is common for many small

image patches to be analyzed for a given slide in digital pathology. Each of these patches should

have nearly identical x and y offsets. Also, the x and y offsets should follow a fixed linear trend

between high and low magnification. By combining the x and y offset estimates across multiple

patches from the same slide with the different z magnifications, we have proposed a more

robust way to estimate a true x and y offset for each magnification level.
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