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Abstract: Gibberellin 2-oxidase (GA2ox) plays an important role in the GA catabolic pathway
and the molecular function of the OsGA2ox genes in plant abiotic stress tolerance remains largely
unknown. In this study, we functionally characterized the rice gibberellin 2-oxidase 8 (OsGA2ox8)
gene. The OsGA2ox8 protein was localized in the nucleus, cell membrane, and cytoplasm, and was
induced in response to various abiotic stresses and phytohormones. The overexpression of OsGA2ox8
significantly enhanced the osmotic stress tolerance of transgenic rice plants by increasing the number
of osmotic regulators and antioxidants. OsGA2ox8 was differentially expressed in the shoots and
roots to cope with osmotic stress. The plants overexpressing OsGA2ox8 showed reduced lengths
of shoots and roots at the seedling stage, but no difference in plant height at the heading stage was
observed, which may be due to the interaction of OsGA2ox8 and OsGA20ox1, implying a complex
feedback regulation between GA biosynthesis and metabolism in rice. Importantly, OsGA2ox8 was
able to indirectly regulate several genes associated with the anthocyanin and flavonoid biosynthetic
pathway and the jasmonic acid (JA) and abscisic acid (ABA) biosynthetic pathway, and overexpression
of OsGA2ox8 activated JA signal transduction by inhibiting the expression of jasmonate ZIM domain-
containing proteins. These results provide a basis for a future understanding of the networks and
respective phenotypic effects associated with OsGA2ox8.

Keywords: gibberellin 2-oxidase gene; osmotic stress tolerance; jasmonate; rice

1. Introduction

Plants are sessile organisms that are constantly exposed to unfavorable environmental
stimuli and face the challenge of continuous adaptation to various stresses to maintain
growth and development. Rice (Oryza sativa L.) is a staple food for half the world’s
population, and its yield is strongly restricted by severe drought occurring annually
in the majority of rice-growing areas worldwide [1]. Given the environmental deterioration
associated with climate change, development of rice cultivars that show high drought
tolerance is a matter of urgency to meet the challenging food demands of both the present
and the future [2].

Several classes of phytohormones may either act close to or remote from the sites
where they are synthesized and may regulate and coordinate the responses of plants to
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environmental stresses [3]. Gibberellins (GAs) are a class of tetracyclic diterpenoid car-
boxylic acids. GA1, GA3, GA4, and GA7 are bioactive GAs that function as essential growth
phytohormones to control a variety of growth and developmental processes throughout
the life cycle of plants [4]. Cell division and cell elongation are enhanced by bioactive
GAs, which also promote transitions of different developmental stages [5]. The typical
GA-deficient phenotypes include dwarfism, inhibited root growth, small dark green leaves,
defective flowering, prolonged germination dormancy, male sterility, and reduced seed
production [6–9]. Therefore, it is important for plants to produce and maintain optimal
amounts of bioactive GAs to ensure normal growth and development.

Most of the enzymes involved in catalyzing GA biosynthesis and catabolism have
been identified [9–11]. The GAs are synthesized from trans-geranylgeranyl diphosphate
(GGDP) in three major steps, according to the type of enzymes as well as their sub-
cellular localization [12,13]. GGDP is transformed into ent-kaurene in the plastid via
the methylerythritol phosphate pathway. Conversion of ent-kaurene to GA12 in the en-
doplasmic reticulum is catalyzed by two membrane-associated P450 mono-oxygenases.
GA12 is then oxidated in a reaction catalyzed by soluble 2-oxoglutarate-dependent dioxyge-
nases (2-ODDs), GA 20-oxidase (GA20ox), and GA 3-oxidase (GA3ox), in the cytosol [14].
The best-characterized deactivation reaction involves 2β-hydroxylation of bioactive GAs
and their precursors, which is catalyzed by GA 2-oxidase (GA2ox). Based on the difference
in substrates, GA 2-oxidases can be divided into C19-GA2oxs and C20-GA2oxs. C19-GA2oxs
can hydroxylate the C19-GA precursors (GA20 and GA9) or active C19-GAs (GA1 and GA4)
to produce biologically inactive GAs [9]. The class C20-GA2oxs contains three unique and
conserved amino acid motifs that are absent in the C19-GA2oxs class [15]. Previous studies
have reported that C20-GA2oxs, including GA2ox7 and GA2ox8 in Arabidopsis thaliana L.,
GA2ox3 in Spinacia oleracea L., and GA2ox6 in Oryza sativa, accept C20-GAs but not C19-GAs
as their substrates, and convert GA12 and GA53 to GA110 and GA97, respectively [15–17].

The expression of certain paralogs within the GA20ox, GA3ox, and GA2ox families
provides a mechanism for GA homeostasis [18,19]. Most evidence suggests that the genes
encoding dioxygenases act as the main regulatory sites of the GA biosynthetic pathway
for developmental and environmental signals, and that GA2ox genes particularly partici-
pate in response to abiotic stress. OsGA2ox6 encodes a C20-GA2ox, and ectopic expression
of GA2ox6 moderately lowers GA contents and reprograms transcriptional networks, lead-
ing to reduced plant height, an increased number of productive tillers, and an expanded
root system. In addition, transgenic rice plants ectopically expressing GA2ox6 show ele-
vated tolerance of drought stress with expanded bulliform cells, higher proline contents,
enhanced catalase (CAT) activity, an increased content of ascorbate peroxidase, improved
water use efficiency, and an increased photosynthesis rate [20]. Gossypium hirsutum L. over-
expressing GhGA2ox1 shows increased tolerance to drought and salt stress, higher contents
of free proline and chlorophyll, and increased relative water content compared with those
of non-transgenic lines [21]. The overexpression of StGA2ox1 in Solanum tuberosum L. leads
to improved salt, drought, exogenous hormone, and low temperature stress tolerance,
which may be associated with an enhanced control of chlorophyll, carotenoids, and water
loss and the subsequent accumulation of osmoprotectants [22]. Shi et al. [22] believed that
StGA2ox1 can regulate GA synthesis and further affect plant growth and stress responses
in potato. The expression of AaGA2ox1, AaGA2ox2, and AaGA2ox4 is upregulated under
drought or high salt stress in Artocarpus altilis (Parkinson) Fosberg [23]. Both GA2ox7 and
DDF1 (DWARF AND DELAYED FLOWERING 1) are induced by high-salinity stress and
reduce the amount of bioactive GAs in Arabidopsis [24]. DDF1 binds to DRE-like motifs
(GCCGAC and ATCGAC) in the GA2ox7 promoter to upregulate the expression of GA2ox7,
which causes GA deficiency and enhances salt tolerance [24]. These results suggest that
the GA-dependent growth retardation conferred by GA2ox is an important mechanism
for stress adaptation in plants.

Our previous transcriptome analysis revealed that transcript levels of a putative
GA2-oxidase 8 (OsGA2ox8, Os05g0560900) were significantly increased in the shoots and
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decreased in the roots under drought stress, thus showing root-dependent repression [25].
In this study, the functions of OsGA2ox8 in rice were characterized using molecular analysis
and plant physiological indices. The expression of OsGA2ox8 was differentially regulated
in the shoots and roots under osmotic stress. Importantly, overexpression of OsGA2ox8
significantly enhanced osmotic stress tolerance associated with higher contents of osmotic
regulators and antioxidants, compared with those of the wild type (WT). Our findings
demonstrated that OsGA2ox8 mediated a multilevel and complex mechanism associated
with osmotic stress tolerance.

2. Results
2.1. Identification and Characterization of OsGA2ox8

OsGA2ox8 was located on chromosome 5 (http://rapdb.dna.affrc.go.jp/index.html
accessed on 16 September 2017) and contained a 1062 bp CDS composed of two exons
and one intron (Figure 1A). To investigate the evolutionary relationships of OsGA2ox8,
we performed a phylogenetic analysis of the amino acid sequences of OsGA2ox8 together
with an additional 51 GA2ox genes from four species, namely Zea mays L. (Zm), Oryza
sativa (Os), Triticum aestivum L. (Ta), and Arabidopsis thaliana (At) (Figure 1B). Consistent
with previous studies, GA2ox genes were divided into three classes, with the Arabidopsis
GA2ox genes functioning as node markers [15]. The genes AtGA2ox1, AtGA2ox2, and
AtGA2ox3 belonged to class I; the genes AtGA2ox4 and AtGA2ox6 were grouped in class
II; and the genes AtGA2ox7 and AtGA2ox8 were grouped in class III. Members of classes I
and II catabolize C19-GAs, whereas class III members only 2β-hydroxylate C20-GAs [15].
The phylogenetic analysis showed that OsGA2ox8 was clustered with AtGA2ox1, AtGA2ox2,
and AtGA2ox3, and OsGA2ox8 belonged to C19-GAs (Figure 1B). It has been previously re-
ported that these subgroups of GA2ox proteins might have homologous functions common
to monocotyledon and dicotyledon species [16,26].

To understand the genetic variation of OsGA2ox8 in different materials, haplotypes
of the CDS were analyzed using resequencing data for 3K germplasm resources. Four
single-nucleotide polymorphisms were detected in the CDS of OsGA2ox8 that could be
divided into five distinct haplotypes, each comprising more than 100 accessions (Figure 1C).
Haplotype–phenotype analysis was conducted based on data for grain length, grain width,
1000 grain weight, plant height, and panicle number per plant (http://www.rmbreeding.
cn/Genotype/haplotype accessed on 15 March 2019). Significant differences in plant height
and panicle number per plant among the haplotypes were observed (Figure 1D), whereas
no distinct differences in grain length, grain width, and 1000 grain weight were associated
with the individual haplotypes (Supplementary Figure S1).

http://rapdb.dna.affrc.go.jp/index.html
http://www.rmbreeding.cn/Genotype/haplotype
http://www.rmbreeding.cn/Genotype/haplotype
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Figure 1. Identification and characterization of OsGA2ox8. (A) Schematic structure of OsGA2ox8. E1 and E2 represent two
exons. (B) Phylogenetic relationships among GA2ox amino acid sequences from Triticum aestivum (Ta), Oryza sativa (Os),
Arabidopsis thaliana (At), and Zea mays (Zm). Scale bars indicate number of amino acid substitutions per site. (C) Major
haplotypes of OsGA2ox8 coding sequence based on significant single-nucleotide polymorphisms. (D) Plant height and
panicle number per plant among different haplotypes. Different letters in (D) indicate significant differences (p < 0.05,
one-way ANOVA followed by Tukey’s HSD test) based on data for plant height and panicle number per plant.

2.2. Characterizing the Expression Profile of OsGA2ox8

Previous evidence suggested that GA2ox genes act as the main regulatory unit of the GA
biosynthetic pathway, participating in response to biotic and abiotic stresses [20–23]. To in-
vestigate whether OsGA2ox8 is involved in the response to various abiotic stresses and
hormones in rice, the expression patterns of OsGA2ox8 were analyzed using total RNA
extracted from the leaves and roots of Nipponbare plants at the three-leaf stage exposed
to the following treatments: Gibberellin (GA 10 µM), paclobutrazol (PAC 10 µM), abscisic
acid (ABA 100 µM), indoleacetic acid (IAA 20 µM), jasmonic acid (JA 100 µM), hydrogen
peroxide (H2O2 20 mM), polyethylene glycol 6000 (PEG6000 20%), low temperature (4 ◦C),
and salt (150 mM) (Figure 2A). GA induced the expression of OsGA2ox8 in the shoots and
roots, whereas PAC, acting as an inhibitor of GA, significantly decreased the expression
of OsGA2ox8 in the roots. These results suggested that OsGA2ox8 participates in the home-
ostasis of GA. The expression of OsGA2ox8 was significantly upregulated in shoots and
downregulated in roots under PEG treatment, pointing to root-dependent repression. In ad-
dition, OsGA2ox8 showed a similarly high expression in response to the phytohormones
ABA, IAA, and JA and to abiotic stresses, including high salt, cold, and H2O2. Taken
together, these results indicated that OsGA2ox8 also participates in response to various
abiotic stresses and hormones. We investigated the expression patterns of 10 additional
OsGA2ox genes under the salt and PEG treatments (Supplementary Figure S2). The re-
sults showed that OsGA2ox3, OsGA2ox5, OsGA2ox6, and OsGA2ox7 were only induced by
salt stress, whereas OsGA2ox9 and OsGA2ox10 were induced by both salt stress and PEG
treatment, which suggested that OsGA2oxs are an important gene family involved in rice
adaptation to stresses.
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Figure 2. Expression profile of OsGA2ox8. (A) Expression changes in OsGA2ox8 in shoots and roots under different
treatments analyzed by qRT-PCR. (B) Expression levels of OsGA2ox8 in different tissues at various developmental stages
analyzed by qRT-PCR. C–G Histochemical assay of GUS activity driven by the OsGA2ox8 promoter in the leaves and
roots 3 days after germination (C), leaf blade (D), glume (E), stem (F), and shoots at the two-leaf stage (G). (H) Subcellular
localization of OsGA2ox8 in tobacco leaves. Error bars indicate the SD based on three replicates. Asterisks indicate
a significant difference compared with 0 h treatment (* p < 0.05, ** p < 0.01; Student’s t-tests).

Given that OsGA2ox8 participated in response to various phytohormones and abiotic
stresses, the cis-acting elements in the promoter region (2193 bp upstream of the transcrip-
tion start site) of OsGA2ox8 were analyzed using the PLACE database
(http://www.dna.affrc.go.jp/PLACE/ accessed on 16 March 2019) (Table 1). The results
revealed several cis-regulatory elements in the promoter region of OsGA2ox8: two ABA-
responsive element-like elements (ABRELATERD1 and ABRERATCAL) [27]; two DRE-
related elements (DRE2COREZMRAB17 and DRECRTCOREAT) recognized by AP2/ERF
proteins [28,29]; three copies of JA-responsive CGTCA motifs; one CBFHV motif, which
is a dehydration-responsive element [30]; one GA-responsive element (GAREAT) [31];
five copies of the ATCTA motif identified as an ERF-binding element [32]; and two low-
temperature responsive elements (LTRECOREATCOR15 and LTRE1HVBLT49) [33,34].
All the aforementioned cis-elements are potentially involved in the OsGA2ox8-mediated
response to environmental stress and hormone signaling.

http://www.dna.affrc.go.jp/PLACE/
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Table 1. Analysis of cis-elements in the OsGA2ox8 promoter sequence.

Cis-Element Number Function

DRE2COREZMRAB17 1 AP2/ERF binding site involved in drought stress
DRECRTCOREAT 1 AP2/ERF binding site involved in drought stress
ABRELATERD1 3 cis-acting element involved in the abscisic acid responsiveness
ABRERATCAL 2 cis-acting element involved in the abscisic acid responsiveness

CGTCA-motif 3 cis-acting regulatory element involved
in the MeJA-responsiveness

ATCTA 5 AP2/ERF binding site involved in drought stress
GAREAT 1 gibberellin-responsive element

LTRECOREATCOR15 1 cis-acting element involved low-temperature responsiveness
LTRE1HVBLT49 1 cis-acting element involved low-temperature responsiveness

CBFHV 1 cis-acting element involved in the dehydration responsiveness

To more clearly define the function of the OsGA2ox8 promoter, a series of pro-
moter fragments of varying lengths, comprising 2193 bp, 1301 bp, and 647 bp, were
cloned into the pMDC162 vector in which GUS was driven by the inserted fragments
for transient transformation of rice protoplasts and genetic transformation. The GUS
activity in rice protoplasts or transgenic plants transformed with the OsGA2ox8-pro1
(2193 bp) and OsGA2ox8-pro2 (1301 bp) vectors was significantly higher than that in-
duced by OsGA2ox8-pro3 (647 bp) (Supplementary Figure S3). These results indicated that
the 2193 bp and 1301 bp upstream fragments contained promoter activity and were able to
drive the expression of OsGA2ox8.

To investigate the expression profiles in different tissues at different developmental
stages, qRT-PCR analyses (Figure 2B) and histochemical staining of GUS activity using
OsGA2ox8-Pro1::GUS transgenic plants was performed (Figure 2C–G). The results revealed
that OsGA2ox8 was expressed at various stages but showed relatively higher expression
in the radicle and embryo of germinating seeds, the glume at the heading stage, and the leaf
and root at the tillering stage.

The full-length open reading frame of OsGA2ox8 was fused to GFP and transformed
into tobacco leaves. Fluorescence was ubiquitously observed in the nucleus, cytoplasm,
and plasma membrane (Figure 2H), which indicated that OsGA2ox8 might be involved
in a diverse range of biological processes.

2.3. Identification of the Osmotic Stress Tolerance Phenotype and Physiological Index
Determination of OsGA2ox8

To determine the biological function(s) of OsGA2ox8 in response to osmotic stress,
we constructed OsGA2ox8 overexpression (OE) lines and CRISPR/Cas9 knockout (KO)
mutants. Five T2 generation OE lines (OE-1 to -5) and four T2 generation KO mutants
(KO-1 to -4) were obtained. Sequencing analysis showed the presence of a 2 bp deletion
and a T/A insertion at different positions of the CDS region in KO-1, KO-4, and KO-3 that
resulted in frame-shift mutations in OsGA2ox8. A 1 bp deletion at position 118 of the CDS
in KO-2 led to a premature translation termination codon and thus resulted in a null
mutation (Supplementary Figure S4A). The qRT-PCR results showed that the expression
of OsGA2ox8 was upregulated in OE lines and downregulated in KO lines to various
extents, compared with that of the WT under the non-stress treatment (Supplementary
Figure S4B). Based on the qRT-PCR results and sequencing analysis, three OE lines (OE-2,
OE-3, and OE-4) and three mutant lines (KO-1, KO-2, and KO-3) were used to investigate
phenotypic performance under osmotic stress at the seedling stage.

The plants overexpressing OsGA2ox8 showed significantly reduced shoot length, whereas
the shoot length of KO mutants increased under the non-stress condition (Figure 3A). The OE
and KO plants exhibited different sensitivities in response to osmotic stress (Figure 3B).
On evaluating morphological changes, the leaves of KO lines first appeared curly after
treatment with 20% PEG6000 (~1.1 MPa) and wilted after osmotic stress, whereas the OE lines
were more resilient than the KO lines and WT to osmotic stress for 9 days and showed superior
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recovery 7 days after the conclusion of osmotic stress. All three transgenic OE lines exhibited
improved stress tolerance compared with the WT, as indicated by the significantly higher
frequencies of seedling survival. In contrast, the three KO lines were more sensitive to osmotic
stress and showed significantly decreased survival frequencies compared with the WT after
rewatering for 7 days (Figure 3C). These results suggested that the expression of OsGA2ox8
was positively involved in osmotic stress tolerance. Hence, we selected the transgenic lines
OE-2 and KO-2 to characterize the functionality of OsGA2ox8 in additional experiments.

Figure 3. Overexpression of OsGA2ox8 enhanced osmotic stress tolerance of rice at the seedling stage. (A) Phenotypes
of the OsGA2ox8 transgenic lines and wild-type plants under the non-stress condition. (B) Phenotypes of the OsGA2ox8
transgenic lines and wild-type plant treated with 20% PEG6000 (~1.1 MPa) for 9 and 14 days, respectively, at the seedling
stage. (C) Survival frequencies of transgenic lines and wild-type plants treated with 20% PEG6000 for 9 and 14 days,
respectively, and then subjected to recovery for 7 days. (D) Physiological changes in OsGA2ox8 transgenic lines and
wild-type plants under the non-stress condition and 20% PEG6000 treatment. Error bars in C indicate the SD based on data
for three replicates. Asterisks indicate a significant difference compared with the wild type (** p < 0.01; Student’s t-tests).
Different letters indicate significant differences (p < 0.05, one-way ANOVA followed by Tukey’s HSD test) based on data
for three replicates.

Physiological traits of OE-2, KO-2, and WT under the control and osmotic stress
treatment were compared. The OE-2 plants showed the lowest malondialdehyde (MDA)
content and the highest amounts of soluble sugar, glutathione (GSH), and ascorbic acid
(AsA), as well as the highest activities of superoxide dismutase (SOD) and catalase (CAT)
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during osmotic stress. In contrast, we observed the opposite pattern in the KO-2 plants
(Figure 3D). These results strongly suggested that the overexpression of OsGA2ox8 im-
proved osmotic stress tolerance in rice by maintaining the stability of the membrane system
and by enhancing osmotic adjustment and antioxidant activity.

2.4. OsGA2ox8 Was Differentially Expressed in the Shoots and Roots under Osmotic Stress

Our previous transcriptome analysis revealed that the expression of OsGA2ox8 showed
root-dependent repression under drought stress [25]. To detect dynamic changes in OsGA2ox8
expression under osmotic stress, a GUS staining experiment with OsGA2ox8-pro1 trans-
genic plants was conducted. GUS staining showed that OsGA2ox8 was strongly expressed
in the roots and leaves at 3 days’ post-germination, and that the highest expression level
was detected in vascular tissue (Figure 4B). After treatment of the seeds with 4% PEG6000
for 3 days, the expression of OsGA2ox8 in the roots was significantly decreased and no GUS
staining was apparent (Figure 4C).

Figure 4. OsGA2ox8 was differentially expressed in shoots and roots under osmotic stress. (A–C) His-
tochemical assay of GUS activity driven by the OsGA2ox8 promoter (2193 bp) under the non-stress
condition (B) and osmotic stress (C), as well as the wild-type plants (A). (D–G) Shoot and root length
of transgenic lines and the wild type at 10 days after germination under the non-stress condition
(D,E) and osmotic stress (F,G). Different letters in (E) and (G) indicate significant differences (p < 0.05,
one-way ANOVA followed by Tukey’s HSD test) based on data for three replicates.

We evaluated the progression of shoot and root growth under osmotic stress in OE-2,
KO-2, and WT plants. The results showed that the overexpression of OsGA2ox8 decreased
the length of shoots and roots, and knockout of OsGA2ox8 increased the length of shoots
and roots at the seedling stage under the non-stress treatment (Figure 4D,E,G). The shoots
and roots of all transgenic lines and WT showed no obvious difference under osmotic
stress (Figure 4E–G). These results indicated that OsGA2ox8 was differentially expressed



Int. J. Mol. Sci. 2021, 22, 9107 9 of 22

in the shoots and roots under osmotic stress and that root elongation was enhanced under
osmotic stress, allowing the roots to penetrate deeper under the stress treatment.

2.5. OsGA2ox8 Decreased the Length of Shoots and Roots at the Seedling Stage

The roots and shoots of KO-2 plants were significantly elongated, and roots and
shoots of OE-2 plants were shortened, compared with those of the WT under non-stress
condition (Figures 3A and 4D). Moreover, the OE and KO lines showed no difference
in plant height, tiller number, 1000 grain weight, and grain length at maturity compared
with those of the WT, although the KO lines showed higher grain width (Supplementary
Figure S5).

Gibberellin promotes elongation of the root and stem, and the expression of GA2ox
gene families are involved in GA metabolism [18,19]. To detect the GA metabolism regula-
tory mechanism of OsGA2ox8 at the different growth stages of rice, a yeast two-hybrid assay
was performed to identify the proteins that interacted with OsGA2ox8. Twelve interacting
proteins from 65 positive clones were screened and are listed in Supplementary Table S1.
Results from BiFC and pull-down assays revealed a direct interaction between OsGA20ox2
and OsGA2ox8 (Figure 5). OsGA20ox2 and OsGA2ox8 are involved in catalyzing GA
biosynthesis and catabolism, respectively [35]. Thus, the interaction between the two genes
indicated that a more complex regulatory mechanism might control the homeostasis of GA.

Figure 5. OsGA2ox8 interaction with OsGA20ox1. OsGA20ox1 contained two conserved domains: the non-heme dioxyge-
nase domain and the 2OG-Fe (II) oxygenase superfamily domain (A). OsGA2ox8 interacted with OsGA20ox1 in a yeast
two-hybrid assay (B), pull-down assay (C), and BiFC assay in Nicotiana benthamiana leaves (D). pGADT7-T was used
as a positive control prey plasmid; pGBKT7-53 and pGBKT7-lam were used as positive and negative control bait plasmids,
respectively. pnYFP-OsGA2ox8 and pcCFP-OsGA20ox1 were used in the BiFC assay.
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2.6. Transcriptome Analysis of the Transgenic and WT Plants under the Non-Stress Condition

To investigate the reproducibility of the biological replicates and the relationship
between the different lines, a correlation analysis was performed based on the global
patterns of gene expression. High reproducibility between the biological replicates was
evident (Supplementary Figure S6A). The 18 samples were divided into two main groups;
those grown under the non-stress condition clearly diverged from those subjected to
osmotic stress. Moreover, independent of the growing condition, the three replicates
of each line clustered together, which supported the difference in osmotic stress tolerance
of the OE and KO lines.

To gain insights into the genes and pathways involved in osmotic stress tolerance
regulated by OsGA2ox8, the DEGs were identified under the criteria of false discovery rate
<0.01 and |log2 fold change| > 1 (Supplementary Figure S6B). A qRT-PCR analysis was
performed to validate the accuracy of the RNA-seq data, and 21 DEGs associated with
multiple functions were selected randomly (Supplementary Table S2). A list of the primers
used is presented in Supplementary Table S3. A strong correlation (R2 = 0.877) between
the qRT-PCR results and the transcriptome data was observed, demonstrating the accuracy
and reliability of the latter data (Supplementary Figure S6C).

In comparison with the WT plants, we detected a total of 509 upregulated and 376 down-
regulated genes in the OE-2 line under the non-stress condition, whereas
866 and 338 genes, respectively, in the KO-2 line were observed (Supplementary Figure S6B).
Of these DEGs, 279 upregulated genes and 135 downregulated genes overlapped between
the two genotypes (Supplementary Figure S7A). The proportion of DEGs that were associated
with GA, ABA, JA, IAA, and salicylic acid biosynthesis was significantly higher in KO-2
than OE-2 (compared with the WT) plants under the non-stress condition (Supplementary
Figure S7B,C). We then analyzed the genes associated with GA, ABA, and JA synthesis and
metabolism (Supplementary Figure S7D). With the exception of OsGA2ox8, we observed
that an additional four OsGA2ox genes were differentially expressed between the transgenic
and WT plants under the non-stress condition, which may be associated with the fact that
OsGA2ox8 reduces the amount of GAs at the seedling stage. Moreover, four genes that partici-
pate in JA synthesis and two genes associated with the synthesis and metabolism of ABA also
showed differential expression. These results indicated that the differential expression levels
of OsGA2ox8 between transgenic and WT plants are able to change multiple physiological
and biochemical processes under the non-stress condition in rice.

2.7. Transcriptome Analysis of the Transgenic Lines and WT under Osmotic Stress

Genes conferring stress resistance that were associated with OsGA2ox8 in rice were
further investigated by comparing DEGs between transgenic lines and WT plants under
osmotic stress. Using the threshold of a two-fold change in expression level, 822 upregulated
and 599 downregulated genes were detected in the OE-2 line compared with the WT, whereas
750 and 248 genes, respectively, were detected in the KO-2 line (Supplementary Figure S6B).
Of these DEGs, 374 upregulated and 131 downregulated genes overlapped between KO-2
and OE-2 (both compared with the WT) under osmotic stress (Figure 6A). A KEGG enrich-
ment analysis showed that the genes that were particularly downregulated in OE-2 were
enriched in plant hormone signal transduction, fatty acid elongation, and plant–pathogen
interaction. In contrast, the genes that were uniquely downregulated in KO-2 were enriched
in multiple pathways, such as cyanoamino acid metabolism, starch and sucrose metabolism,
and plant hormone signal transduction (Figure 6B). Furthermore, genes participating in diter-
penoid biosynthesis and in arginine, proline, and glutathione metabolism were upregulated
in KO-2, whereas genes that were associated with anthocyanin biosynthesis and flavonoid
biosynthesis were remarkably increased in OE-2 (Figure 6C).
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Figure 6. Differentially expressed genes (DEGs) among the transgenic lines and wild-type plants under osmotic stress.
(A) Overlap of up and downregulated DEGs between OsGA2ox8 overexpression and CRISPR/Cas9 knockout lines com-
pared with the wild type under osmotic stress. (B) KEGG pathway enrichment of the uniquely downregulated genes
in the KO-2 and OE-2 lines, compared with wild-type plants. (C) KEGG pathway enrichment of the uniquely upregulated
genes in the KO-2 and OE-2 lines compared with wild-type plants. (D) Diagram of the anthocyanin biosynthetic pathway
in Arabidopsis and the expression levels of DEGs participating in the anthocyanin biosynthetic process. C4H: cinnamate
4-hydroxylase, PAL: phenylalanine ammonia lyase, CHI: chalcone isomerase, 4CL: 4-coumaroyl:CoA-ligase, DFR: dihy-
droflavonol reductase, CHS: chalcone synthase, F3H: flavanone 3-hydroxylase, LDOX: leucoanthocyanidin dioxygenase,
UF3GT: UDP-Glc:flavonoid 3-O-glucosyltransferase. (E) Diagram of the GA biosynthetic pathway and the expression levels
of DEGs participating in the GA biosynthetic process. GGDP: trans-geranylgeranyl diphosphate, KO: ent-kaurene oxidase,
KS: ent-kaurene synthase, CPS: ent-copalyl diphosphate synthase, GA20ox: gibberellin 20 oxidase, KAO: ent-kaurenoic
acid oxidase, GA3ox: gibberellin 3 beta-hydroxylase, GA2ox: gibberellin 2 oxidase. (F) Expression levels of jasmonate ZIM
domain-containing proteins under osmotic stress. The heatmap presents normalized log2 FPKM expression values.

The DEGs associated with anthocyanin and flavonoid biosynthesis were remarkably
enriched in OE-2 under osmotic stress. Further analysis showed that many DEGs associated
with anthocyanin biosynthesis were upregulated in OE-2 under osmotic stress (Figure 6D).
Os06g0192100 and Os01g0372500 encode anthocyanidin 3-O-glucosyltransferase (UF3GT)
and leucoanthocyanidin dioxygenase 1 (LDOX), respectively, which are crucial enzymes
in the biosynthesis of anthocyanin [36]. Both Os12g0115700 and Os11g0116300 encode
chalcone–flavanone isomerase (CHI), which might increase the accumulation of proantho-
cyanidin and flavonol in Arabidopsis [37]. Moreover, Os10g0317900 and Os04g0101400,
two cytochrome P450 genes, impact on the hydroxylation pattern of anthocyanidins (the
chromophores and precursors of anthocyanins) and play an important role in the biosyn-
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thesis of flavonoids and anthocyanins [38]. In addition, the arginine and proline metabolic
pathway was enriched among the upregulated genes in the KO-2 line. Polyamines,
putrescine, and proline are osmoprotectants and important mediators of abiotic stress
tolerance. Os09g0368200, which encodes a polyamine oxidase, catalyzes the oxidation
of spermine and polyamines spermidine, contributing to the accumulation of H2O2 [39].
Os04g0107600 and Os09g0543400 encode arginine decarboxylase 2 and ornithine decar-
boxylase, respectively, and are able to modulate the amount of polyamine [40]. Glutathione,
carotenoids, anthocyanins, and flavonoids are important antioxidants and might help to
eliminate the excessive active oxygen that is produced under abiotic stresses [41–45]. Un-
saturated fatty acids, fatty acids, and proline act as important osmoprotectants in response
to drought stress [41,43,44,46]. The observed changes in antioxidants and osmoprotectants
may endow the OE line with superior antioxidant and osmotic adjustment capacity.

The genes participating in plant hormone signal transduction (especially of JA and
ABA), the biosynthesis of diterpenoids (a substrate for GA synthesis), and the metabolism
of phenylalanine (biosynthesis of secondary metabolites) were enriched in the KO-2 and
OE-2 lines compared with WT plants (Figure 6B,C), which may indicate the involvement
of a complex network of multiple hormones. Based on the comparative KEGG enrichment
analysis, we decided to focus on the analysis of DEGs that were associated with the biosyn-
thesis of GA, ABA, and JA, as well as their signal transduction. Thus, the expression pattern
of genes involved in the GA metabolism pathway under osmotic stress was investigated.
Bioactive GAs, such as GA1 and GA4, are synthesized from trans-geranylgeranyl diphos-
phate (GGDP), as shown in Figure 6E. Ent-copalyl diphosphate synthase (CPS), ent-kaurene
synthase (KS), and ent-kaurene oxidase (KO) are the crucial enzymes catalyzing the early
steps in the GA biosynthetic pathway. One CPS gene (OsCPS2), one KO gene (OsKO4),
and two KS genes (OsKS7 and OsKS3) were increased in the KO-2 line, whereas only one
KO gene (OsKO5) and one KS gene (OsKS3) were upregulated in OE-2 under osmotic
stress. The GA20ox and GA3ox enzymes catalyzed later steps in the GA biosynthetic
pathway, and two OsGA20ox genes showed changes in expression levels under osmotic
stress. Furthermore, with the exception of OsGA2ox8, the genes Os02g0630300 (OsGA2ox9)
and Os05g0208550 (OsGA2ox10) were also upregulated in OE-2 but showed no expression
changes in KO-2 under osmotic stress. The aforementioned changes in expression levels
may indicate a complex regulatory mechanism of GA in KO and OE lines.

KEGG enrichment showed that DEGs were enriched in the JA and ABA biosyn-
thetic pathway and JA signal transduction. The enzymes aldehyde oxidase (AAO) and
9-cis-epoxycarotenoid dioxygenase (NCED) play a crucial role in the ABA biosynthesis [47].
Under osmotic stress, we detected one gene encoding NCED (Os02g0704000) and one en-
coding AAO (Os03g0798101) that were upregulated in OE-2, whereas no NCED or AAO
showed changes in their respective levels of expression in KO-2, which may contribute
to the higher amount of ABA in the OE-2 line., Three distinct pathways, including the oc-
tadecane pathway and the hexadecane pathway, are responsible for the synthesis of Jas
in Arabidopsis [48]. Lipoxygenase (LOX) is a vital enzyme in JA biosynthesis. Two genes
encoding LOX (Os02g0194700 and Os05g0304600) showed changes in expression under
osmotic stress. Specifically, both LOX genes were increased in OE, but only Os02g0194700
was upregulated in KO-2. Jasmonate ZIM domain-containing proteins (JAZ) actively
repress JA signal transduction by interacting with JA-responsive transcription factors.
Interestingly, we detected five JAZ genes showing changes in expression under osmotic
stress. Of these genes, four were decreased in OE and one was upregulated in both OE and
KO compared with the WT plants (Figure 6F). The DEGs associated with JA synthesis and
signal transduction suggested that the higher JA content is associated with activated JA
signal transduction in the OE-2 line, compared with both WT and KO plants.
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2.8. Metabolic Characteristics Response to Osmotic Stress

A global untargeted metabolite analysis based on ESI positive and ESI negative ion
modes was conducted to identify the metabolic response of rice seedling to PEG stress.
We performed OPLS-DA to visualize the metabolic changes among transgenic and WT plants
(Supplementary Figure S8). Based on the thresholds VIP > 1 and p-value < 0.05, we identified,
under osmotic stress, 127 and 88 differentially expressed metabolites (DEMs) with important
variation in OE-2 (Supplementary Table S4) and KO-2 (Supplementary Table S5), respectively.
Of these DEMs, 26 upregulated and 12 downregulated metabolites overlapped between KO
and OE under osmotic stress (Figure 7A). The classification of the DEMs in OE-2 and KO-2 is
shown in Figure 7B,C. The top 50 DEMs in OE-2 and KO-2, as well as their changing patterns,
are presented in Figure 7D,E. Compared with the KO line, a higher number of metabolites
accumulated in the OE line under osmotic stress, including sucrose, flavonoids, fatty acids
and conjugates, linoleic acids and derivatives, and steroid conjugates. Sucrose might be
accumulated either by starch degradation or reduction in sugar transfer from mesophyll cells
to the phloem, which would indicate that growth restriction resulted from the stress [46].
Sucrose is known to be an osmoprotectant in response to drought and salt stress [49], while
flavonoids and anthocyanins are important secondary metabolites that might act as scavengers
of vacuolar reactive oxygen species during osmotic stress [44]. We observed an accumulation
of 27 flavonoids and a decrease in only two flavonoids in OE plants, which may confer this
line with a high antioxidant capacity. We also noted an increase in the amount of unsaturated
fatty acids and conjugates, such as traumatic acid, fumarylacetic acid, 7-methoxy-9-methyl-4E,
8E-hexadecadienoic acid, and 9,12-octadecadiynoic acid in the OE-2 line. Such an increase
in the amount of unsaturated fatty acids can significantly improve the tolerance of Arabidop-
sis thaliana to low temperatures and oxidative stress [50]. Moreover, the ratio of malic acid
to a fumaric acid in guard cells plays an important role in regulating stomatal opening [51].
We observed a significant decrease in the amount of L-phenylalanine and D-tryptophan
in the OE line compared with the WT. These two compounds belong to the group of aro-
matic amino acids (AAAs) and might serve as precursors for large numbers of secondary
metabolites and phytohormones [44]. Hence, the decrease in the amount of L-phenylalanine
and D-tryptophan may result from an increase in the number of secondary metabolites,
such as flavonoids and anthocyanins. Taken together, these results indicated that changes
in the metabolite profiles may result in differences in tolerance to osmotic stress tolerance
between OE-2 and KO-2 plants.
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Figure 7. Important differentially expressed metabolites (DEM) identified by partial least squares–discriminant analysis
(PLS–DA) in overexpression and CRISPR/Cas9 knockout lines, compared with wild-type plants. (A) Overlap of up and
downregulated DEMs between OsGA2ox8 overexpression and CRISPR/Cas9 knockout lines compared with wild-type
plants under osmotic stress. (B) Classification of DEMs between an OsGA2ox8 overexpression line and the wild type.
(C) Classification of DEMs between an OsGA2ox8 CRISPR/Cas9 knockout line and the wild type. (D) Fifty top DEMs
according to the variable importance in projection (VIP) scores in an OsGA2ox8 overexpression line compared with the wild
type. (E) Fifty top DEMs according to the VIP score in a CRISPR/Cas9 knockout line compared with the wild type.

3. Discussion

Eleven GA2ox genes have been identified in the rice genome [52]. Most evidence
suggests these genes are the main regulatory sites of the GA metabolism pathway and
are particularly responsive to biotic/abiotic stress [20,21,23,24]. Abiotic stresses, including
water deficit, salt stress, and extreme temperature, resulted in the accumulation of reactive
oxygen species, which led to oxidative damage in plant cells [53]. The present experiments
showed that, during osmotic stress, rice plants overexpressing OsGA2ox8 showed lower
contents of MDA and higher contents of soluble sugars, GSH, and AsA, as well as higher
activities of SOD and CAT relative to those of the WT. These modifications were the op-
posite in the case of KO-2 plants (Figure 3). Our transcriptome and metabolome analyses
of the transgenic and WT plants showed a significant increase in DEGs associated with an-
thocyanin biosynthesis and flavonoid biosynthesis in the OE line relative to that of the WT.
In contrast, DEGs participating in the biosynthesis of unsaturated fatty acids, carotenoids,
and fatty acids were significantly reduced in the KO lines. Furthermore, some metabolites,
including sucrose, flavonoids, choline, and porphyrins, were highly accumulated only
in the OE-2 line under osmotic stress. Importantly, flavonoids, anthocyanins, GSH, AsA,
SOD, and CAT might act as scavengers of vacuolar reactive oxygen species during osmotic
stress and, similar to proline, sucrose is known to act as an osmoprotectant [46,49]. Com-
pared with the WT plants, the OE-2 line showed decreased abundances of L-phenylalanine,
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L-asparagine, and D-tryptophan, which are among the group of aromatic amino acids
(AAAs) that might serve as precursors for large numbers of secondary metabolites [44].
The decrease in contents of L-phenylalanine and D-tryptophan may result from an increase
in the number of secondary metabolites, such as flavonoids and anthocyanins. These
results strongly suggested that overexpression of OsGA2ox8 improved tolerance to osmotic
stress in rice by maintaining the stability of the membrane system, and improving and
enhancing osmotic adjustment and antioxidant activities.

A number of cis-regulatory elements associated with phytohormones are present
in the promoter region of OsGA2ox8, including two ABA-responsive element-like elements,
two DRE-related elements, three copies of a JA-responsive motif, and one GA-responsive
element. All these cis-elements are potentially involved in the OsGA2ox8-mediated re-
sponse to environmental stress and various hormone signaling pathways. OsGA2ox8 was
upregulated in response to treatment with exogenous ABA, IAA, and JA, and abiotic stress
treatments, such as high salinity, low temperature, and H2O2. Transcriptome analysis
of transgenic and WT plants under osmotic stress showed that many genes associated
with phytohormones were differentially expressed in the OE-2 line, including the auxin
biosynthesis and signaling genes Os01g0785400, Os02g0769100, and Os02g0643800 [54,55],
the JA-responsive transcription factors Os03g0181100, Os03g0180800, Os10g0391400, and
Os03g0180900 [56,57], the ABA biosynthesis gene OsABA8ox1 (Os02g0703600) [58], and
the ABA signaling gene OsABI5 (Os01g0859300) [59]. Taken together, these results sug-
gested that OsGA2ox8 likely participated in the response to various abiotic stresses and
hormones, and that coordination between maintaining growth and resisting stress was
superior in the OE lines in response to osmotic stress.

Our previous transcriptome analysis revealed that the expression of OsGA2ox8 showed
an opposite trend in the shoots and roots of rice under drought stress [25]. In the cur-
rent study, we performed GUS staining and showed that the expression of OsGA2ox8
was significantly decreased in the roots, and that no GUS staining was detected when
the seeds were treated with 4% PEG6000 for 3 days. Overexpression of OsGA2ox8 de-
creased the length of shoots and roots, and knockout of OsGA2ox8 increased the length
of shoots and roots at the seedling stage under the non-stress condition (Figure 4D,E,G).
The shoots and roots of all transgenic lines and the WT showed no obvious difference
under osmotic stress (Figure 4E–G). From these results, we hypothesize that the differential
expression of OsGA2ox8 may result in the differential regulation of responses to osmotic
stress in the shoots and roots. OsGA2ox8 was significantly decreased in the roots under
osmotic stress. The expression of OsGA2ox8 was significantly increased in the shoots under
osmotic stress, leading to the inhibition of shoot growth, which might help the plant to
conserve energy and improve resistance to osmotic stress.

Semi-dwarfism is a major factor in increasing the yield of green revolution varieties
that exhibit an enhanced photosynthesis rate and resistance to damage by wind and
rain [60,61]. The best-characterized deactivation reaction for bioactive GAs is catalyzed
by GA2oxs. It is generally true that the overexpression of C20 GA2oxs causes less severe
GA-defective phenotypes in rice than does the overexpression of C19 GA2oxs. For example,
constitutive ectopic overexpression of C19 GA2oxs, such as GA2ox1 and GA2ox3, causes
severe dwarfism and absence of seeds in rice, despite the long cultivation periods [26,62].
These responses mainly occur because active GAs are probably deactivated as soon as
they are produced [16,63]. In the present study, the overexpression of OsGA2ox8, which
belongs to the C19 GA2ox class, offers two alternative approaches for breeding plants with
increased grain width and enhanced osmotic stress tolerance. Unlike other C19 GA2oxs,
such as GA2ox1 and GA2ox3, OsGA2ox8 showed a diminished ability to reduce plant
height and interacted with the gibberellin biosynthesis gene OsGA20ox2. A complex associ-
ation between OsGA20ox2 and OsGA2ox8 may contribute to the regulation of gibberellin
biosynthesis and metabolism. The present results provide important information for future
applications of OsGA2ox8 to improve rice yields.
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4. Conclusions

In the current study, we identified and characterized the C19 GA2ox gene OsGA2ox8.
We observed that OsGA2ox8 was induced by abiotic stress, including drought, low tempera-
ture, and salt. Transgenic rice plants overexpressing OsGA2ox8 exhibited enhanced osmotic
stress tolerance with higher survival frequencies relative to the WT, whereas KO plants
showed increased osmotic stress sensitivity with lower survival frequencies in comparison
with the WT. In combination, these results demonstrated that OsGA2ox8 played a crucial
positive role in the rice response and tolerance to osmotic stress.

5. Materials and Methods
5.1. Plant Materials and Growth Conditions

Oryza sativa ‘Nipponbare’ was used as the WT for all analyses. For the seedling analysis,
we soaked the dried seeds in 0.3% sodium hypochlorite for 1 day and then in water for ap-
proximately 3 days at 28 ◦C until germination. All plants were cultivated with the following
settings: 28 ◦C/26 ◦C (day/night), a 16 h/8 h (light/dark) photoperiod, and a light intensity
of 600 µmol m−2 s−1. Yoshida nutrient solution was used as the nutrient source.

5.2. Stress and Phytohormone Treatments

To evaluate the stress tolerance phenotype, rice seedlings, comprising three overex-
pression lines (OE), three CRISPR/Cas9 knockout (KO) mutant lines, and the WT, were
hydroponically cultured in Yoshida nutrient solution and treated with 20% polyethylene
glycol 6000 (PEG6000) (~1.1 MPa) for approximately 7 days, depending on plant sensitivity,
until a response to osmotic stress was observed. Thereafter, the seedlings were cultured
in Yoshida nutrient solution without PEG6000 for recovery, and seedlings that developed
new leaves were counted as survivors. The survival rate was calculated by the formula
that the number of survivors was divided by the total number of seedlings. To determine
the expression levels of OsGA2ox8 under different phytohormone and stress treatments,
the germinated seeds were cultured in a 96-well bottomless PCR plate in Yoshida nutrient
solution. Seedlings at the three-leaf stage were treated with either 10 µM gibberellin (GA),
10 µM paclobutrazol (PAC), 100 µM abscisic acid (ABA), 20 µM indoleacetic acid (IAA),
100 µM jasmonic acid (JA), 20 mM hydrogen peroxide (H2O2), 20% PEG6000, 120 mM NaCl,
or low temperature (4 ◦C). Shoots and roots were sampled at 0 h, 1 h, 3 h, 6 h, 12 h, and
24 h after initiation of treatment and stored at −80 ◦C for analysis of OsGA2ox8 expression.

5.3. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted from leaves or roots using Direct-zol™ RNA MiniPrep Kits
(Zymo Research, Orange County, CA, USA) and TRIzol Reagent (Life Technologies, Carls-
bad, CA, USA) following the manufacturer’s instructions. The synthesis of first-strand
cDNA was performed with FastKing gDNA Dispelling RT SuperMix (Tiangen Biotech,
Beijing, China). Quantitative real time PCR (qRT-PCR) was conducted using SYBR® Premix
Ex Taq™ II (TaKaRa, Kyoto, Japan), in accordance with the manufacturer’s instructions,
on an Applied Biosystems® 7500 thermocycler (Thermo Fisher Scientific, Waltham, MA,
USA). The relative expression level of each gene was calculated according to the 2−44Ct

method [64]. Error bars indicate the standard deviation (SD) based on three technical repli-
cates (n = 6). OsUBQ5 was used as an internal control to normalize expression of the target
genes. The primers used in the qRT-PCR experiment are listed in Supplementary Table S3.

5.4. Vector Construction and Rice Genetic Transformation

The full-length transcript of OsGA2ox8 was obtained from the cDNA library using
gene-specific primers, and then cloned into the pCUbi1390 vector in which OsGA2ox8
was driven by the Ubi promoter to generate an OsGA2ox8 overexpression vector. One
target sequence (GGCGCGGCGGCGGCGGTGGC) was selected to generate OsGA2ox8
knockout mutants using the CRISPR/Cas9 gene-editing system with the binary vector
pYLCRISPR/Cas9Pubi-H in accordance with the method described by Ma et al. [65]. A frag-
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ment of approximately 2.2 kb upstream of the translation start site of OsGA2ox8 was
amplified from the rice genomic DNA. Three promoter fragments of different lengths, com-
prising 2193 bp, 1301 bp, and 647 bp, were cloned into the pMDC162 vector, using the Gate-
way™ system, in which β-glucuronidase (GUS) was driven by the inserted fragments.
All constructed vectors were introduced into Nipponbare via Agrobacterium-mediated
transformation. The primers used in the experiment are listed in Supplementary Table S3.

5.5. Sequence Analysis

Homologs of OsGA2ox8 were identified by means of a BLAST search of the NCBI
databases (http://www.ncbi.nlm.nih.gov/BLAST/ accessed on 19 March 2019). A multiple
sequence alignment was generated with ClustalW and a phylogenetic tree was constructed
using the neighbor-joining method with MEGA5 software. The promoter sequences
of OsGA2ox8 (2193 bp, 1301 bp, and 647 bp upstream from the transcription start site) were
submitted to the PLACE database (http://www.dna.affrc.go.jp/PLACE/signalscan.html
accessed on 16 March 2019) to detect cis-acting elements and predict the regulatory roles
of OsGA2ox8.

5.6. Physiological Analysis

Seedlings of the OE and KO lines and the WT at the three-leaf stage cultured in Yoshida
nutrient solution were treated with 20% PEG6000 (~1.1 MPa) for 24 h. The leaves from ten
plants were sampled and analyzed for malondialdehyde (MDA) content, soluble sugar
content, activities of CAT and SOD, and contents of antioxidants (GSH and AsA). The SOD
and CAT activities were estimated as described by Ouyang et al. [66], and MDA content and
total soluble sugar concentrations were measured using the methods previously described
by Song et al. [67] with minor modifications. The GSH and AsA contents were calculated
following the method described by Anderson [68]. All data were analyzed using one-way
ANOVA followed by Tukey’s honestly significant difference (HSD) test (p-value < 0.05).

5.7. Histochemical GUS Staining

The examined tissues of the OsGA2ox8 promoter::GUS transgenic lines were collected
and incubated in 90% acetone for 1 h. The GUS activity assay was performed in accordance
with the method described by Jefferson (1989). The tissues were dehydrated in an ethanol
series (70%, 85%, 95%, and 100%) to remove chlorophyll. The stained tissues were viewed
with a stereomicroscope (LEICA, Wetzlar, Germany), and the photographs were captured
using a digital camera (Canon EOS 600D).

5.8. Yeast Two-Hybrid Assay

The coding sequence (CDS) of OsGA2ox8 was fused to the GAL4 DNA-binding domain
(DNA-BD) to generate the pGBKT7-OsGA2ox8 construct. The cDNA library generated
from leaves of DK151 [25] at the tillering stage was used for fusion to the GAL4 activation
domain by Takara Biotechnology Co., Ltd. (Dalian, China). A yeast two-hybrid assay was
performed using the Yeastmaker™ Yeast Transformation System 2 (Clontech, Mountain
View, CA, USA) in accordance with the manufacturer’s instructions. Full-length fragments
of the candidate interacting proteins were cloned into pGADT7 as prey to confirm the inter-
action. The pGBKT7-OsGA2ox8 and prey plasmids were co-transformed into yeast strain
AH109 and then cultured on SD/–Ade/–His/–Leu/–Trp/X-α-gal plates. A filter assay
was performed to test for β-galactosidase activity. The specific primers used to amplify
each full-length fragment are listed in Supplementary Table S3.

5.9. Subcellular Localization of OsGA2ox8

The CDS of OsGA2ox8 was fused in frame to the C-terminus of the enhanced GFP
CDS under the control of the CaMV 35S promoter. An empty GFP vector was used
as the control. The GFP–OsGA2ox8 fusion construct and the empty GFP vector were
transformed into rice protoplasts using a polyethylene glycol–calcium-mediated method as

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.dna.affrc.go.jp/PLACE/signalscan.html
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described previously [69]. The OsGA2ox8–GFP fusion construct and the empty GFP vector
were then infiltrated into N. benthamiana leaves using a Agrobacterium tumefaciens-mediated
transient transformation [70]. The empty GFP vector was used as a control. Fluorescence
in the transformed protoplasts and tobacco leaves was captured with a confocal laser
scanning microscope (Leica TCS SP5).

5.10. Bimolecular Fluorescence Complementation Assay

The full-length OsGA2ox8 CDS and its candidate interacting proteins were cloned into
the vectors pnYFP-X and pcCFP-X, respectively. Bimolecular fluorescence complementation
(BiFC) assays were performed following a previously described method [71]. The pair
of constructs was co-transformed into the leaves of tobacco by means of Agrobacterium
tumefaciens-mediated transient transformation using the method described by [70].

5.11. Pull-Down Assay

The full-length cDNA of OsGA2ox8 was cloned into the pCold-TF vector and fused
to the N-terminal TF and the C-terminal His-tag. The coding frames of the candidate
interacting proteins were cloned into the pGEX6p-1 vector and fused to the N-terminal
GST-tag. Purification of the recombinant proteins and the pull-down assays were conducted
as described by Qin et al. [72] and Louche et al. [73]. The results were detected by Western
blot assays in accordance with standard procedures using the His and GST antibodies,
respectively (cell signaling; 1:1000 dilution). The images were visualized with a Tanon-5200
Chemiluminescent Imaging System (Tanon Science and Technology, Shanghai, China).

5.12. Transcriptome Analysis

The OE and KO lines and the WT were cultured in Yoshida nutrient solution as
previously described herein. Seedlings at the three-leaf stage were treated with 20%
PEG6000 (~1.1 MPa) for 24 h. The three uppermost leaves were harvested at one time
point for the control and osmotic stress treatment with three replicates for each sample.
The transcriptome sequencing and analysis were conducted by Shanghai OE Biotech
Co., Ltd. with an Illumina sequencing platform. The FPKM value for each gene was
calculated using Cufflinks and the read counts of each gene were obtained using the htseq-
count script [74–76]. DEGs were identified using the nbinomTest of the DESeq R package
and functions estimateSizeFactors with the thresholds p-value < 0.05 and |log2 Fold
Change| > 1 [77]. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and
gene ontology (GO) enrichment analyses of DEGs were performed with R software based
on the hypergeometric distribution [78]. The transcriptome datasets presented in this study
can be found below: China National Center for Bioinformation, Genome Sequence Archive
(https://bigd.big.ac.cn/gsa/ accessed on 15 March 2021), accession no: CRA004028

5.13. Metabolome Analysis

The plant materials used for metabolome analysis were the same as those used for tran-
scriptome analysis with five replicates for each sample. Metabolite extraction and liquid
chromatography–tandem mass spectrometry analysis were performed by Shanghai Lu-
Ming Biotech Co., Ltd. ACQUITY UHPLC system (Waters Corporation, Milford, MA,
USA) and AB SCIEX Triple TOF 5600 System (AB SCIEX, Framingham, MA, USA) were
used to analyze the metabolic profile in both ESI positive and ESI negative ion modes.
An ACQUITY UPLC BEH C18 column (1.7 µm, 2.1 × 100 mm) was employed in both
positive and negative modes.

Progenesis QI data processing software (Waters Corporation, Milford, MA, USA)
were used to identify the metabolites based on public databases, such as http://www.
lipidmaps.org/ accessed on 1 April 2019, http://www.hmdb.ca/ accessed on 1 April 2019,
and custom databases. The differential metabolites were selected with p-value < 0.05 and
VIP > 1, which were obtained from a two-tailed Student’s t-test of the normalized peak
areas and the orthogonal partial least squares–discriminant analysis (OPLS–DA) model.

https://bigd.big.ac.cn/gsa/
http://www.lipidmaps.org/
http://www.lipidmaps.org/
http://www.hmdb.ca/
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