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Abstract: Zika virus (ZIKV) is a mosquito-borne flavivirus associated with a febrile illness as well as
severe complications, including microcephaly and Guillain-Barré Syndrome. Antibody cross-reactivity
between flaviviruses has been documented, and in regions where ZIKV is circulating, dengue virus
(DENV) is also endemic, leaving the potential that previous exposure to DENV could alter clinical
features of ZIKV infection. To investigate this, we performed a retrospective case-control study in
which we compared Canadian travellers who had been infected with ZIKV and had serological
findings indicating previous DENV or other flavivirus exposure (n = 16) to those without any previous
exposure (n = 44). Patient samples were collected between February 2016 and September 2017 and
submitted to Public Health Ontario for testing. ZIKV infection was determined using real-time
RT-PCR and antibodies against DENV were identified by the plaque-reduction neutralization test.
The mean time from symptom onset to sample collection was 5 days for both groups; the magnitude
of viremia was not statistically different (Ct values: 35.6 vs. 34.9, p-value = 0.2). Clinical scores were
also similar. Our findings indicate that previous DENV or other flavivirus exposure did not result in
greater viremia or a higher illness score.
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1. Introduction

Zika virus (ZIKV) is a mosquito-borne flavivirus spread primarily by the Aedes spp., and is
a significant public health concern [1]. According to data from WHO, as of March 2018 there
were 71 countries that reported introduction, re-introduction or ongoing transmission of the virus
(www.who.int). In November 2018, an outbreak has been reported in India, highlighting the ongoing
threat posed by this virus [2]. Moreover, in regions where ZIKV has been reported there are other
vector-borne flaviviruses that are also endemic, most notably dengue virus (DENV), likely due to these
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viruses utilizing the same mosquito species as vectors [3]. Consequently, it has been suggested that
previous exposure to DENV may increase the severity of subsequent ZIKV infection [4]. A potential
mechanism could be the presence of cross-reactive antibodies against DENV that may result in
antibody-dependent enhancement (ADE). In heterotypic DENV infections, this process results in
more severe disease due to high concentrations of antibodies that bind, but do not neutralize the
virus [5]. It has been hypothesized that ADE causes increased ZIKV replication and possibly more
severe disease [4,6,7]. It has also been shown that ZIKV induces activation of cross-reactive B-cells in
individuals who were previously exposed to DENV [8].

Experiments involving animal models of ZIKV infection have also supported this observation.
Notably, Bardina and colleagues demonstrated an increase in mortality in ZIKV-infected Stat2-knockout
mice that had been pre-treated with DENV-immune plasma [9]. Interestingly, prior exposure to ZIKV
in non-human primates also resulted in higher peak viremia following DENV infection, and the serum
from these animals demonstrated ADE of DENV in vitro [10]. However, other studies, using different
mice strains, and in non-human primates that had been infected first with DENV, and then followed
by a ZIKV challenge, have reported conflicting findings [11,12]. While informative, all studies are
limited by the use of laboratory-passaged strains, non-natural hosts (in the case of mouse studies) and
an artificial route of infection. It has been well established that re-infection with a different serotype
of DENV results in ADE [5]. Collectively, there have been conflicting findings that have suggested
that antibodies against DENV can cause ADE during ZIKV infection [13], or alternatively that these
antibodies neutralize ZIKV, and may even confer protection [7]. Therefore, it remains unclear if
previous DENV exposure is associated with a change in ZIKV disease severity or viral replication.
This study investigated the relative viral load as well as the number, and severity of reported symptoms
in ZIKV-positive patients with serological evidence of previous DENV or other flavivirus exposure
compared to ZIKV-positive patients with no serological evidence of previous exposure.

2. Materials and Methods

2.1. Study Design

A retrospective case control study was performed on samples collected from symptomatic patients
from July 2016 to September 2017. This was performed by Public Health Ontario (PHO) Laboratory,
Ontario’s reference microbiology laboratory (Toronto, ON, Canada), together with Canada’s National
Microbiology Laboratory (NML), Winnipeg, as these organizations were involved in diagnosing
ZIKV in returning travelers from regions where the virus was circulating during the ZIKV epidemic,
who presented to a healthcare provider in Ontario.

Detection of ZIKV RNA using the Altona RealStar® RT-PCR assay (Altona Diagnostics, Toronto,
ON, Canada) was considered as a definitive diagnosis of ZIKV [14]. In this cohort, 60 patients
were confirmed to have ZIKV infection by real-time RT-PCR and also had both ZIKV and DENV
plaque-reduction neutralization test (PRNT) assay performed by the NML. Sixteen (26.6%) of the 60,
who had serological evidence of previous DENV or other flavivirus exposure, were compared to 44
(73.3%) patients with no serological evidence of DENV or other flavivirus exposure.

A patient was considered to have previous exposure based on the results of their PRNT assays,
in accordance with the CDC diagnostic guidelines described by Rabe et al. [15]. Patient demographic
and syndromic data were collected using a pre-test screening form and all samples were anonymized.
For disease severity a Zika illness score was developed where each reported symptom was given one
point, and the sum of these points represented the score for the patient. This work was conducted
on de-identified specimens submitted as part of routine clinical testing; hence, ethics approval was
not required.
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2.2. Virus and Antibody Detection

Detection of anti-ZIKV IgM antibodies was performed using the CDC ZIKV MAC-ELISA,
an IgM-antibody capture assay, and ZIKV RNA detection in serum was performed using the Altona
RealStar® RT-PCR, as described previously [16]. To test for DENV and chikungunya virus (CHKV)
RNA, we adapted the assay previously described by Pongsiri and colleagues [17]. The plaque reduction
neutralization test (PRNT) was performed on all patient samples. The PRNTs were performed in the
manner described previously using the viral strains Puerto Rico and DENV-2 New Guinea C [16,18].
Briefly, various dilutions of patient sera were tested with 100 PFU per well. After a 1-h incubation
at 37 ◦C, the mixtures of virus and patient sera were added to the plates containing monolayers of
Vero cells. Following this, double overlays of nutrient agar with neutral red were added to the plates
to visualize plaque formation over a 3-day period. The dilutions of sera were started at a screening
dilution of 20-fold and progressed in a 2-fold pattern. A 90% or greater inhibition of plaque formation
was documented as the endpoint dilution/titer [15]. Patients were considered negative for DENV
exposure if their PRNT value was zero.

2.3. Statistical Analysis

T-tests were performed using SAS (SAS Institute, Cary, NC, USA). Due to insufficient evidence
of unequal variances a pooled 95% confidence interval was used for both Ct values and symptoms.
Statistical analysis was performed using SAS University Edition. Figures were generated using
Graphpad prism version 6.0.

3. Results

3.1. Cohort Description

The complete description of the cohort is summarized in Table 1. All 60 patients included in this
study were travelers to countries in the Caribbean and South America where ZIKV was circulating
during the Zika virus epidemic, and ZIKV infection was confirmed by RT-PCR. There were 16 patients
with detectable, PRNT-confirmed antibodies against DENV (Table 2), and 44 patients with no serological
evidence of DENV exposure, as determined by both plaque-reduction neutralization testing, with a
subset also undergoing ELISA testing. Specific serological testing results for other flaviviruses were
not available.

Table 1. Characteristics of Zika virus (ZIKV)-positive patient cohorts.

DENV PRNT Reactive
(n = 16)

DENV PRNT Non-Reactive
(n = 44)

Mean age (yrs) 51.9 43
Median age (yrs) 52.5 44
Age range (yrs) 33–88 18–75

% Female 62.5% (n = 10) 50% (n = 22)
Mean number of days of travel (days) 15 (range 7–33) 11 (range 0–37)
Mean time from last day of travel to

symptom onset (days) 3 (range 0–9) 1 (range −8–9)

Mean period from symptom onset to
specimen collection (days) 5 (range 0–12) 5 (range 1–13)

ZIKV IgM reactive 87.5% (n = 14) 97% (n = 43)
DENV PRNT positive 100% (n = 16) 0% ∆

% tested for acute DENV * 68% (n = 11) 57% (n = 25)
% tested for acute CHKV * 63% (n = 10) 52% (n = 23)

* Patients were tested by RT-PCR or IgM ELISA. No positives were detected amongst tested patients. ∆ All patients
were tested.
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Table 2. Plaque-Reduction Neutralization Titers of patients with serological evidence of previous
exposure to flaviviruses, including DENV.

Patient ZIKA
PRNT

DENV
PRNT

Fold
Difference Interpretation ∆

1 0 1:20 N/A Previous dengue virus exposure
2 1:160 1:40 0.25 Flavivirus infection, specific virus cannot be identified
3 1:20 1:40 2 Flavivirus infection, specific virus cannot be identified
4 1:20 1:80 4 Flavivirus infection, specific virus cannot be identified
5 1:40 1:160 4 Flavivirus infection, specific virus cannot be identified
6 1:20 1:160 4 Flavivirus infection, specific virus cannot be identified
7 1:40 1:160 4 Flavivirus infection, specific virus cannot be identified
8 1:320 1:320 1 Flavivirus infection, specific virus cannot be identified
9 1:40 1:1280 32 Flavivirus infection, specific virus cannot be identified

10 0 >1:40 4 Previous dengue virus exposure
11 0 >1:40 4 Previous dengue virus exposure
12 0 >1:40 4 Previous dengue virus exposure
13 0 >1:40 4 Previous dengue virus exposure
14 0 >1:40 4 Previous dengue virus exposure
15 0 >1:40 4 Previous dengue virus exposure
16 1:40 >1:640 16 Flavivirus infection, specific virus cannot be identified

∆ Interpretation is based on CDC diagnostic criteria [15]

In both groups, Jamaica was the most frequently visited country, although several other countries
were visited, all of which were in the Caribbean or South America. The mean (51.3 years vs. 43 years)
and median ages (52.5 vs. 44 years) were slightly higher in the cohort of patients with DENV exposure
(p = 0.03). Notably, the average length of stay differed between the two groups (15 days vs. 11 days);
however, this failed to achieve statistical significance (p = 0.051). This variation could reflect that
differences in reason for travel for the two groups. It is possible that individuals with previous DENV
or flavivirus exposure may have been returning to visit friends and relatives, spending longer in the
ZIKV epidemic area. However, this information was not reported to our laboratory. Symptoms upon
presentation to a healthcare provider (HCP) were reported for all patients; the mean time between
symptom onset and sample collection was identical for both groups (5 days). Interestingly, while in
both groups the majority had detectable ZIKV IgM (Table 1), it was not detectable in all individuals.
For both groups, travel history to other regions where flaviviruses were endemic, or vaccination status
against yellow fever virus or Japanese encephalitis virus could not be determined.

3.2. Relative Magnitude of Viremia

Viremia has been associated with more severe clinical disease for many viruses [19]. As noted in
Table 1, the mean time between symptom onset and sample collection was similar for both groups.
This was important as it is known that ZIKV viremia decreases over the course of disease [20,21].
Viremia was determined in each group using the Altona ZIKV PCR assay [16], and as shown in Figure 1,
Ct values (35.87 vs. 35.14, p = 0.2050) and PFU equivalents (p = 0.11) were similar between both groups.
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Figure 1. Relative magnitude of viremia and disease severity. (A) ZIKV RNA Ct values as a measure 
of viremia in patients who were DENV PRNT negative (black circles) and those with evidence of 
DENV or flavivirus exposure, based on DENV PRNT (black squares). The lines represent the mean 
and error bars represent standard deviation. (B) PFU equivalents as in interpolated from Ct values. 
The bars represent the means, and error bars represent standard deviation. (C)Mean Zika illness score 
for patients. The total number of symptoms for patients with (grey bars) or without (black bars) 
previous serological evidence of DENV exposure was determined and used to generate a disease 
severity score. The error bars represent standard deviation. Additionally, as shown in Table 1, the 
majority of patients were tested for the presence of DENV and CHKV IgM and/or RNA. Overall, this 
suggests that viremia did not differ between the two groups. 

3.3. Clinical Presentation 

Both cohorts had a similar range of symptoms, with rash being most commonly (93.7%) reported 
in both groups (Table 3). Fever and arthralgia were also reported at approximately similar 
frequencies. Anorexia, nausea and vomiting were not noted in either group. Interestingly, respiratory 
symptoms were reported in a small subset of each group, and while this has been reported before in 
patients infected with ZIKV [22], we cannot rule out that these individuals had a co-infection with a 
respiratory virus. In terms of total number of symptoms reported, individuals with serological 
evidence of DENV exposure had an average symptom score of 3.7, compared to 3.4 in patients who 
had only been infected with ZIKV (Figure 1). There was no significant difference in mean number of 
symptoms (p = 0.3949). Overall, this suggests that the initial severity of infection did not differ 
between the two groups. 

Table 3. Summary of clinical symptoms reported at presentation. 

 DENV or flavivirus exposure (n = 16) No exposure (n = 44) 
ACHES 18.7% (n = 3) 2.3% (n = 1) 

ANOREXIA 0% (n = 0) 2.3% (n = 1) 
ARTHRALGIA 56.3% (n = 9) 43.2% (n = 19) 

CHILLS 12.5% (n = 2) 4.5% (n = 2) 
CUNJUNCTIVITIS 31.3% (n = 5) 20.5% (n = 9) 

FATIGUE 25% (n = 4) 15.9% (n = 7) 
FEVER 43.8% (n = 7) 61.4% (n = 27) 

GASTROENTERITIS 6.3% (n = 1) 6.8% (n = 3) 
HEADACHE 37.5% (n = 6) 31.8% (n = 14) 

LYMPHADENITIS 6.3% (n = 1) 9% (n = 4) 
MALAISE 6.3% (n = 1) 2.3% (n = 1) 

Figure 1. Relative magnitude of viremia and disease severity. (A) ZIKV RNA Ct values as a measure of
viremia in patients who were DENV PRNT negative (black circles) and those with evidence of DENV
or flavivirus exposure, based on DENV PRNT (black squares). The lines represent the mean and error
bars represent standard deviation. (B) PFU equivalents as in interpolated from Ct values. The bars
represent the means, and error bars represent standard deviation. (C)Mean Zika illness score for
patients. The total number of symptoms for patients with (grey bars) or without (black bars) previous
serological evidence of DENV exposure was determined and used to generate a disease severity score.
The error bars represent standard deviation. Additionally, as shown in Table 1, the majority of patients
were tested for the presence of DENV and CHKV IgM and/or RNA. Overall, this suggests that viremia
did not differ between the two groups.

3.3. Clinical Presentation

Both cohorts had a similar range of symptoms, with rash being most commonly (93.7%) reported
in both groups (Table 3). Fever and arthralgia were also reported at approximately similar frequencies.
Anorexia, nausea and vomiting were not noted in either group. Interestingly, respiratory symptoms
were reported in a small subset of each group, and while this has been reported before in patients
infected with ZIKV [22], we cannot rule out that these individuals had a co-infection with a respiratory
virus. In terms of total number of symptoms reported, individuals with serological evidence of DENV
exposure had an average symptom score of 3.7, compared to 3.4 in patients who had only been infected
with ZIKV (Figure 1). There was no significant difference in mean number of symptoms (p = 0.3949).
Overall, this suggests that the initial severity of infection did not differ between the two groups.
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Table 3. Summary of clinical symptoms reported at presentation.

DENV or Flavivirus Exposure
(n = 16)

No Exposure
(n = 44)

ACHES 18.7% (n = 3) 2.3% (n = 1)
ANOREXIA 0% (n = 0) 2.3% (n = 1)

ARTHRALGIA 56.3% (n = 9) 43.2% (n = 19)
CHILLS 12.5% (n = 2) 4.5% (n = 2)

CUNJUNCTIVITIS 31.3% (n = 5) 20.5% (n = 9)
FATIGUE 25% (n = 4) 15.9% (n = 7)

FEVER 43.8% (n = 7) 61.4% (n = 27)
GASTROENTERITIS 6.3% (n = 1) 6.8% (n = 3)

HEADACHE 37.5% (n = 6) 31.8% (n = 14)
LYMPHADENITIS 6.3% (n = 1) 9% (n = 4)

MALAISE 6.3% (n = 1) 2.3% (n = 1)
MYALGIA 25% (n = 4) 25% (n = 11)

NAUSEA/VOMITING 6.3% (n = 1) 4.5% (n = 2)
NEUROLOGICAL 0% 6.8% (n = 3)

WEAKNESS 0% 2.3% (n = 1)
RESP. SYMPTOMS 31.3% (n = 5) 9.1% (n = 4)

RASH 93.7% (n = 15) 93.7% (n = 41)
OTHER 12.5% (n = 2) 2.3% (n = 1)

4. Discussion

Despite the fact that ZIKV was first described over 70 years ago [23,24], there is still much that
remains to be understood regarding pathogenesis. There is increasing interest in investigating the
effect of previous flavivirus exposure on ZIKV pathogenesis, and our data support the studies reported
from patients in endemic areas [25,26]. Bernardes-Terzian and colleagues also failed to find an increase
in ZIKV viremia in Brazilian patients who had serological evidence of previous dengue infection.
Additionally, analysis of cytokines noted only modest differences, suggesting disease pathogenesis
would be similar. A limitation of their study was the fact that it was done amongst patients from an
epidemic area, and the authors did not perform PRNT assays, thereby making it difficult to determine
if the antibodies detected in patients were due to DENV or ZIKV [25]. In our cohort, exposure was
determined by PRNT, and thus we could more confidently determine who had previous exposure
to DENV, although it should be noted that exposure to other flaviviruses could not be entirely ruled
out. Additionally, a more recent study by Santiago and colleagues also reported no increase in viral
load associated with serostatus [26]. The symptoms associated with ZIKV have been well defined,
with rash, fever, arthralgia and conjunctivitis being commonly reported [27]. We did not find significant
difference in the number of symptoms reported between the two groups, which is in agreement
with Bernardes-Terzian and colleagues [25]. Similarly, it has been shown in pregnant mothers who
were infected with ZIKV that prior DENV exposure did not correlate with clinical severity, nor with
abnormal birth outcomes, and one study has suggested that prior DENV exposure may even provide
protection [28,29]. Additionally, the ZIKV epidemic has not altered the downward trend in DENV
severity and mortality that has been reported, further suggesting that exposure to one virus does not
result in more severe disease due to the other [4]. Moreover, although co-infection with both viruses
has not been frequently reported, in reports or case-series where it has been, an increase in disease
severity has not been noted [30].

There are several limitations to our study. One limitation is the potential for cross-reactivity among
flaviviruses, which may confound DENV PRNT—the extent to which this occurred in our cohort could
not be determined and is a challenge for all flavivirus serological studies. While collecting baseline
serologies would be ideal, this is too logistically challenging in our cohort, but may be considered
for future studies. Moreover, it has been suggested that PRNT interpretation criteria may need to be
adjusted for DENV-endemic areas [31], and how this should be taken into account for extended travel
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to a region should also be investigated. Since follow up of patients was not possible it cannot be ruled
out that their course of disease lasted longer, or that viral shedding or persistence may have differed
between groups. Moreover, as the testing was performed at a reference laboratory, we were unable
to compare biochemical or hematological profiles between the two groups and did not have direct
interaction with the patient. This also limits our ability to ask follow-up questions regarding symptoms
that may not have been included in the requisition form. As an example, it has been suggested that
yellow fever vaccination may provide moderate protection against ZIKV [32]. While it is part of the
standard questionnaire for sample submission, whether or not the patients in either group had received
this vaccine, or had documented infection with yellow fever virus may not always have been asked by
the health-care provider, although it could be a potential confounding factor. Furthermore, it is not
possible to determine if the individual had travelled previously to regions where other flaviviruses
(e.g., Spondweni, Kedougou) are endemic, which could also confound results.

Additionally, our data cannot determine whether previous exposure to DENV or other flaviviruses
increased or decreased the likelihood of a patient being asymptomatic following ZIKV exposure.
Interestingly, recent studies comparing naïve-NHPs to DENV exposed-NHPs, both groups being
challenged with ZIKV virus showed comparable number of asymptomatic animals [33]. Larger
cohort studies investigating population serologies must be pursued to investigate this in humans.
Additionally, it must be considered that the time between DENV exposure and subsequent ZIKV
exposure may also play a role in viremia and disease severity, as has been shown with repeated DENV
infections [34].

Collectively, our findings add to the evidence that prior flavivirus exposure does not result in
more severe ZIKV infection. This is important in the context of vaccination as understanding the
role of pre-existing immunity to related viruses can influence vaccine design and implementation.
Additionally, it has important clinical and public health implications in regions where the virus is
circulating, and for travelers to those areas.
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