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Abstract: This study aims at analyzing the impact of the pharmacological inhibition of DNA damage
response (DDR) targets (DNA-PK and ATR) on radiosensitization of bladder cancer cell lines of
different molecular/histological subtypes. Applying DNA-PK (AZD7648) and ATR (Ceralasertib)
inhibitors on SCaBER, J82 and VMCUB-1 bladder cancer cell lines, we revealed sensitization upon
ionizing radiation (IR), i.e., the IC50 for each drug shifted to a lower drug concentration with increased
IR doses. In line with this, drug exposure retarded DNA repair after IR-induced DNA damage
visualized by a neutral comet assay. Western blot analyses confirmed specific inhibition of targeted
DDR pathways in the analyzed bladder cancer cell lines, i.e., drugs blocked DNA-PK phosphorylation
at Ser2056 and the ATR downstream mediator CHK1 at Ser317. Interestingly, clonogenic survival
assays indicated a cell-line-dependent synergism of combined DDR inhibition upon IR. Calculating
combined index (CI) values, with and without IR, according to the Chou–Talalay method, confirmed
drug- and IR-dose-specific synergistic CI values. Thus, we provide functional evidence that DNA-
PK and ATR inhibitors specifically target corresponding DDR pathways retarding the DNA repair
process at nano-molar concentrations. This, in turn, leads to a strong radiosensitizing effect and
impairs the survival of bladder cancer cells.

Keywords: bladder cancer; DNA-PK; ATR; AZD7648; Ceralasertib; targeted therapy; ionizing
radiation (IR)

1. Introduction

Bladder cancer (BC) is the ninth most common cancer worldwide, with a yearly inci-
dence of approximately 430,000 cases, and it ranks 13th in terms of yearly mortality from
cancer [1]. Histologically, bladder cancer comprises a heterogeneous group of tumors,
including urothelial carcinomas (UC), and rare subtypes, such as pure squamous cell
carcinomas (SCC). Nevertheless, the range of treatments available so far do not consider
the broad spectrum of heterogeneity but depend rather on the stage of urothelial cancers.
For localized disease, the anatomy of the bladder provides an inherent advantage, as the
internal mucosal lining is accessible via a simple catheterization process. This allows for
the instillation of intravesical therapies, such as chemotherapeutic agents [2] and bacillus
Calmette–Guérin vaccine [3]. The current standard of care varies between the stages of
disease; essentially, all >T2 or N0/N+ tumors are managed with neoadjuvant chemotherapy
followed by radical cystectomy with pelvic node dissection. An organ-sparing approach for
MIBC (muscle-invasive bladder cancer) is trimodal therapy (TMT), consisting of maximal
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transurethral resection of the bladder tumor (TUR-BT) followed by concurrent chemother-
apy and radiotherapy. However, only about 30–50% of patients respond initially and most
patients will progress or become refractory to treatment [4,5]. In this setting, chemotherapy
is given concurrently with radiotherapy as a radiosensitizer [6]. The concept of radiosensi-
tization is not new [7]; however, in the era of targeted therapies and immune checkpoint
modulators, many clinical trials are focusing on combining radiotherapy with these new
agents [8].

A special focus is on the inhibition of the DNA damage response (DDR) pathways
to substantially impair the DNA repair mechanisms of malignant cells [9]. Although all
the mechanisms of DNA damage repair are incredibly complex, there are, however, four
main established pathways through which DNA damage is repaired: non-homologous end-
joining (c-NHEJ), microhomology-mediated end-joining (MMEJ), single-strand annealing
(SSA) and homologous recombination (HR). MMEJ and SSA pathways are much less
studied and are often collectively known as alternative end-joining (a-EJ) pathways. HR
provides the greatest fidelity because it uses sister chromatids to repair double-strand
breaks (DSBs) but can only occur in the S and G2 phases of the cell cycle [10]. Both EJ
pathways can occur throughout the cell cycle, although a-EJ is more active during the
S phase [11]. Instead of using template strands in HR, c-NHEJ ligates two strands of
DNA across a break. If HR cannot repair a DSB, the error-prone c-NHEJ becomes the
dominant pathway [12]. So far, there are accumulating studies proposing radiosensitizing
in various tumor entities, such as pancreatic and breast cancers, by targeting two main
players in the DDR network, i.e., ataxia telangiectasia and Rad3-related kinase (ATR) and
DNA-dependent protein kinase (DNA-PKcs) [13–16]:

1. ATR, along with ataxia-telangiectasia mutated kinase (ATM), plays a significant role in
activating the DNA response. ATR under physiological conditions is known to protect
against replication stress and to safeguard genomic stability during replication by
preventing the breakage or ‘collapse’ of stalled replication forks [17]. ATR promotes
the recruitment of ATRIP, the regulatory partner of ATR, thereby allowing the ATR–
ATRIP complex to recognize the replication protein A bound ssDNA at DNA damage
sites or stressed replication forks [18]. The ATR-dependent DNA damage repair
is known to follow the HR pathway [19]. ATR initiates the S and G2 cell cycle
checkpoint through CHK1 phosphorylation [15], which in turn mediates CDC25A-
C phosphorylation, leading to blocking of CDK1 and CDK2 (thus preventing cell
cycle progression) [20]. Inhibition of these pathways causes a dramatic increase in
replication initiation, or, rather, a lack of cell cycle arrest with an eventual mitotic
catastrophe due to the lack of DNA repair. Furthermore, ATR-CHK1 activation has
been associated with the expression of PD-L1 expression on irradiated tumor cells in
a type I IFN signaling-dependent manner [21,22].

2. DNA-PKcs, which belongs to the phosphoinositide 3-kinase (PI3K)-related protein kinase
(PIKK) family, just like ATR and ATM, plays a central role in regulating c-NHEJ. c-NHEJ
can repair DSBs of varying complexity, such as those with incompatible ends or damaged
bases [23]. The DSB end-recognition is detected by the Ku70/80 heterodimer (Ku), which
serves as a scaffold for the assembly of the components of the c-NHEJ machinery, including
DNA-PKcs, the XRCC4-DNA ligase IV complex, and XRCC4-like factor (XLF) [24]. The
role of DNA-PK in regulating the cell cycle is still not completely understood. However,
DNA-PK demonstrates cross-talk between ATM/ATR and plays a role in checkpoint
recovery, albeit in a cellular context [25,26]. DNA-PK inhibitors have also been documented
to substantially enhance PD-L1 expression in irradiated cancer cells via cGAS/STING
pathway activation in a p53-deficient background [27].

In the field of bladder cancer, there are several clinical trials focusing on combining
chemoradiotherapy with immune checkpoint modulators [9], but there are no clinical trials
focusing on DNA damage response pathway inhibitors combined with ionizing radiation
to target bladder cancer. This study aims at assessing the impact of a potent and selective
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DNA-PK inhibitor (DNA-PKi: AZD7648) and an ATR inhibitor (ATRi: Ceralasertib) to
foster radiosensitization of bladder cancer cells in vitro.

2. Materials and Methods
2.1. Cell Lines

The urothelial cell lines, UROtsa, J82 and VMCUB-1, were obtained from the American
Type Culture Collection (ATCC, Manassas, VA, USA). SCaBER, a basal-type bladder cancer
cell line with squamous characteristics, was kindly gifted by Prof. Wolfgang Schulz/Dr.
Michèle Hoffmann (Düsseldorf University Hospital, Düsseldorf, Germany). All cell lines
were cultured using DMEM (Dulbecco’s Modified Eagle’s Medium) (Sigma-Aldrich, Deisen-
hofen, Germany) supplemented with 10% FCS (Gibco Laboratories, Berlin, Germany),
2 mM L-glutamine, and 1% penicillin/streptomycin at 37 ◦C with 5% CO2, and successfully
underwent an identity check (Multiplexion GmbH, Immenstadt, Germany) prior to the
experiments. All cells and clones were regularly tested for mycoplasma infection using the
PCR-based Venor® GeM Mycoplasma Detection Kit (Minerva Biolabs, Berlin, Germany).

2.2. Small Molecule Inhibitors

The DNA-PK inhibitor AZD7648 and the ATR inhibitor Ceralasertib (AZD6738) were
purchased from Selleck Chemicals (Houston, TX, USA, product codes: S8843 and S7693).

2.3. Ionizing Radiation (IR) Source and Setup

Irradiation was performed using a medical patient linear accelerator (LINAC). Cell
culture plates containing the cells and culture media were irradiated using 6 MV X-Ray
beams and placed at a maximum dose depth of around 1.5 cm. The table height was
adjusted so that the distance from the source to the buildup surface was 100 cm. Another
3 cm of water equivalent material was placed on the opposite surface of the cell culture
plates to allow backscatter.

2.4. Western Blot

Cells were cultured at a density of 3.33 × 104 cells/cm2 and allowed to attach overnight.
AZD7648 and Ceralasertib (0.1–10 µM in DMSO) were added two hours before irradiation.
At a time 1 h after treatment, cells were pelleted before lysis in 50 mM Tris, 150 mM NaCl, 10
mM EDTA, 1% IGEPAL, 0.5% sodium deoxycholate, and 0.1% SDS. Protein concentrations
of lysis supernatants were quantified using a Pierce™ BCA Protein Assay kit (ThermoFisher,
Carlsbad, CA, USA). An amount of 20 µg total protein lysate was separated by SDS-PAGE
with a Mini-PROTEAN Tetra vertical electrophoresis cell (Bio-Rad Laboratories, Munich,
Germany), transferred to nitrocellulose membranes using a Mini Trans-Blot electrophoretic
transfer cell (Bio-Rad Laboratories, Munich, Germany). The membranes were incubated
in 5% w/v BSA or 5% w/v non-fat dry milk blocking buffer followed by incubation with
primary antibodies: anti-ATR (Cell Signaling Technology, Danvers, MA, USA, 2790, 1:1000),
anti-ATR-pTyr1989 (Abcam, ab223258, 1:1000), anti-CHK1 (Cell Signaling Technology,
Danvers, MA, USA, 2360, 1:1000), anti-CHK1-pSer317 (Cell Signaling Technology, Danvers,
MA, USA, 2344, 1:250), anti-DNA-PK (Cell Signaling Technology, Danvers, MA, USA, 2344,
1:1000), anti-DNA-PK-pSer2056 (BoserBio, P00645, 1:1000), anti-GAPDH (Cell Signaling
Technology, Danvers, MA, USA, 8884, 1:4000), and anti-PARP (Cell Signaling Technology,
Danvers, MA, USA, 9542, 1:1000).

2.5. Neutral Comet Assay

SCaBER cells were cultured at a density of 3.33 × 104 cells/cm2 and allowed to attach
overnight. AZD7648 and Ceralasertib (10 µM in DMSO) were added two hours prior to
irradiation. Cells were pelleted and resuspended at indicated time intervals (0–6 h after
irradiation) in PBS. According to the manufacturer’s instructions, a neutral comet assay was
performed using the CometAssay single-cell gel electrophoresis assay kit (R&D Systems,
Minneapolis, MN, USA). The cell suspension was mixed 1:10 with LMAgarose (37 ◦C), and
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50 µL was spotted onto pre-warmed comet slides. After overnight lysis (4 ◦C), slides were
incubated in 4 ◦C chilled TBE buffer (90 mM Tris-base, 90 mM boric acid, 2 mM Na2EDTA,
pH 8.5) for 15 min and then exposed to a 21 V current for 45 min in 4 ◦C chilled TBE
buffer. After fixation in 70% ethanol and drying, slides were stained with 1:10,000 diluted
HD DNA Green Stain (Intas Science Imaging, Göttingen, Germany) for 30 min at room
temperature in the dark and washed with dH2O afterwards. DNA damage was observed
using an Axiovert 100 TV fluorescence microscope (Carl Zeiss, Oberkochen, Germany)
with equipped pco.panda 26 sCMOS camera system (Excelitas PCO, Kelheim, Germany)
and VisiView 4.0 software (Visitron Systems) to acquire images. For each condition, the
tail moment was measured using the OpenComet, open-free ImageJ plug-in (National
Institutes of Health, Bethesda, MD, USA), as a software tool providing automated analysis
of comet assay images.

2.6. Short Term Single and Combined Drug Response Analyses

Drug response curves were performed by adding XTT (Roche Diagnostics, Penzberg,
Germany), with and without IR, according to the manufacturer’s instructions. Cells were
seeded in 96-well plates with cell-line-specific numbers (SCaBER: 6000 cells/0.32 cm2;
VMCUB-1: 5000 cells/0.32 cm2; J82: 2000 cells/0.32 cm2). After 24 h, cells were treated
with various doses of AZD7648 (0.01–20 µM in 0.1% DMSO) and Ceralasertib (0.01–20 µM
in 0.1% DMSO) while irradiated by distinct Gy doses (2, 4, 6, 8 Gy and 0 Gy as control).
After 72 h incubation, the optical density was measured using an ELISA-Reader Infinite
M200 Tecan (Bio-Rad). Each assay was independently performed at least three times.
The combined treatment of cells was performed analogously to the single drug assays as
previously specified [28].

2.7. Clonogenic Survival Assay

Cells were cultured overnight at different densities to compensate for cell deaths upon
different irradiation doses (0 Gy: 55 cells/cm2, 2 Gy: 83 cells/cm2, 4 Gy: 110 cells/cm2,
6 Gy: 138 cells/cm2, 8 Gy: 165 cells/cm2). One hour prior to irradiation, cells were treated
with AZD7648 or Ceralasertib (0.25 µM) or their combination (0.125 µM). Fourteen days
after treatment, cells were washed with PBS, stained with 0.25% crystal violet (Merck,
Darmstadt, Germany) for 30 min, and excess staining solution was removed by washing
with dH2O. Clonogenic survival was measured densitometrically using ImageJ. Mean
surviving colonies were calculated from three technical replicates. The relative number of
surviving colonies was normalized for plating efficiency for each radiation dose. After that,
the surviving fraction was calculated relative to the untreated (1% DMSO) non-irradiated
(0 Gy) control. Please note: Due to the spreading nature of cellular growth in the case of
SCaBER and VMCUB-1, we were unable to effectively count individual colonies; this was
not the case for J82 cells, which formed identifiable colonies.

2.8. Whole Exome Sequencing

Whole exome sequencing (WES) of wildtype cell lines (SCaBER, VMCUB-1 and J82)
was performed as previously described [29] with slight modification; i.e., the Enrichment Kit
to SureSelectXT Human All Exon V6_r2 (Target size 60 Mb; Agilent, Santa Clara, CA, USA)
was used. Raw sequencing reads were aligned against hg19 for J82 and hg38 for SCaBER,
VMCUB-1 and J82, respectively. Pathogenicity was predicted by the Clinvar database.

2.9. Statistical Data Acquisition

Two-sided p-values less than 0.05 were considered significant. Logarithmic trans-
formation, normalization (defining smallest value = 0% and largest value = 100%) and
non-linear regression of raw data was performed using GraphPad prism 6 software (Graph-
Pad Software Inc., La Jolla, CA, USA). The relative inhibition rate (100%-Xinh) and the IC50
(drug concentration causing 50% inhibition) values for each cell line were determined using
a “log (inhibitor) vs. normalized response—variable slope” equation (best-fit values). The



Biomedicines 2022, 10, 1277 5 of 15

results of single and combination drug assays were used to calculate the combination index
(CI) with Compusyn (version 1.0) [30].

3. Results
3.1. Short-Term Application of DNA-PKi (AZD7648) and ATRi (Ceralasertib) Leads to Cell Death
and Radiosensitization

Novel classes of inhibitors targeting DDR pathways, such as DN-PK and ATR, are
currently being assessed in the early phases of clinical trials but have not yet been tested
in bladder cancer. Thus, we sought to analyze the therapeutic impact of AZD7648 and
Ceralasertib for sensitizing bladder cancer cells in relation to radiotherapy. We selected three
aggressive bladder cancer cell line models which reflected different molecular subtypes, i.e.,
basal/squamous SCaBER, urothelial basal VMCUB-1 and non-classified J82 cells. Initially,
an XTT assay was used to determine the IC50 value across the cell lines. Without ionizing
radiation, the IC50 doses for each drug, i.e., AZD7648 and Ceralasertib, were broadly similar
across n = 3 cell lines, ranging from 6.77 to 10.57 µM (AZD7648) and from 1.70 to 3.88 µM
(Ceralasertib), respectively.

We then analyzed IC50 values across a range of radiation doses. There was a shift in
the IC50 towards a lower value as the radiation dose exposure increased (Figure 1A–F).
Essentially, a radiosensitizing effect was verified, although, in a short-term setting (72 h),
there is an overestimation of cell survival due to the presence of metabolically active cells
that will eventually die [31]. Except for SCaBER and J82 cells, upon DNA-PKi treatment,
the calculated IC50 value for DNA-PKi and ATRi decreased steadily with increasing IR
dose. SCaBER was the most sensitive cell line tested upon ATR inhibition (Ceralasertib:
IC50 = 0.46 µM at 8 Gy), while VMCUB-1 was highly sensitive upon DNA-PK inhibitor
treatment (AZD7648: IC50 = 1.02 µM at 8 Gy). In SCaBER and J82, the lowest IC50 value
was achieved for AZD7648 at 2 Gy (1.91 µM) and 4 Gy (1.61 µM), respectively. We finally
analyzed UROtsa as a model of normal urothelial cells upon single DNA-PKi and ATRi
treatment without IR and across a range of radiation doses (Supplementary Figure S1).
Without drug application, UROtsa showed IC50 values upon IR comparable with that of
the cancer cell lines. Interestingly, the normal UROtsa cells were much more resistant to
DNA-PKi and ATRi when exposed to high dose IR (AZD7648: IC50 = 6.74 µM at 8 Gy and
Ceralasertib: IC50 = 4.35 µM at 8 Gy).

3.2. Pharmacological Inhibition of DNA-PK and ATR Effectively Blocks Downstream Signaling
Involved in DDR

NGS-based exome-sequencing provided detailed information regarding mutations in
DDR genes, in particular for our targets PRKDC and ATR, as well as TP53 (Figure 2A,B). For
PRKDC, encoding the catalytic subunit of DNA-PKcs, a monoallelic single-nucleotide vari-
ation was shown to be present in squamous-like SCaBER (p.Tyr962Cys, not reported so far)
and two different monoallelic single nucleotide variations in urothelial J82 (p.Gly3935Ser,
p.Gly3904Ser, uncertain significance) cancer cells. The urothelial basal-type VMCUB-1 cell
line showed no PRKDC alterations. All three cancer cell lines were characterized by an
ATR wildtype gene but possessed biallelic TP53 mutations. In SCaBER and VMCUB-1
cells, TP53 alterations were verified as pathogenic variants (SCaBER: p.Arg71Leu and
p.Arg110Leu; VMCUB-1: p.Arg16His, p.Arg175His, p.Arg43His, p.Arg136His). The TP53
mutation (p.Glu271Lys) confirmed in J82 was of uncertain significance since there are
conflicting interpretations of pathogenicity (see Supplementary Table S1). The normal
urothelial cell line UROtsa showed no TP53 mutation (data not shown).

Prior to the experiments, we confirmed DNA damage triggered by various doses of IR
(2, 4, 6, 8 Gy). As expected, higher radiation doses caused increased levels of DNA damage
as visualized by a comet assay (see Supplementary Figure S2). Subsequently, selective
inhibition of the DNA-PK and ATR pathways by AZD7648 and Ceralasertib treatment
was confirmed in bladder cancer cell lines (Figure 2C–F). While the irradiation of cells
(8 Gy) led to strong activation of DNA-PK and ATR (from 0% up to 100%), applied drugs
(AZD7648 and Ceralasertib) caused a dose-dependent blockade of protein phosphorylation
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and associated DDR pathways depending on the given cell line. For instance, DNA-PKi
treatment reduced DNA-PK activation at low doses (0.1 µM), i.e., remaining phosphoryla-
tion ranged between 17.8% and 46.2%, compared to the 8 Gy control (=100%). At 10 µM
AZD7648, activation of DNA-PK was completely abolished, similar to CHK1 activation
upon ATR inhibitor (ATRi) treatment. The ATR downstream target CHK1 (Ser317) served
as a surrogate marker to assess inhibition of the ATR pathway since the phosphorylation
of ATR at position Thr1989 was not helpful (see Supplementary Figure S3). For relative
quantification of DNA-PK and CHK1 activation upon individual and combined AZD7648
and Ceralasertib treatment, see Supplementary Figure S4.

Figure 1. IC50 values of ATR and DNA-PK inhibitors in relation to radiation dose and cellular
background. Short-term single drug response analyses applying DNA-PK and ATR inhibitors upon
different radiation doses (0 Gy, 2 Gy, 4 Gy, 6 Gy, 8 Gy) on squamous SCaBER (A,B), urothelial VMCUB-
1 (C,D) and J82 (E,F) bladder cancer cell lines. Semi-logarithmic plots show drug response curves
(relative inhibition rate = 100% − Xinh) of urothelial bladder cancer cell lines. Drug response was
determined using XTT following 72 h incubation with indicated drug concentrations and radiation
doses. Dotted line and stated relative IC50 = drug concentration causing 50% inhibition. Drug
response curves represent means from at least n = 3 independent experiments.

3.3. Pharmacological Inhibition of DNA-PK and ATR Impedes DNA Damage Response after
Exposure to Ionizing Radiation

Next, we showed substantially blocked DNA repair upon DNA-PKi and ATRi treat-
ment in squamous SCaBER cells by calculating the dimension of tail moments of comet
assays 1–6 h after IR (Figure 3A). Interestingly, the dual treatment of DNA-PKi and ATRi
was most efficient in retarding the DNA damage response (DNA damage remaining after
6 h: 67.02%) followed by individual ATRi (DNA damage remaining after 6 h: 58.81%) and
DNA-PKi (DNA damage remaining after 6 h: 33.99%) application (Figure 3B). During this
period, SCaBER cells without drug treatment repaired more than 85% of damaged DNA
lesions (i.e., DNA damage remaining after 6 h: 14.52%). Effects of DNA-PKi and ATRi alone
(i.e., without ionizing radiation) on DNA, potentially causing damage or interfering with
DNA damage repair, could be excluded. We then analyzed the cleavage of PARP1 as an
apoptotic marker [34] in SCaBER cells after single and dual DNA-PK1 and ATRi treatment
with and without IR (Figure 3C). Cleaved PARP1 was predominant upon higher doses of
ATRi and combined DNA-PKi-ATRi application, while single DNA-PKi treatment showed
only a mild effect on PARP1 activation.
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Figure 2. Inhibition of DNA-PK and ATR impairs downstream DDR signaling of different bladder
cancer cell line models. (A,B) In vitro models used for drug response studies. NGS-based exome
sequencing revealed a monoallelic PRKDC mutation of unknown functional significance in squamous-
like SCaBER and two alterations in urothelial J82 cells. The urothelial basal-type VMCUB-1 cell line
showed no PRKDC alteration. The ATR wild-type and biallelic TP53 mutations were present in all
cell lines. (B) The type and position of the monoallelic PRKDC (DNA-PKcs) alterations of SCaBER
and J82 cells are illustrated in a lollipop plot. The mutations found in SCaBER and J82 are of unknown
significance. In J82 cells, the mutation of DNA-PKcs was located in the PI3_PI4 kinase domain
(p.G3904S) close to the predicted binding site of AZD7648, potentially involving interaction with the
amino acids at the positions Leu3751, Arg3737, Trp3805, Leu3806, Asn3926, and Ile3938 [32]. The
identified mutation of DNA-PKcs in SCaBER cells was located at the N-terminal to the FAT domain,
which is known to comprise a predominantly helical solenoid HEAT-repeat domain of variable length
that mediates protein-protein interaction [33]. (C–E) Phospho-western blots were performed to assess
activation of DNA-PK and ATR mediated pathways upon irradiation (radiation dose = 8 Gy), as
well as single and dual DNA-PK/ATR inhibition, in SCaBER, VMCUB-1 and J82 bladder cancer
cells. Radiation of cells triggered activation of both DDR pathways (DNA-PK and ATR). In turn,
phosphorylation of DNA-PK (Ser2056) and CHK1 (Ser317) was effectively blocked upon single/dual
treatment of increased concentrations of AZD7648 and Ceralasertib. Please note: For the ATR
pathway, the activation of downstream target CHK1 (Ser317) was analyzed since the phosphorylation
of ATR at position Thr1989 was not significantly altered upon AZD6738 (Ceralasertib) treatment (see
Supplementary Figure S3). ‘+’ and ‘−’ refers to the exposure or lack thereof to IR or drug.
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Figure 3. Blocking DNA-PK and ATR activity retards DNA repair of radiation-induced DNA damage
in squamous bladder cancer cells. (A) Representative immunofluorescence images of stained nuclear
tails are shown for each time point and treatment option (i.e., single DNA-PK and ATR inhibitor
treatment (both: 10 µM), combined treatment application of DNA-PK and ATR inhibitors, and
non-treated cells (controls)). A neutral comet assay was performed and images were obtained with
20× original magnification. (B) Semi-quantitative analyses of the tail moment of SCaBER cells upon
combined irradiation (8 Gy) and DNA-PK/ATR DDR pathway inhibition illustrating a retarded DNA
repair response. Overall n = 5493 individual cells (35–148 cells/sample) with corresponding tails
were analyzed by ImageJ. The time point 0 h was used for normalization. The calculation of the tail
moment of non-irradiated cells but upon DNA-PK/ATR treatment was considered as a control to
exclude drug-induced DNA damage. Curves of tail moments represent means from at least n = 2
independent experiments (except for dotted control lines). (C) Western blots were performed to
assess the cleavage of PARP1 as an apoptotic marker with and without irradiation (dose = 8 Gy) as
well as upon single and dual DNA-PK/ATR inhibition in SCaBER bladder cancer cells. GAPDH was
used as a loading control.

3.4. AZD7648 and Ceralasertib at Nano-Molar Concentrations Drastically Reduce Clonogenic
Survival after Radiation Exposure

Subsequently, we aimed to show whether DNA-PK and ATR inhibition could ra-
diosensitize bladder cancer cells. A clonogenic survival assay was performed over 14 days.
SCaBER, VMCUB-1 and J82 bladder cancer cells were individually treated with either
DNA-PKi (0.25 µM) or ATRi (0.25 µM), as well as in combination (0.125 µM each), upon
ionizing radiation of various doses (2, 4, 6, 8 Gy). The results are illustrated in Figure 4A–C.

Overall, pharmacological inhibition of both DNA-PK and ATR caused decreased
cell survival upon IR compared to controls without drug treatment. DNA-PKi, and a
combination of DNA-PKi and ATRi, radiosensitized SCaBER, VMCUB-1 and J82 cancer
cells most efficiently, i.e., the radiation dose was reduced by 2–4 Gy to achieve comparable
results of induced cell death. In VMCUB-1 cells, a shift in sensitizing was observed up
to 6 Gy. Single DNA-PKi treatment impaired cell survival (>90%) at low radiation doses
(2 Gy) with strong efficacy, whereas single ATRi application was less effective at lower
radiation doses in this long-term setting. At the end, single colonies still survived upon
both treatment approaches with individual application of drugs, i.e., DNA-PKi or ATRi at
8 Gy IR. A complete remission of colony growth was only demonstrated in all cell lines
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upon a dual treatment approach (+IR) suggesting suppression of bypass mechanisms which
otherwise could rescue cells.

Figure 4. Long-term observation shows a clear inhibition of clonogenic survival of bladder cancer
cells after radiation exposure. A clonogenic survival assay was performed to reveal colony formation
upon pharmacological single and dual DNA-PK and ATR inhibition with irradiation (2–8 Gy) using
SCaBER, VMCUB-1 and J82 bladder cancer cells. Colony growth was assessed for SCaBER (A),
VMCUB-1 (B) and J82 cells (C) 14 days after AZD7648 and Ceralasertib treatment in combination with
different radiation doses as indicated. DMSO served as the negative control. Left side: Representative
images of grown colonies are shown. Right side: Survival fractions (clonogenic potential) are
densitometrically illustrated for each cell line. Colony survival curves represent means from at least
n = 2 independent experiments.

3.5. Combination of AZD4678 and Ceralasertib Shows Potential Synergism Depending on Cell
Line and Drug-/IR-Dose

Based on the calculated IC50 values, drug-response assays with combinations of AZD4678
and Ceralasertib were performed for SCaBER, VMCUB-1 and J82 cells (Figure 5A–D). A dual
drug effect was determined by calculating the combination index (CI) as a non-constant com-
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bination following the Chou–Talalay method [30]. Detailed CI results associated with applied
drug concentrations upon 2 Gy IR are shown, for example, for SCaBER in Figure 5A. Strong
synergism was observable at concentrations lower than the IC50 values of both drugs (AZD7648
and Ceralasertib) associated with CI values ranging between 0.16 and 0.68. CI values in the
range of 0.67–1.67 were calculated at higher concentrations of DNA-PKi, reflecting a shift
towards antagonistic effects. Figure 5B–D demonstrates the fraction affected (being equiva-
lent to the cell death rates) upon both combined treatment and 2 Gy or 8 Gy IR. Similar to
SCaBER, a dose-dependent range of CI was shown for J82 upon 8 Gy IR, i.e., dual treatment
with DNA-PKi and ATRi caused either synergism at low concentrations or antagonism at high
concentrations. For VMCUB-1 cells, we observed a heterogeneous pattern of synergic and
antagonistic effects. In turn, combined DNA-PKi and ATRi treatment revealed an unambiguous
synergism for all tested combinations in SCaBER at 8 Gy (CI range: 0.001–0.185) and in J82 at
2 Gy (CI range: 0.069–0.618).

Figure 5. Dual ATR and DNA-PK inhibition mediates short-term synergistic effects depending on
radiation dose and cellular background. The combination index (CI) was calculated in order to assess
the combined effects of drugs (CompuSyn software, v.1.0). (A) 3D graph illustrates CI results for
combined application of dual DNA-PK and ATR inhibition upon low dose irradiation of SCaBER
cells. Drugs were used at concentrations of 4 × IC50, 2 × IC50, 1 × IC50, 0.5 × IC50, 0.25 × IC50,
0.125 × IC50 of each drug for SCaBER. CI = 1: additive effect, CI < 1: synergistic effect (red), CI > 1:
antagonistic effect (blue). (B–D) Graphs illustrating CI results for cell fractions affected by dual
application of DNA-PK and ATR inhibitors in combination with two distinct radiation doses (low
2 Gy and high 8 Gy) on SCaBER (B), VMCUB-1 (C) and J82 (D) cells after 72 h. CI data represents
means from at least n = 3 independent experiments.

4. Discussion

Pelvic radiotherapy is known to cause unavoidable exposure of the bladder, urethra,
bone marrow and distal ureters to radiation which subsequently leads to many inevitable
radiation-associated complications [35]. To improve the therapeutic ratio of potential
bladder cancer treatment, we focused on DNA repair pathways known to affect resistance
to DNA-damaging chemotherapy and radiotherapy [36]. We used novel small molecule
inhibitors targeting key proteins of DNA damage response pathways [37], such as DNA-
PK, as an emerging therapeutic target in cancer [38]. Similar compounds of these novel
classes of drugs targeting ATR and DNA-PK have already demonstrated a radiosensitizing
effect in various types of cancer cells [9,13,14,39–41]. Previously, Dillon et al. studied
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the ATR inhibitor AZD6738 (Ceralasertib) in DNA-PK deficient NOD SCID gamma mice,
demonstrating an appropriate tolerance of this drug [42]. Fok and colleagues confirmed
that AZD7648 is a potent and selective DNA-PK inhibitor in various cell lines [16]. To date,
the impact of DNA-PK and ATR inhibition on bladder cancer cells has remained unknown.
Herein, we provide functional evidence that treatment with both DNA-PKi (AZD7648)
and ATRi (AZD6738; Ceralasertib) resulted in radiosensitization of bladder cancer cells of
various histological/molecular subtypes, i.e., in squamous (SCaBER), in urothelial basal
(VMCUB-1) and in urothelial non-classified (J82) cells.

The three cell line models used in this study are characterized by a TP53 point mu-
tation of known pathogenic, or at least uncertain, significance. Mutations in TP53 are
common genetic alterations in bladder cancer development, especially for muscle-invasive
cancers [43]. Overall, bladder cancer is affected by a high number of genetic alterations in
genes of the DDR network [44]. Thus both, the biallelic mutation in TP53 identified in all
three cell lines, as well as the mono-allelic SNVs in PRKDC identified in SCaBER and J82
cells, reflect typical and frequent alterations of bladder cancers.

In this molecular context, a selective blockage of the DDR pathways orchestrated
by DNA-PK and ATR could be confirmed in this study on a molecular and cellular level.
Overall, individual and dual treatment with ATRi and DNA-PKi radiosensitize bladder
cancer cells most likely independently of their functional p53 status (at least this is the
case for VMCUB-1 and SCaBER cell lines). Despite the mutational status of TP53 in all
three cell lines, it seems that all cells can undergo apoptotic cell death. Moreover, we
showed that single pharmacological inhibition of ATR (by Ceralasertib) or DNA-PK (by
AZD7648), as well as their combination, did not result in significant DNA damage (even
at a high concentration of 1 µM) as assessed with the comet assay. However, when DNA
damage was induced by ionizing radiation, repair mechanics were strongly retarded. In
our experiment, the dual treatment of SCaBER cells with DNA-PKi and ATRi caused the
strongest repression of DNA repair mechanisms. Consistent with these data, we confirmed
increased apoptosis in SCaBER cells treated with both drugs. The lack of DNA damage
by inhibitor exposure alone highlighted that these molecules would be unlikely to cause
harm to cells, especially at even lower concentrations, thus potentially making them safe
to use with respect to their ability to cause DNA damage, perhaps even as intravesical
therapy. The ionizing radiation-induced damage and the resulting retardation of repair due
to the inhibitors essentially provides a targeted approach to increase genomic instability in
tumor cells. With reduced options to compensate for the missing DNA repair mechanisms,
this then eventually leads to cell death. This notion was further supported by our normal
UROtsa model, since these normal cells were much more resistant to ATRi and DNA-PKi
at high IR doses, suggesting putative compensatory pathways allowing bypassing of ATR
and DNA-PK inhibition.

However, the targeted retardation of DNA damage repair itself does not guarantee
cellular death. Therefore, we used short-term and long-term assays to determine if the
observed damage would eventually result in a radiosensitizing effect. The initial choice
of using a metabolic assay (XTT) was used to determine the IC50 value of each drug and
to assess a potential synergistic effect of combining each inhibitor with ionizing radiation.
The general trend of lower IC50 values with increasing radiation doses was expected and
observed with a few exceptions. An 8 Gy of IR dose shifted the IC50 to 6.99 µM for the
SCaBER cell line and a similar event was found also for the J82 cell line where the 8 Gy dose
also shifted the IC50 value to 1.98 µM. We could not explain this phenomenon; however, the
data could point to a mechanism that results in an observation of radioresistance, which
leads to prolonged cell survival in a short-term observation setting.

Using a long-term colony formation assay, we showed that nano-molar concentrations
of AZD7648 and Ceralasertib resulted in a lower clonogenic survival after 14 days across
all three cell lines. Low IR doses (2–4 Gy) effectively killed cells, while a complete death
of colonies was achieved at higher IR doses (6–8 Gy). Across all three cell lines, AZD7648
alone was equally effective in reducing the number of surviving colonies compared to dual
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drug treatments. However, this data must be interpreted in the context of the concentration
used for single (250 nM) and dual treatments (125 nM of each). Based on our data, we
observed that DNA-PK inhibition with AZD7648 was more effective than ATR inhibition.
Currently, it is not clear why AZD7648 was more effective in killing cells, even though we
observed much more pronounced repair retardation kinetics in the case of Ceralasertib
from the comet assay. An explanation could be that a slower repair process alone does not
automatically imply insufficient repair, i.e., genetic instability. The recent report from Hafsi
and colleagues demonstrated that combining Ceralasertib (AZD6738) and KU-0060638
(DNA-PKi) at 125 nM had a stronger radiosensitization effect than either drug individually
at 250 nM. In contrast, our data from the clonogenic assays did not show an additive effect
for all three cell lines. We observed higher killing effectiveness when both inhibitors were
combined with IR in the case of VMCUB-1 but not for SCaBER and J82. However, this
should also be interpreted in the context of the drug dosing.

Synergistic outcomes of dual drug treatment were further evaluated by calculating CI
values in a short-term XTT assay-based setting. Combined DNA-PKi and ATRi treatment
showed an unambiguous synergism for all tested combinations in SCaBER and J82 cells
upon specific IR doses (SCaBER: 8Gy and J82: 2Gy). In addition, a drug concentration-
dependent antagonism has been shown in VMCUB-1. Since synergisms are thought to
be a physicochemical mass-action law issue of the drug-protein interaction [45], different
affinities of both drugs to their targets may foster the concentration-dependent outcomes.
Thus, not every combination is necessarily useful. In turn, antagonisms of combined DNA-
PKi and ATRi treatment could be understood in a mechanistic context since dose-dependent
interactions between ATM, ATR and DNA-PKcs have been found for two key aspects of the
DNA damage response: DSB end-resection and G2-checkpoint activation [15,26]. Mladenov
and colleagues recently demonstrated that ATM and ATR epistatically regulate resection at
low IR doses associated with low DSB-numbers in the genome, i.e., inhibition of either ATR
or ATM activity fully suppresses DNA repair. At high IR doses inducing high amounts of
DSBs, the tight ATM/ATR coupling relaxes while DNA-PKcs integrates with the ATM/ATR
module by regulating resection at all IR doses. Hence, the underlying mechanisms of the
observed time-, drug-dose- and IR-dose-dependent synergistic and antagonistic effects of
single and dual treatment seem complex and require in-depth study in the future. Another
recent publication from the group discusses the interaction of DNA-PK, ATM and ATR with
respect to the IR dose and cell cycle phases [25]. They state that all three integrate together
in response to the amount of DNA damage caused by IR depending on the state of the
cell cycle. Another aspect to consider is the intrinsic dysregulation of DDR pathways due
to mutated DDR genes. We could not exclude the possibility that the presence of a single
mutated PRKDC allele in SCaBER or J82 cells may affect the pharmacological inhibition
(also the pharmacodynamics) of the c-NHEJ main mediator DNA-PK. Although we do not
know the functional significance of the identified PRKDC mutations, an amino acid shift
in J82 cells at the PI3_PI4 kinase domain (p.G3904S) close to the predicted binding site of
AZD7648 (Leu3751, Arg3737, Trp3805, Leu3806, Asn3926, and Ile3938) [32] might diminish
the affinity of drug-target interactions.

5. Conclusions

Our data revealed an effective radiosensitization of invasive bladder cancer cells of
various subtypes, including SCC-like, by individual and dual DNA-PK and ATR inhibition.
Since squamous bladder cancers have been associated with poor response to chemother-
apy [46], radiation-based therapies combined with DDR inhibition might be a promising
approach for future strategies to reduce applied drug and IR doses, thus helping to pre-
vent cytotoxic and radiotherapeutic adverse effects for BC patients. Bearing in mind that
bladder cancers are characterized by frequent genetic [44] and epigenetic alterations [47] in
genes of DDR pathways potentially making cancer cells vulnerable to DDRi treatment in
general (e.g., [48]), synthetic lethality approaches [49] may evolve in clinical practice. Thus,
the individual molecular background of bladder cancer patients, including biallelic ATR
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or PRKDC deficiencies, should be considered in future studies, which may finally allow
treatment of patients with a single drug but with comparable efficacy of tumor cell lethality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10061277/s1, Figure S1: IC50 values of ATR and
DNA-PK inhibitors with and without ionizing radiation of normal urothelial cells. Figure S2: Comet
assay is illustrated to assess radiation-induced DNA damage upon different radiation doses (2 Gy and
8 Gy). Figure S3: Phospho-western blots of ATR activation upon irradiation. Figure S4: Densitometric
quantification of western blot-based protein expression and activation (ATR and DNA-PK). Table S1:
Detailed information of TP53 mutations found in SCaBER, VMCUB-1 and J82 cells.
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