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Network neuroscience is the emerging discipline concerned with investigating

the complex patterns of interconnections found in neural systems, and iden-

tifying principles with which to understand them. Within this discipline,

one particularly powerful approach is network generative modelling, in

which wiring rules are algorithmically implemented to produce synthetic

network architectures with the same properties as observed in empirical net-

work data. Successful models can highlight the principles by which a

network is organized and potentially uncover the mechanisms by which it

grows and develops. Here, we review the prospects and promise of genera-

tive models for network neuroscience. We begin with a primer on network

generative models, with a discussion of compressibility and predictability,

and utility in intuiting mechanisms, followed by a short history on their

use in network science, broadly. We then discuss generative models in

practice and application, paying particular attention to the critical need for

cross-validation. Next, we review generative models of biological neural net-

works, both at the cellular and large-scale level, and across a variety of

species including Caenorhabditis elegans, Drosophila, mouse, rat, cat, macaque

and human. We offer a careful treatment of a few relevant distinctions,

including differences between generative models and null models, suffi-

ciency and redundancy, inferring and claiming mechanism, and functional

and structural connectivity. We close with a discussion of future directions,

outlining exciting frontiers both in empirical data collection efforts as well as

in method and theory development that, together, further the utility of the

generative network modelling approach for network neuroscience.
1. Introduction
Many complex systems are composed of elements that interact dyadically with

one another and can therefore be represented as graphs (networks) composed

of nodes interconnected by edges. The network framework can be applied to sys-

tems across a range of disciplines, from sociology and psychology to molecular

biology and genomics, making it possible to leverage a common mathematical

language and set of analytic tools to investigate the topological organization of

systems that, outwardly, might appear dissimilar to one another [1].

In neuroscience, network-based analyses have become common. This is due

in part to initiatives for sharing large, multimodal neuroimaging datasets [2,3],

the availability of easy-to-use software packages for computing graph-theoretic

metrics [4,5], and the fact that networks are natural vehicles for representing

and analysing complex spatio-temporal interactions among neural elements,

including neurons, populations and brain areas [6].

Though the scope of topics studied in network neuroscience is broad, the

typical study involves characterizing the structure of a network with a series

of summary statistics. Each statistic describes a particular feature of the net-

work, ranging from simple to complex and operating over all topological scales.

For example, degree is a local (node-level) property that simply counts a node’s
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total number of incoming and outgoing connections. On the

other hand, characteristic path length is a global (whole-network)

measure of the average length of all pairwise shortest paths.

In general, summary statistics offer succinct descriptions of a

network’s organizational features, especially those that are not

immediately apparent given a network’s list of nodes and edges.

The application of summary statistics to better understand

the structure and function of biological neural networks has

been fruitful. Over a decade or so, evidence from networks

across different organisms and spatial scales [7] has converged

onto a small set of properties and summary statistics that, collec-

tively, can be used to describe the organization of most biological

neural networks. These include indices of small-worldness [8],

heavy-tailed degree and edge-weight distributions [9,10], a

diverse meso-scale structure that includes segregated modules

but also core–periphery structure [11–13], hubs and rich clubs

[14,15], and economic spatial layouts favouring the formation

of short-range (low-cost) connections [16,17]. Further, such

core organizational principles also include functional con-

straints, like the need to balance properties that support either

segregated or integrated brain function [18], but also emphasize

the trade-off between the cost of such properties and their func-

tionality [19]. These properties, collectively, create a caricature of

neural system organization and function.

While illuminating, the process of describing networks in

terms of their topological properties amounts to an exercise

in ‘fact collecting’. Though summary statistics might be

useful for comparing individuals [20] and as biomarkers of

disease [21], they offer limited insight into the mechanisms

by which a network functions, grows, and evolves. Arguably,

one of the overarching goals of neuroscience (and biology, in

general) is to manipulate or perturb networks in targeted

and deliberate ways that result in repeatable and predictable

outcomes [22]. For network neuroscience to take steps towards

addressing this goal, it must shift its current emphasis bey-

ond network taxonomy—i.e. studying subtle individual- or

population-level differences in summary statistics—towards a

science of mechanisms and processes [23,24].

While there exist many methodological approaches for

seeking mechanisms in networks and a range of spatial, topo-

logical and temporal scales at which those methods can be

deployed [25], the focus of this article is on network genera-

tive modelling. Network generative modelling is a flexible

framework for generating synthetic networks from a set of

parametrized wiring rules. Generative models figure promi-

nently in the network science canon [26–29], and have

recently been deployed in domain-specific scenarios to

study the evolution of protein interaction networks [30–32],

the worldwide web [33], and social systems [34]. Importantly,

and provided that the wiring rule is sufficiently informed

and biologically grounded, generative models can be used

to test and identify potential mechanisms that underlie the

growth and evolution of biological neural networks. With

mechanisms in hand, it becomes possible to distinguish the

topological features that drive a network’s growth from

those that emerge as mere byproducts [35], and to pursue

deliberate and targeted interventions [36,37].

In the following sections, we present a primer on network

generative models, highlighting their past use, their interpret-

ation and several open methodological considerations. We

review current applications of generative models to neural

systems, emphasizing several outstanding questions and

implementation details. Finally, we plot a course for future
studies. While our review discusses generative models of bio-

logical neural networks, in general, we focus our discussions

on structural networks that represent the physical pathways

among neural elements—e.g. synapses, axonal projections

and white-matter fibre bundles.
2. Generative models: a primer
This article deals with the topic of generative models.

Broadly, a generative model is a statistical process that out-

puts a synthetic set of data or observations. Usually, these

synthetic data and the generative process are designed to

have some properties in common with empirical data and

with the process believed to have generated those data. Gen-

erative models are often parametrized, and those parameters

can be chosen so as to minimize the discrepancy between

observed and synthetic data. The models, themselves, can

be compared against one another using standard model com-

parison techniques, including goodness-of-fit criteria and

cross-validation approaches.

In the context of network science, generative models rep-

resent algorithmically implemented wiring rules or causal

processes that output synthetic networks with a particular

set of topological properties or that perform a particular set

of functions. While a network’s nodes and edges encode all

of its structural properties, studying generative models

shifts focus away from those structural properties and instead

onto wiring rules and the process of network formation. This

shift in emphasis confers a number of distinct advantages:

(1) Generative models compress our descriptions of net-

works and highlight regularities in their organization.

(2) They make predictions about out-of-sample and unob-

served network data.

(3) Under the best circumstances, generative models can

uncover network mechanisms.

We discuss these topics in greater detail throughout the

following subsections.

2.1. Compressibility of networks
Generative models compress our descriptions of a network,

encoding the network’s topology in a set of wiring rules and

parameters. Naively, we could describe a network exactly

given a list of its nodes and edges: that is, by consulting the

list, we could correctly connect nodes that are supposed to be

connected and avoid connecting nodes that are not supposed

to be connected. However, connections in many networks are

not independent of one another, but instead exhibit statistical

regularities such that, given the wiring rule that matches

those regularities, we could predict the presence/absence of

connections ahead of time. In this case, it becomes unnecessary

to consult the list of nodes and edges to describe the network.

More importantly, we can often interpret the wiring rule itself

to uncover the network’s organizing principles.

As an example, consider real-world spatial networks,

where the probability of observing an edge between two

nodes decays as a function of distance [38]. Often, these

kinds of networks can be well approximated by a simple geo-

metric model whose wiring rule mimics the network’s

distance-dependent connection formation [39]. To perfectly

describe a spatial network, we could generate a long and
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possibly unwieldy list of its nodes and edges. However, if the

geometric model is a good approximation, e.g. synthetic net-

works generated by the model recapitulate many observed

edges, then the model can be used to replace those edges in

the list, effectively shortening our description of the network.

The geometric model naturally mimics the distance depen-

dencies of the spatial network. For many networks, however,

the statistical regularities among links may not be obvious,

in which case selecting the appropriate model may not be

straightforward. We discuss this issue of model selection

later in this section.

2.2. Predictability
Besides compressing our descriptions of a network, generative

models also have predictive capacity and can be used as for-

ward models of unobserved and out-of-sample data.

Returning to the example of spatial networks, we might

hypothesize the relevance of a generative model in which the

probability of connection formation is given by a decaying

exponential. If we let Aij [ f0, 1g indicate the presence or

absence of an edge between nodes i and j, we can write this

connection probability as: P(Aij ¼ 1)/ exp (�b �Dij), where

Dij is the distance between nodes i and j and b � 0 is a par-

ameter to be fit [40]. If we were given a network G, we

could fit the parameter b so that the discrepancy between syn-

thetic networks generated by the model and G is minimized.

Having fit the model, we could use it to make predictions

about a second network, G
0
, whose connectivity pattern is

unknown but whose nodes’ spatial locations are given.

As another example, consider the stochastic blockmodel

[27,41], in which nodes are assigned membership to one of

K communities, zi [ f1, . . ., Kg, and where the probability of

two nodes, i and j, being connected to one another depends

only on their community assignments: P(Aij ¼ 1)¼ vzi,zj
(v is

a K � K matrix that encodes community-to-community con-

nection probabilities). Fitting this model to a network G entails

inferring nodes’ communities and connection probabilities. If

we encountered a second network, G
0
, with an unknown con-

nectivity pattern but whose nodes correspond to those in G,

e.g. the same set of neurons or brain regions, then we could

use the model to predict the configuration of nodes and

edges in that network.

2.3. Mechanisms
Finally, provided that it incorporates sufficient system-

specific details (in our case, neurobiological information), a

generative model can be used to gain insight into the mech-

anisms that guide the formation and growth of a system.

This last point is critical. A generative model, under ideal cir-

cumstances, is a recipe for building a network. Having such a

recipe opens new avenues for interrogating a network. It

allows us to identify structural features of a network that

emerge as a direct result of the wiring rule, versus those

that emerge spontaneously as a consequence of constraints

imposed by a given wiring rule [35]. For example, a geo-

metric model will generate networks with high levels of

clustering even though the wiring rule never explicitly opti-

mizes for this property. Importantly, a recipe for building a

network also gives us the ability to explore alternative ingre-

dients. What happens if we change a parameter slightly?

Does the model generate networks of vastly different charac-

ter? Can we control the trajectory of a network’s growth and
guide it into a desired target configuration [42]? The ability to

selectively drive the growth of a network is a tantalizing pro-

spect, and one with profound implications for the treatment

of psychiatric disease and neurological disorders.
2.4. Canonical generative models for networks
Before engaging neuroscience-specific questions, it is useful

to discuss examples of generative models as they have been

applied in network science and other fields. In the remainder

of this section we review some canonical generative models,

emphasizing the properties that they share with one another

as well as those that make them distinct. While the models

discussed in this section certainly fit the definition of

generative models, we emphasize that the space of all

possible models is broad and includes models that share

few characteristics with those discussed here.

Generative models have a long history in network science

and mathematics. One of the earliest examples is the so-called

Erdó́s-Rényi (ER) model [26], in which connections are

formed independently between pairs of N nodes with prob-

ability P (another version exists where, instead of P, a fixed

number of edges, M, are added uniformly at random).

While the ER model has interesting combinatoric and math-

ematical properties, e.g. binomially distributed node degree

[43], it is a poor approximation of most real-world networks.

That is, the random and independent process by which con-

nections are formed in the ER model results in networks with

no real structure (poor compressibility) and does not

resemble any of the mechanisms by which many real-world

networks grow. Accordingly, if we wish to model networks

in the real world, we need a set of models that generate

networks with realistic properties.

Initial explorations into generative models for real-world

data resulted in two models that, collectively, helped spark

broad interest in complex networks. The first, introduced

by Duncan Watts and Steven Strogatz, sought the origin of

empirically observed ‘small world’ topologies, in which a

network simultaneously exhibits greater-than-expected clus-

tering and shorter-than-expected path length [28]. Broadly

speaking, the model supposed that small-world networks

are an interpolation between two extreme configurations: a

ring lattice network (nodes arranged on the circumference

of a circle and linked to their k clockwise and anti-clockwise

neighbours) and an ER network. To move from one extreme

to the other, the authors introduced a tuning parameter, p,

which governed the probability that an edge in the lattice net-

work would be rewired randomly. When p is small, the

model generates networks that have mostly lattice-like prop-

erties, but when p is large, the model generates networks

whose properties are indistinguishable from those produced

by the ER model. Between those extremes, however, is a

‘sweet spot’—a region of parameter space yielding networks

with properties of both extremes, namely high clustering and

short path length. This model is referred to as the Watts–

Strogatz (WS) model.

At around the same time, a second group sought an

explanation for why many real-world networks exhibited

heavy-tailed degree distributions. The proposed model, by

Réka Albert and Albert-László Barabási, was based on a

growth rule [29]. Starting with a small set of fully connected

nodes, the model adds new nodes to the network by forming

connections preferentially to already-existing nodes with
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higher degrees. This growth mechanism is a sort of ‘rich get

richer’ process; nodes that have existed for a long time

accumulate many connections, which further increases their

likelihood of being connected to newly added nodes. The

result of this process is a network with an approximately

power-law degree distribution, mimicking those frequently

observed in real networks [44]. This model is identical to

that defined by Price in 1976 with a single value change

to one parameter [45], and is generally referred to as the

Barabási–Albert (BA) or the preferential attachment (PA) model.

2.5. Generative models in practice and application
The WS and BA models generate synthetic networks with

properties qualitatively similar to those observed in real-

world networks (small-worldness and heavy-tailed degree

distribution). If we wanted to make the similarity of empirical

and synthetic networks quantitative and more precise, how

would we do so? Supposing that a model yields networks

that repeatably and exactly recapitulate all properties of an

empirical network, can we equate the model with mechan-

ism? Both of these questions are difficult to answer, and

represent some of the technical challenges associated with

generative modelling.

2.5.1. Choosing an objective function
We will first address the issue of how to perform quantitative

comparisons between synthetic and empirical networks.

Fortunately, there exists a plurality of approaches for quantitat-

ively comparing networks. The challenge is selecting the

approach that is best suited to a given research question.

Typically, we wish to answer the question of whether an

empirically observed network could have been produced by

some generative model. One strategy for addressing this

question involves defining a likelihood function over the

space of all possible networks, and evaluating that function

for the observed network. Stochastic blockmodels are a

good example of this strategy in action [27,41,46]. The

probability of a connection forming between nodes i and j,
Pij, depends on their community assignments, zi and zj:

P(Aij ¼ 1) ¼ vzi,zj
. The probability that i and j are discon-

nected, is therefore 1 2 Pij and the likelihood that the

observed network was generated by this model is given by

L ¼
Y

i,j.i

PAij

ij (1� Pij)
1�Aij : ð2:1Þ

Blockmodels are convenient in that this likelihood function

can be written in closed form. This approach can be general-

ized for other models—even when the precise likelihood

function is unknown—by generating a sample of networks

from a given step of parameters and estimating, from those

samples, the probability of any connection existing.

This approach is similar to others in the literature [47], in

that it links the model’s fitness with its ability to correctly

account for the empirical network’s exact configuration of

nodes and edges. While this approach seems useful, it is

not difficult to envision scenarios where even near-perfect

prediction of an empirical network’s connections nonetheless

fails to account for some of its critical topological properties.

For example, consider the canonical small-world network—a

ring lattice plus a few random (shortcut) connections that

reduce the network’s characteristic path length. The ring lat-

tice and small-world network have nearly perfect edge
overlap. If we were to regard edge overlap as the definitive

measure of fitness, we might be inclined to treat the lattice

network as a good approximation of the small-world net-

work. In other words, from a strictly structural point of

view, these two networks are almost perfect matches; from

a functional perspective, however, the two networks are

highly dissimilar; because of its longer characteristic path

length, the ring lattice will lack efficient (short) routes that

would be useful for communication or transportation.

Comparing synthetic and empirical networks on the basis

of their edge configuration is useful, but has some shortcom-

ings that motivate the exploration of alternative approaches.

Another approach, and one that has been used in several

recent studies [48,49], eschews the edgewise comparison of

two networks, instead simultaneously comparing them

along several topological dimensions (e.g. their efficiency,

clustering, modularity, etc.), and calculating a statistic of

average dissimilarity. For example, Betzel et al. [49] defined

the energy function E ¼ max (KSK, KSC, KSB, KSE), where

each term is a Kolmogorov–Smirnov statistic comparing

degree (K), clustering (C), betweenness centrality (B) and

edge length (E) distributions of synthetic and observed net-

works [49]. Intuitively, smaller energy implies greater fitness.

This approach is flexible and can be adapted to include

virtually any set of metrics. It is important to note, however,

that many network measures are correlated with one another,

so the choice of which to include should take this into

account. Also, there might be synthetic networks that match

an empirical network in terms of network statistics but not

its precise set of connections. Irrespective of how the objective

function is defined, having one makes it possible to perform

different kinds of comparisons. For a given model, we can

perform model fitting by selecting the parameter values

that optimize the objective function. We can also leverage

an objective function to compare different generative

models to one another. For example, we may wish to dis-

count a model that is incapable of generating networks that

resemble our real-world network of interest.

2.5.2. Cross-validation
Suppose that we fit a generative model by optimizing some

objective function so that the model generates synthetic net-

works that share some set of properties with an empirical

network. As in any model-fitting exercise, we can continue

adding layers of complexity and free parameters to the

model so that it matches our real-world network to some arbi-

trary degree of precision. It is often the case, however, that we

are less interested in predicting the organization of a single

network, but of a class of networks. For example, we might

wish to identify wiring rules that can recapitulate the organiz-

ation of structural brain networks, on average, rather than the

network of any one individual. Even if our aim was to predict

subject-specific networks, it might be unsurprising (in a stat-

istical sense) that our models reproduce many of the features

of those networks; after all, the model’s parameters were

selected only after an optimization procedure.

In both cases (fitting models to empirical network data

based on edge- or property-matching), it is essential that

we perform a cross-validation procedure. This procedure

might entail taking the best-fitting parameters from one

model and using them to generate estimates of a second net-

work not involved in the model-fitting process. We can

compare the goodness-of-fit to that of a random (ER)
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opposite end of the spectrum are ‘single shot’ models, where connection probabilities are initialized early on and all connections and weights are generated in
a single algorithmic step (e.g. stochastic blockmodels). Situated between these two extremes are growth models that exhibit intrinsic timescales over which
connections and/or nodes are added to the network, but where the timescale has no clear biological interpretation. (Online version in colour.)
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model, to ensure that our model performs above chance. This

type of cross-validation ensures that a generative model is

identifying general wiring rules and not overfitting. A

second type of cross-validation involves testing whether syn-

thetic networks have properties in common with real-world

networks that they were not explicitly optimized to possess.

In other words, does a generative model give us certain prop-

erties ‘for free?’ This type of cross-validation ensures that our

objective function is sufficiently general rather than empha-

sizing a specific subset of network properties. However,

even in this case it is important to note that many network

properties are correlated with one another, and so the emer-

gence of one may necessarily imply the emergence of

another. For example, if a wiring rule incidentally results in

assortative modules, it is also likely that the network will

exhibit a greater-than-expected clustering coefficient. In

short, the network properties used for cross-validation must

be carefully chosen and ideally would be orthogonal to one

another. One possible solution is to cross-validate using the

principal components of a list of network features rather

than any individual feature [50].

2.6. The space of generative models
What distinguishes one generative model from another? Is it

possible to delineate classes of generative models based on

their functions or characteristics? Arguably, one of the dis-

tinguishing features of any generative model is the

timescale over which it operates (figure 1). On one extreme

are models with no timescale at all, like stochastic block-

models [27,41] or the family of exponential random graphs,

which uses a regression-based framework to predict a net-

work’s link structure from node- and edge-level attributes,

and which has recently been applied to brain network data

[52–55]. These kinds of models are ‘single-shot’ generators

of networks, and can therefore be quite poor representations

of real-world networks that grow and evolve over time. On

the other extreme are models whose internal timescale
matches that of the real system. Nodes and edges are

added or rewired on a realistic timescale to match known

properties of the system. The growth model of C. elegans pre-

sented by Nicosia et al. [51] is a good example [51]. In this

model, nodes and edges are added according to their empiri-

cally measured birth times (time of cell division); a feature

that contributed to the success of that model in predicting

different properties of the C. elegans connectome.

Between these two extremes—where models operate either

without any timescale or with a biologically plausible time-

scale—is where most generative models are situated. In this

middle ground, edges and nodes are added to or rewired in

an existing network, but the timescale over which these pro-

cesses occur is arbitrary. A good example is the BA model,

in which new nodes are linked to an existing network over a

series of steps. These steps are ordered, so the addition of

one node precedes or follows that of another. However, time

is measured in arbitrary units (steps) and direct comparison

to biological timescales, e.g. human development, might be

inappropriate. Ordering generative models based on their

internal timescales is similar to ordering them according to

their plausibility and mechanistic understanding. Blockmodels

and models with arbitrary timescales can do a good job com-

pressing our description of a network and might identify

general organizational principles [35]. However, if our aim is

to develop realistic mechanistic models of network growth

and development, it is essential that we include the necessary

components that ground the model in reality.

While a generative model’s intrinsic timescale naturally

results in a stratification of models according to their neuro-

biological plausibility, it is essential to note that increased

plausibility does not necessarily imply improved fit or

increased model performance. Entirely implausible models

with many parameters that receive a variety of metadata as

input can conceivably outperform more neurobiologically

grounded mechanistic models, simply due to increased

complexity [56].
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3. Generative models of biological neural
networks

Now that we have an intuition for what a generative model is,

and what the goals are for building a generative model, we

turn to a brief review of existing generative models for biologi-

cal networks observed in neural systems. We note that this

review is not comprehensive, but instead focuses on areas in

which significant work has been accomplished, or areas that

motivate important current and future frontiers. We also

refer readers elsewhere for additional details on the mechan-

isms of connectome development [24], biophysical models of

neural dynamics [57], and modelling mesoscale structure in

dynamic networks [58] and multiscale networks [25].

Finally, we note that this review focuses mostly on gen-

erative models of structural and not functional networks

(the distinction is in how edges are defined; in structural net-

works they represent physical connections, e.g. synapses,

projections and fibre tracts, whereas in functional networks

they represent statistical associations among neural elements’

activity, e.g. correlation, coherence, etc.). Because of

differences in how structural and functional networks are

generated and evolve, certain classes of models that are

appropriate for one type may be wholly inappropriate for

the other. For example, functional networks are not generated

through an edge addition process—they emerge from con-

strained dynamical processes. We discuss the implications

of these differences in more detail later in this section.
3.1. The requisite ingredients
An open and important question that scientists face when

embarking on a study to develop a generative model is:

‘what features are required to build good network models?’

Perhaps the simplest feature one requires is a target network

topology, the organization of the network that one is trying

to recapitulate and ultimately explain. Yet, a single network

topology can be built in many different ways, with strikingly

different underlying mechanisms [59]. Thus one might also

wish to have a deep understanding of (i) the constraints on

anatomy, from physical distance [60] to energy consumption

[61], (ii) the rules of neurobiological growth, from chemical

gradients [62] to genetic specification [63], and (iii) the

pressures of normal or abnormal development, and their

relevance for functionality. Moreover, each of these con-

straints, rules and pressures can change as the system

grows, highlighting the importance of developmental

timing [63]. Of course, one might also wish to choose

which of these details to include in the model, with model

parsimony being one of the key arguments in support of

building models with fewer details.
3.2. Generative models at the cellular level
Recent efforts to model cellular level network architecture

have had the benefit of building on rich empirical obser-

vations made over the last several decades. At one of the

smallest spatial scales of neuronal connectivity, evidence

suggests that the arbors of single neurons can be character-

ized by both local [64] and global [65] optimization rules to

more strongly minimize volume than length, signal propa-

gation speed or surface area. Within the confines of relative

volume cost minimization, there is also evidence for a
maximization of the repertoire of possible connectivity pat-

terns between dendrites and surrounding axons: in basal

dendritic arbours of pyramidal neurons, arbour size scales

with the total dendritic length, the spatial correlation of

arbour branches appears to have a single functional form,

and small sections of an arbour display self-similarity [66].

The morphology of dendritic arbours specifically and

other parts of the cell more generally have a direct bearing

on the degree of connectivity that can take place between

neurons [67]. Like dendritic arbours, synaptic connectivity

appears to be organized in a highly non-random manner

[68], with unexpectedly high density in relation to its

volume [67]. Interestingly, both synaptic connectivity and

neuronal morphology appear to experience some similar con-

straints, including principles of wiring optimization [60,69].

Some suggest that constraints on synaptic wiring may be

the more fundamental of the two, explaining the degree of

separation between cortical neurons [60], as well as the place-

ment of cell bodies [70]. Others suggest that it is in fact the

combination of wiring economy and volume exclusion that

can determine neuronal placement [71].

In either case, the highly non-random nature of synaptic

connectivity has been the subject of several recent generative

modelling efforts. Initial observations that this non-random

organization could be parsimoniously described as small-

world [8,72] have motivated the question of how this particu-

lar type of network complexity is combined with pressures

for wiring minimization. Nicosia et al. [51] suggest that the

growth rules shaping cellular nervous systems balance an

economical trade-off between wiring cost and the functionality

of network topology (figure 2). Using a dynamic economical

model incorporating a continuously negotiated trade-off

between wiring cost and network topology, they recapitulate

an empirically observed phase transition in the proportion of

nodes to links present over the developmental time period of

C. elegans [51]. The authors speculate that such dynamically

negotiated trade-offs may be characteristic of other complex

systems, whether biological or man-made. It will be interesting

in the future to consider scenarios in which such trade-offs

may be negotiated over shorter time periods, such as in the

alteration of the prevalence of autaptic connections posited

to play a role in homeostatic network control of bursting [73].

The incorporation of a dynamic economic trade-off is an

example of the broader importance of incorporating biophysi-

cally accurate features in generative models of cellular neural

systems. Another example of such a biophysical feature is

axon and dendrite geography, which has been shown to pre-

dict the specificity of synaptic connections in a functioning

spinal cord network of hatchling frog tadpoles [74]. Some gen-

erative models have also sought to determine the role of

neuron type in observed network topology and function, for

example by building models of sensory neurons, sensory

pathway interneurons, central pattern generator (CPG) inter-

neurons and motoneurons, and then linking them in a

network with known inter-type connectivity [75]. By adding

knowledge about development including chemical gradients

and physical barriers [62], a cell-type specific model of 2000

neurons in the spine of a young Xenopus tadpole can produce

swimming behaviour in response to sensory stimulation [76].

These and related efforts demonstrate the ability of generative

network models built with neuron and synapse resolution,

and incorporating biophysical phenomena, to reproduce beha-

viours observed in whole organisms. Such findings are
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Figure 2. Development of the C. elegans nervous system. (a) Caenorhabditis elegans reaches adulthood approximately 63 h after fertilization, over which time its
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reminiscent of other biophysical modelling efforts at the large

scale of human areal networks [77,78], where the biophysics of

regional rhythms and inter-regional synchronization inform

our understanding of human cognition [79].

3.3. Increasing in scale: generative models of large-
scale connectomes in non-human animals

In the previous section, we reviewed some of the literature

supporting the notion that cellular network organization in

neural systems is characterized by pressures of wiring

economy and topological complexity. Such pressures are

similarly thought to play a role in the organization of net-

works at the meso- and large scale in both human and

non-human mammalian brains [19]. Computational studies

suggest that trade-offs between wiring economy and topolo-

gical complexity [80] support the formation of network

modules, offering relative segregation of function, and net-

work hubs, offering relative integration of function [81].

The role of topological complexity and the presence of unu-

sually high wiring costs in some parts of cortex suggests

that simple notions of spatial embedding are not sufficient

to explain the observed organization of the connectome.

This limitation has motivated models deriving a latent

(rather than physical) space from which to predict missing

links [82], or incorporating information about cytoarchitec-

ture [83] such that cytoarchitectonically similar cortical

areas in the two hemispheres have an unexpectedly high

probability of connecting with one another [84].

A particularly salient example of a generative model of

areal connectivity in a mammalian brain that incorporates

many of these considerations is the recent predictive model

of Beul et al. [83] (figure 3). In this paper, the authors study
mesoscale structural connectivity between 49 areas of the

cat cerebral cortex as estimated by tract tracing techniques

[83]. They test the predictive utility of three separate wiring

rules: (i) a structural rule in which the laminar patterns of

origins and terminations of inter-areal projections vary

according to the relative cytoarchitectonic differentiation of

the projection sources and targets, (ii) a distance rule in

which connections are more frequent, and more dense,

among neighbouring regions and sparser or absent between

remote regions, and (iii) a hierarchical rule in which differ-

ences in the functional hierarchical levels of source and

target areas are inversely related to the degree of connectivity

between them. While the latter rule did not accurately fit the

data, the first two rules (structure and distance) explained

significant variance in the observed connectivity patterns,

with a linear combination of the two predicting the existence

of connections with more than 85% accuracy.

Work in non-human primates generally and the macaque

cortex specifically recapitulates many of the same motifs

from work in lesser mammals. Early work suggested that cor-

tical components are optimally placed so as to minimize the

costs of their interconnections [86], facilitating a global optimal

cerebral cortex layout [87]. Later work suggested that com-

ponent placement did not maximally minimize wiring, but

also tended to favour short processing paths, due to long-

distance projections [16]. Indeed, separate from where

components are placed, it has been noted that there appear

to be successfully arbitrated optimization problems in the

organization of inter-areal connectivity, for example favouring

near-minimization of distance [17,88] and increased support

for connectivity between areas with similar topological proper-

ties [47]. In an extension of the model described above for the

cat, Beul and colleagues similarly demonstrate the striking
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utility of the structural rule of architectonic similarity, where

similarity in the laminar pattern of projection origins, and

the absolute number of cortical connections of an area,

demonstrated the strongest and most consistent influence on

connection features [89]. In this case, the distance rule was sur-

prisingly not predictive. Future extensions of this model may

include explicit nonlinear growth rules, which have previously

been linked to the emergence of network hubs [90].

3.4. Generative models of large-scale connectomes
in humans

Efforts in humans support the notions of wiring economy

[91,92] and topological complexity [49], and further add

new considerations such as the geometric segregation of the

brain into grey and white matter, enabling the relative

minimization of conduction delays [93]. While one-shot

models have been the most commonly exercised generative

models for human structural networks, relatively new evalu-

ation criteria for them include an assessment of their

controllability profiles [94] and homological features [95].

Moreover, there has been a recent and growing interest in

developing network growth models that incorporate biologi-

cally motivated rules for the probability of connections

[96,97]. For example, spatially constrained adaptive rewiring

creates small-world network architectures with spatially loca-

lized modules [97], while wiring rules based on topological

affinities recapitulate known scaling laws of physical network

topology [96]. It would be interesting in future work to deter-

mine how these rules could be adapted to explain the

patterns of conserved and variable architecture of white

matter networks across individual humans [98].

The recent paper by Betzel et al. [49] represents one of the

first attempts at subject-level generative modelling [49]. In

this study, the authors fit 13 generative models to white-
matter networks acquired from three independent datasets,

totalling 380 subjects (figure 4). The model generated syn-

thetic networks using an edge-addition algorithm, in which

connections were added probabilistically and one at a time

according to a set of parametrized wiring rules. Each of the

13 models was fit in two stages: first by matching distribu-

tional statistics of the white-matter networks and later

cross-validated on a separate set of network measures. The

best fitting models across all three datasets featured wiring

rules based on wiring cost reduction and homophilic attrac-

tion principles, the severity of each controlled by a separate

parameter. Because the models were fit to individual sub-

jects, it was possible to explore individual variability in

model fit. When applied to lifespan data from the Nathan

Kline Institute, the authors found that the parameter govern-

ing the severity of the wiring cost reduction weakened

systematically with age, as did the model goodness of fit.

These findings suggest that generative models are sensitive

to changes in network organization with development and

ageing, and may be useful tools in studying variation

across individuals [99].

Interestingly, Vértes et al. [48] found that a similar model

also reproduced many of the topological features of brain net-

works reconstructed from function MRI data. In that study,

the authors extended their analyses to show that, based on

the optimal parameters fit to networks from individual sub-

jects, the parameter space could be partitioned so as to

distinguish brain networks of patients with schizophrenia

from those of healthy controls.

The observation that basically the same model, when

applied to structural or functional brain networks, outper-

formed all other models is intriguing. On one hand, it

suggests that the brain’s physical wiring and functional archi-

tecture might be organized according to similar principles.

On the other hand, this similarity could simply be
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coincidental. While both Betzel et al. [49] and Vértes et al. [48]

tested and compared a range of generative models, testing

the space of all possible models and generative mechanisms

is unfeasible. It is likely that other models not tested in

either study would result in improved performance. Yet

another explanation for the convergence of these two studies

is that they model the brain at roughly the same organiz-

ational scale (inter-areal networks estimated from MRI

data), and that deviations from this scale would uncover a

different set of optimal models.

In a more recent study, Tang and colleagues study individ-

ual variation in youth by examining the white-matter networks

of 882 individuals between the ages of 8 and 22 years [100].

Here, the authors posited that over this developmental time

period, structural brain networks become optimized for a

greater diversity of neural dynamics, as instantiated by recently

defined metrics of network controllability [42]. They tested the

hypothesis that an observed trajectory of network change over

youth could be recapitulated by a generative model that

increased average controllability (predicted ease of transition-

ing between nearby network states—the level of activity in

each region, across the entire brain), increased modal control-

lability (predicted ease of transitioning between distant

network states) and decreased synchronizability (predicted

capacity for global synchronization). The model was initiated

with a given brain network, and then evolved in silico accord-

ing to a rewiring rule such that an existing edge was randomly
chosen to take the place of an edge that did not exist, and this

edge swap was retained only if the new network advanced the

Pareto front, the set of all network configurations that were

optimal in their trade-off between average and modal control-

lability (figure 5). As rewiring progressed forward in time, a

course was charted in which networks increased in control-

lability and decreased in synchronizability; while as rewiring

progressed backwards in time, networks decreased in control-

lability and increased in synchronizability. The simulated

developmental trajectories displayed a striking similarity in

functional form to the observed developmental trajectories,

suggesting a possible mechanism of human brain development

that preferentially optimizes dynamic network control over

static network architecture.
4. A few relevant distinctions
In this section, we describe a few important distinctions

that are particularly relevant to the understanding and

further development of generative network models for

neural systems. First, we will explore the relations between

generative models that seek mechanisms and explanations,

and null models for statistical testing of hypotheses.

Second, we will discuss the important trade-off in suffi-

ciency of a generative model versus redundancy. Third,

we will seek to disambiguate between inferring a possible
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mechanism versus claiming proof of a mechanism. And

finally, we will describe some relevant considerations

when building or evaluating generative models of structural

versus functional connectivity.
4.1. Generative models and null models
The stated goals of the generative modelling approach, as

described in the early sections of this review, include the

identification of putative mechanisms of observed network

architecture, and intuitive explanations for some of the fea-

tures that characterize that architecture. Yet, depending on

their degree of biological realism, such models can also be

used as statistical null models, potentially enabling the dis-

missal of a null hypothesis. In general, topological and

spatially informed null models play a critical role in network

science broadly [101–103], and network neuroscience specifi-

cally [92,104,105]. One could consider using a generative

model to test the hypothesis that the topology of an empiri-

cally measured neural network was consistent with a

topology of an artificial network built on a fixed set of

rules or principles. In this case, one would need to be careful

in the exposition of the study to distinguish between when

the model was being used to propose a generative mechan-

ism, and when the model was being used in a statistical

sense to dismiss a null hypothesis.
4.2. Sufficiency and redundancy
When building generative network models of neural systems,

a common observation is that the models often fit topological

signatures that they were designed to fit, but do not fit topo-

logical signatures that they were not designed to fit [96]

(although see also [90,97,106]). It is important to ask whether

such a model is sufficient, or whether one should seek a

model that also predicts a topological signature that has not

been hard coded into the objective function and/or genera-

tive algorithm. In addition to sufficiency, one might also

wish to consider model redundancy: does the model combine

two or more wiring rules that both induce the same topoogi-

cal signature? Such a scenario can be quite common, as there

exist whole families of graphs that display similar graph

metric values [107], community structure [108], controllabil-

ity profiles [94] and homological features [95]. Broadly, one

might wish to build generative models that balance a

trade-off between (i) sufficiency, potentially enabled by a

greater number of wiring rules, and (ii) redundancy, whose

relative minimization is supported by notions of biological

efficiency and parsimony.
4.3. Inferring and claiming mechanism
Suppose that one is thoroughly successful, and creates a gen-

erative model that beautifully reproduces an empirically
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observed network structure. Do the rules that compose the

generative model provide a mechanism explaining the

empirical network’s architecture [109]? Even more brazenly,

can such a generative model help us to develop a theory of

brain network organization and resultant behaviour [110]?

In seeking answers to these questions, it is important to dis-

ambiguate between inferring a possible mechanism and

claiming proof of a mechanism. If a generative network

model built upon rule a recapitulates the network structure

of interest, one can say that rule a is a possible mechanism,

but one cannot claim that it is the mechanism. To provide a

more concrete example embedded in network neuroscience,

let us consider the topological feature of Rentian scaling, an

isometric scaling relationship between the number of proces-

sing elements and the number of connections, which is often

found in systems that are built upon the principle of wiring

reduction, and is observed in brain networks [111] as well

as other transmission systems such as computer circuits

[112], transportation systems [113] and vasculature [114].

Given the scaling relationship, one might infer that the net-

work’s structure is given by a mechanism that operates

uniformly across all scales such as wiring minimization.

However, such an inference would neglect the fact that

many scale-heterogeneous mechanisms also produce topolo-

gical scaling relationships [59]. In future work, it will be

important to concretely discuss support for possible mechan-

isms separately from exact claims that such mechanisms

have been proven.
4.4. Functional connectivity and structural connectivity
This review has focused on mostly generative models for

structural networks, where links represent physical pathways

among neural elements. Generative network models can also

be built for functional connectivity data, with some caveats

and limitations [48,55,115]. Posited drivers of functional net-

work organization across species include similar notions of

cost-efficiency [116–118], small-world architecture [119] and

spatial clustering [120]. However, the appropriate growth

mechanisms that such generative models employ face differ-

ent constraints in the functional domain from those in the

structural domain [121]. Functional connectivity is not gener-

ated piece by piece, as instantiated by a discrete placement of

edges in a network [122]. Instead, functional connectivity is a

consequence of dynamical processes constrained by many

factors [123], including but not limited to anatomical

structure [124–126], the activity elicited by a particular task

[127], the distance between brain areas [123], genetics

[128–130] and any stimulation or other input to the system

[131,132]. Many good models of brain dynamics exist,

ranging from the biologically realistic to the heavily idealized

[57]. However, growth models built from the placement of

independent edges are conceptually more appropriate for

structural networks than for functional networks.

A particularly powerful generative model for producing a

functional network topology from a structural network top-

ology (or for inferring a structural network topology from a

functional network topology) is the pairwise maximum

entropy model [133–135]. The technique was initially applied

to neural spiking data to demonstrate that pairwise inter-

actions give an excellent approximation of the full

correlation network [136]. More recently, the technique has

been used to accurately fit fMRI BOLD collected in humans
[137,138], dynamic functional connectivity patterns [139]

and patterns of transitions between brain states [140].

While the pairwise maximum entropy model has proven

useful in inferring structural network organization from func-

tional network organization, and vice versa, it is certainly

true that non-pairwise interactions may nevertheless play a

non-trivial role in neural population function. Intuitively,

beyond-pairwise interactions can occur via common input

[141], producing multiway synchrony [142] with varying

prevalence across different length scales in the system [143].

Generative models of such high-order relations include

beyond-pairwise maximum entropy models [144] and dichot-

omous Gaussian models [145]. Another way in which

beyond-pairwise functional interactions can occur is if neur-

ons themselves do not only display pairwise connections,

but also higher-order connections. This possibility highlights

a complementary challenge in describing the presence of

such higher-order relations in structural networks from a

topological point of view, with the goal of building genera-

tive models that account for them. We will discuss initial

efforts to address these challenges using notions from

algebraic topology in the next section.
5. Future directions
In this section, we discuss future directions in efforts to

develop, extend and apply network generative modelling

approaches to questions of import to neuroscience. We begin

by offering a description of what generative models could

accomplish, with a particular focus on clinical applications.

We next consider dream datasets and experiments whose

acquisition and open sharing would inherently change the

sorts of questions that network generative modelling

approaches could tackle. Finally, we discuss a few natural

directions in which to increase the sophistication of network

generative models, including the consideration of multilayer

networks and simplicial complexes. This section is purpose-

fully more forward-looking and speculative than the

previous sections, but we nevertheless offer a generous helping

of appropriate citations to the relevant domain-specific efforts.

5.1. What would a generative model accomplish?
In practice, many of the current approaches for studying biologi-

cal neural networks involve computing and comparing

summary statistics between groups or continuously across indi-

viduals. While this approach is useful in identifying ‘what’ is

different, it fails to explain ‘how’ those differences come to be,

in the first place. In this review, we echo other recent reviews

[23,24] and call for a shift in emphasis away from ‘fact collecting’

studies and towards uncovering the mechanisms that explain

the organization of neural systems. We argue that network gen-

erative modelling represents a framework that can help us move

towards addressing these lofty goals.

Suppose that—with the right dataset and the right model-

ling approach—we can devise a model that, to a reasonable

approximation, can successfully mimic the growth or evol-

ution of a real-world neural system. In other words, the

model results in a network that changes over time (where

time has a clear developmental or biological interpretation)

and whose topology evolves in a way that is consistent with

known facts about the real-world growth of that network.

What does having such a model buy us? On the one hand,
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These simulations can be used as forecasting devices to identify individuals at risk of developing maladaptive network topologies. They can also be used to explore
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we could simply maintain the status quo, fit the model’s par-

ameters to individual subjects and compute statistical

relationships between parameters and behavioural measures

(figure 6a) using machine learning techniques to partition

the model’s parameter space into regions associated with clini-

cal and control populations (figure 6b). While useful, these

approaches are quite similar to the current state of the field.

On the other hand, another more novel possibility is to

use the model for disease simulation. Many psychiatric

[146] and neurodegenerative diseases [147] are manifest at

the network level in the form of miswired or dysconnected

systems [148], but it is unclear what predisposes an individ-

ual to evolve into a disease state. The generative model can

be used to propagate individuals from one time point to

another and identify those that are likely to evolve into a

state similar to that of the disease phenotype and perhaps

likely to develop that disease. In this way, the model has a

clear role as a forecaster (figure 6c).

Similarly, the generative model can be used to explore

in silico the effect of potential intervention strategies. We

can think of biological neural networks as living in a high-

dimensional space based on their topological characteristics,

where some regions (of this space; not of the brain) are associ-

ated with neurological disease and considered maladaptive

(and perhaps even deadly) [149,150]. In this context, the

generative model represents an evolution operator that propa-

gates a network from one point to another, tracing out a

trajectory through this space. If we can identify individuals

who are predisposed to travel near those maladative regions,

we can begin to identify perturbations—changes to model par-

ameters or wiring rules—that steer those trajectories towards

regions not associated with disease (figure 6c). These goals

are in line with current theoretical work, applying tools from

network control theory to neuroimaging data [42,151,152].
5.2. Dream datasets and experiments
Generative models have clear utility in furthering our

capacity to predict disease and identify the mechanisms

that shape the development, growth and evolution of biologi-

cal neural networks. A major hindrance in realizing these

goals, however, is the absence of data tailored for generative

models. The ideal data would (i) be longitudinal, enabling

one to track and incorporate individual-level changes over

time in the model, and (ii) include multiple data modalities,
such as functional and structural connectivity, and genetics,

along with other select factors that could influence

network-level organization. In short, any metadata that

could theoretically be incorporated into a model would be

valuable and possibly worth collecting. Ideally, these data

would be acquired at the earliest possible time point in utero
[153] and proceed through maturity.

Clearly, collecting and curating such a dataset represents

a massive undertaking. Though recent large-scale studies

have made it possible to image thousands of individuals

over a short period of time [2,3,154] and a small number of

individuals over a long period of time [155–157], the dur-

ation and scale of a longitudinal study of the nature

proposed here seems, at present, out of reach. Furthermore,

the studies that have come closest to acquiring these kinds

of data have relied on MRI due to its non-invasive nature.

However, this same advantage also limits the fidelity and

kinds of data that can be acquired from an individual (e.g.

region-specific gene transcription levels can only be acquired

post-mortem [158]).

An attractive alternative, then, is to consider building gen-

erative models of data from non-human model organisms.

Not only are the life cycles of several model organisms

much shorter than that of humans (making it possible to

track an individual over the course of its entire life), but

new advances in network reconstruction techniques

[159–161] and the ability to make recordings of activity in

unprecedented detail [162,163] ensure that any generative

model will be endowed with sufficiently rich data to probe

for novel wiring rules. Moreover, working with model organ-

isms also makes it possible to collect data modalities that,

otherwise, would be inaccessible, including details about

gene expression [164].
5.3. Increasing sophistication of network generative
models

Finally, given ideal data, there are also exciting and important

future directions in increasing the mathematical sophistication

of network generative models. One particularly accessible

extension of current methods lies in multilayer network gen-

erative models. A multilayer network consists of multiple

single-layer networks, e.g. representing a neural system’s

structural connectivity, functional connectivity and gene

co-expression [165,166], that are linked across layers to one
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another. A generative model for these types of data is one

that, instead of single-layer networks, generates multilayer

networks [167], and the rules of generation can apply to a

single layer, to multiple layers or to the interconnectivity

between layers [168]. One potentially useful place to start

would be to construct multilayer generative models where

the neural connectivity evolves with a specific set of

dynamics (or network growth rules) that are explicitly

coupled to the underlying tissue growth or to the inervating

vasculature growth [169]. At the larger scale, one could also

consider developing multilayer generative models that

couple brain network growth with social network growth, a

coupling that has recently been postulated to occur through

processes of development and learning [170].

Indeed, it is likely that there are other ways in which our

brain network topology and changes in that topology are

coupled to our experiences. Such experiences could be defined

by our environment, for example as partially stipulated by our

socio-economic status [171], or by our practices, for example as

instantiated in our practice of curiosity [172]. Indeed, it is inter-

esting to speculate that network generative models may be

useful in understanding the relations between brain network

architecture and the architecture of knowledge networks,

which are physically instantiated in the brain [173], as well

as semantic networks [174], which can be tuned by our atten-

tion [175]. Semantic networks, social networks, brain

networks, vasculature networks and tissue networks may all

evolve with one another in intertwined multilayer network

systems, an understanding of any pair of which will require

concerted efforts in extending the sophistication of current

network generative modelling techniques.

In addition to multilayer approaches, network generative

modelling could also benefit from incorporating methods to

address the existence and growth of non-pairwise relations

between nodes. A useful language with which to meet this

challenge is the language of algebraic topology and specifi-

cally simplicial complexes [176] whose fundamental units

are simplices: a 0-simplex is a node, a 1-simplex is a dyad,

a 2-simplex is a face, a 3-simplex is a tetrahedron, a 4-simplex

is a 5-cell, etc. A collection of simplices—called a simplicial

complex—can include many interesting features including

cliques (i.e. fully connected subgraphs) and cavities (collec-

tions of n-simplices arranged so that they have an empty

geometric boundary). In patterns of correlations among the

activity of pyramidal neurons in rat hippocampus, the

topology of cliques and cavities demonstrates geometric

organization consistent with a generative model of simplicial

complexes related to random geometric graphs [177]. This

higher-order structure has also enabled the identification of

unexpectedly long structural loops linking regions of early

and late evolutionary origin, underscoring their unique role

in controlling brain function [178]. Indeed, the topology of cli-

ques and cavities has specific implications for local

processing (cliques) versus processing in which information

may flow in either diverging or converging patterns (cavities)

[178], and can support efficient coding by enabling inference
of neural codes even in highly undersampled set of patterns

[179]. While generative models of simplicial complexes based

on random geometric graphs have shown some utility in

explaining these structures, further work is needed to under-

stand the extent of their applicability, and to consider models

for growing simplicial complexes [180].

Another way in which the network generative modelling

framework can be extended is to consider the effect of genera-

tive mechanisms on not only the structural properties of

networks, but also the dynamics that they support [181].

Different growth mechanisms result in particular network

motifs and topological features. In doing so, they shape

flows over the network, organize dynamics and contribute

to determining a network’s functional fingerprint [182,183].

Incorporating information about dynamics into objective func-

tions or the generative process itself facilitates the exploration

of a richer tapestry of models. This theoretical work could

eventually be used to model the functional effect of pertur-

bations to the network’s structure, retuning of a model’s

parameters or alterations to the wiring rule itself [184].
6. Conclusion
As the field of network neuroscience matures, efforts in data

description and statistical characterization are being comple-

mented by efforts to infer principles, to predict unobserved

data and to perturb the system with theoretically grounded

expectations about the results of those perturbations. Genera-

tive modelling is a particularly powerful approach for

moving beyond description towards prediction, mechanism

and eventually theory. In this article, we have offered a

simple primer on generative models, a review of recent efforts

in generative models of biological neural networks, and a dis-

cussion of current frontiers in empirical data collection and

mathematical sophistication. We look forward with antici-

pation to efforts in the coming years that use generative

models to understand human development, and to potentially

inform interventions in psychiatric disease or neurological

disorders in which wiring patterns have gone awry.
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