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Abstract

Microtubules and their post-translational modifications are involved in major cellular pro-

cesses. In severe diseases such as neurodegenerative disorders, tyrosinated tubulin and

tyrosinated microtubules are in lower concentration. We present here a mechanistic mathe-

matical model of the microtubule tyrosination cycle combining computational modeling and

high-content image analyses to understand the key kinetic parameters governing the tyrosi-

nation status in different cellular models. That mathematical model is parameterized, firstly,

for neuronal cells using kinetic values taken from the literature, and, secondly, for prolifer-

ative cells, by a change of two parameter values obtained, and shown minimal, by a continu-

ous optimization procedure based on temporal logic constraints to formalize experimental

high-content imaging data. In both cases, the mathematical models explain the inability to

increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme. The tyro-

sinated tubulin is indeed the product of a chain of two reactions in the cycle: the detyrosi-

nated microtubule depolymerization followed by its tyrosination. The tyrosination status at

equilibrium is thus limited by both reaction rates and activating the tyrosination reaction

alone is not effective. Our computational model also predicts the effect of inhibiting the

Tubulin Carboxy Peptidase enzyme which we have experimentally validated in MEF cellular

model. Furthermore, the model predicts that the activation of two particular kinetic parame-

ters, the tyrosination and detyrosinated microtubule depolymerization rate constants, in syn-

ergy, should suffice to enable an increase of the tyrosination status in living cells.

Author summary

Microtubules, cytoskeletal proteins, are involved in essential biological processes such as

mitosis, cardiomyocyte contraction and cell motility. The tyrosination reaction, a
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microtubule post-translational modification is dysregulated in cancer, cardiomyopathies

and neuronal diseases. Despite significant advances in recent years, the precise mecha-

nisms regulating the tyrosination cycle and the microtubule dynamics still lack an integra-

tive approach with predictive mathematical modeling. We present a mathematical model

of the detyrosination/tyrosination cycle parameterized for neurons and proliferative cells

using literature and image-based screening data. The model first explains the inability to

increase the tyrosination status by activating the Tubulin Tyrosine Ligase enzyme in those

cellular models, second captures the inhibition effect of the Tubulin Carboxy Peptidase

enzyme, and third predicts the necessity to combine two drugs to increase the tyrosination

status in living cells. Overall, our mathematical model enhances the early drug research by

providing critical mechanistic insights and identifying promising targets.

Introduction

The discovery of new drugs in today’s industrial and scientific environment is a long, costly and

risky process [1]. Many failures occur at late stages in the drug discovery pipeline, often in the

clinical phase, after years of research and significant investments. The two main reasons why

clinical candidates do not reach the market are a lack of efficacy and/or important toxicity [2].

The rational of these failures frequently stems from a limited understanding of the detailed bio-

logical processes involved, including:—a comprehensive view of the molecular pathways and

targets engaged;—and an exhaustive characterization of the mechanisms of action of drug can-

didates, including their toxicity. These limitations significantly reduce the investigator ability to

rationally select the cellular models best suited for molecule selection and characterization.

Advances in high-content imaging (HCI), data analysis and computational modeling repre-

sent tremendous opportunities to enhance the understanding of biological processes, espe-

cially early within the drug discovery pipeline for target validation and drug screening design

phase [3–6]. Beyond enhancing the understanding of biological processes, these tools can also

help challenging the choice of a therapeutic target, deciding on the strategy to directly or indi-

rectly modulate its activity and selecting the most adapted cellular models to maximize the rel-

evance and robustness of the early drug discovery phase.

Microtubules have a wide variety of functions and dynamics depending on the cell type and

cell state [7]. This is a consequence of the molecular status of the α/β isotypes of tubulin, the

microtubule main subunits, and the remarkable number of post-translational modifications

affecting either soluble tubulin or microtubule defining the tubulin code [8,9]. Depending on

the tubulin code instance, i.e. specific forms of isotypes and post-translational modifications,

the microtubules enable the segregation of chromosomes during mitosis, cell motility and

organelles transport [10–13]. Furthermore, the reactions of detyrosination and tyrosination

are crucial for neuronal organization, plasticity and differentiation, axon regeneration, protein

complexes recruitment, cardiomyocytes contractile functions, and cell proliferation, and are

dysregulated in severe diseases such as neurodegenerative disorders, infertility, cardiomyopa-

thies and cancer [14–22]. Consequently, the tubulin code along with its associated signaling

pathways represent an important source of potential targets for drug therapies [23–29].

The detyrosination/tyrosination cycle is initiated by the detyrosination of the α/β-tubulin

heterodimers, incorporated in microtubules, by Tubulin Carboxy Peptidase (TCP) such as

vasohibins (VASH1/VASH2) with the chaperone Small Vasohibin Binding Protein (SVBP)

[30–33]. After tubulin depolymerization, the soluble detyrosinated α/β-tubulin heterodimer

can be retyrosinated by Tubulin Tyrosine Ligase (TTL) [34,35]. Newly polymerized microtu-

bules are mainly tyrosinated while stable microtubules are detyrosinated [36]. In proliferating
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cells, microtubules are globally dynamic and tyrosinated, while in neurons, microtubules are

generally stable and detyrosinated outside major neuronal structures such as growth cones

and dendritic spines which remain highly dynamic and tyrosinated [37,38]. The dynamics and

functions of the microtubules are spatially and temporally modulated through regulatory pro-

teins belonging to cross-talking signaling pathways under the control of extracellular and

intracellular cues [39–42]. Microtubule-regulating proteins can act directly on microtubules to

promote polymerization, depolymerization, stabilization or fragmentation and enable the

recruitment and transport of specific protein complexes [43].

Despite significant advances in recent years, the precise mechanisms regulating the tyrosi-

nation cycle and ultimately the microtubule dynamics still lack an integrative approach with

predictive mathematical modeling. Although previous work was performed on modeling

microtubules properties such as trafficking, microtubule dynamics, dynamic instability and

microtubule-regulating proteins, there is no available mechanistic mathematical model, to our

knowledge, of the tyrosination cycle [44–48]. In this article, we combine computational

modeling and high-content imaging data to build a parametrizable mathematical model of the

microtubule tyrosination cycle. The part of the computational model concerning microtubule

polymerization reactions is based on the linear mode of the microtubule dynamics described

in [48]. We present two mathematical models parameterized for neurons and for proliferating

cells respectively that enable to understand the modulation effects of key kinetic parameters to

increase the tyrosination status in these cellular models.

Tyrosinated tubulin is the product of a chain of two reactions in the cycle: the detyrosinated

microtubule depolymerization followed by its tyrosination. The levels of tyrosinated species at

equilibrium are thus limited by both reaction rates and activating the tyrosination reaction alone

is not effective. Moreover, according to sensitivity analyses and perturbated numerical simula-

tions, decreasing the detyrosination reaction rate constant is predicted to increase the tyrosination

status. Using parthenolide, a reference inhibitor of TCP [38], we confirm experimentally the

model prediction in MEF cells. Furthermore, in order to design new cell-based screening experi-

ments, especially in neuronal cellular models, the model predicts that increasing, in synergy, two

specific biological parameters, the tyrosination and the detyrosinated microtubule depolymeriza-

tion rate constants, may suffice to increase the tyrosination status in living cells.

Results

Generic mathematical model of the microtubule tyrosination cycle

The schematic outline of our modeling pipeline (Fig 1) illustrates our model building method.

We first design a Chemical Reaction Network (CRN) focusing on the main molecular species

and parameters governing the microtubule tyrosination cycle, without taking into account all

the other known microtubule-regulating proteins with their associated signaling pathways, due

to their high number and unknown kinetics [43,49]. We focus on tubulin and microtubule in

their detyrosinated and tyrosinated forms and on the TCP and TTL enzymes as main regulators

(Fig 1A). This CRN is formatted in the Systems Biology Markup Language (SBML) [50] and

implemented in the Biochemical Abstract Machine (BIOCHAM) software, a modeling environ-

ment for systems biology and synthetic biology [51,52]. The BIOCHAM reaction model consists

of 6 reactions: 2 polymerization reactions for detyrosinated and tyrosinated tubulin, 2 depo-

lymerization reactions of detyrosinated and tyrosinated microtubule, and the detyrosination

and tyrosination reactions catalyzed by the TCP and TTL enzymes respectively (Fig 1B).

The tyrosination reaction is given with a Michaelis-Menten kinetics based on the enzymatic

characterization of TTL performed in bovine brain [53] (Fig 1B). When microtubules are

detyrosinated, destabilizing proteins, recruited on tyrosinated microtubule, are released from
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microtubules [54,55]. We chose to associate to the microtubule depolymerization reactions a

Michaelis-Menten kinetics to consider this phenomenon without including new species in the

mathematical model. The limiting factors for the tyrosinated and detyrosinated microtubule

depolymerization reactions are respectively tyrosinated and detyrosinated microtubule (Fig

1B). To our knowledge there is no enzymatic characterization of TCP and the detyrosination

reaction is given here with mass action law kinetics (Fig 1B). Such a set of reactions given with

rate functions can be interpreted in BIOCHAM by a continuous time Markov chain (stochas-

tic semantics) or by Ordinary Differential Equations (ODE). For the tyrosination cycle model

here involving relatively high numbers of molecules we consider the differential semantics (Fig

1C), i.e. the Ordinary Differential Equation (ODE):

dTubTyr
dt

¼
km2 �MTTyr
mc2þMTTyr

� kp2 � TubTyr þ
Vm2 � TubDetyr
Km2þ TubDetyr

dTubDetyr
dt

¼
km1 �MTDetyr
mc1þMTDetyr

� kp1 � TubDetyr �
Vm2 � TubDetyr
Km2þ TubDetyr

dMTDetyr
dt

¼ kp1 � TubDetyr �
km1 �MTDetyr
mc1þMTDetyr

þ k1 �MTTyr � TCP

dMTTyr
dt

¼ kp2 � TubTyr �
km2 �MTTyr
mc2þMTTyr

� k1 �MTTyr � TCP

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Fig 1. Schematic outline of our mechanistic model building method. (A) Influence diagram of the detyrosination/

tyrosination cycle. (B) Chemical Reaction Network of the detyrosination/tyrosination cycle in BIOCHAM syntax with

either mass action law kinetics (MA) or Michaelis-Menten kinetics (MM), plus initial concentrations. (C) Parametric

Ordinary Differential Equation (ODE) derived from the Chemical Reaction Network. (D) Unperturbed numerical

simulation of the computational model CDTN, parameterized with kinetics values taken from the literature and

hypothesis.

https://doi.org/10.1371/journal.pcbi.1010236.g001
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The observed difference in the microtubule dynamics and in the tyrosination states between

neuronal and proliferating cells are modeled by changing two reaction kinetic parameter val-

ues. Our abstract CRN model of the tyrosination cycle (CDT) will thus give rise to two mathe-

matical models: one parameterized for neuronal cellular models (CDTN) and one for

proliferating cells (CDTP).

Initial concentrations

The initial molecular concentrations of the CDTN and CDTP models are fixed to the same val-

ues accordingly to literature data and hypothesis (Table 1). In Fig 2E from [32], authors

accessed the detyrosination activity of purified VASH1/SVBP complexes (TCP) on brain

microtubules or tubulin dimers using immunoblot. They observed the time evolution of the

tyrosination cycle species on four time points (0, 2, 5, 10 minutes), with only tyrosinated spe-

cies present at the beginning of their experiment. In our computational model, the initial con-

centration of tyrosinated tubulin is set to 5 μM accordingly to the tubulin concentrations

indicated in [32] and in other cells [56,57]. The other initial concentrations of the cycle are set

to 0 μM in our simulations since they will not change the equilibrium state of the system (see

Multistability analysis in Materials and Methods).

CDTN model built with reaction kinetic values from the literature

The polymerization rate constants, kp1, kp2, the tyrosinated microtubule depolymerization rate

constant, km2, and the tyrosination rate constants, Vm2, Km2, are taken from the literature

[45,53]. We assume here that the depolymerizing rate constant of detyrosinated microtubule,

km1, is ten times smaller than for tyrosinated microtubule km2. This assumption first comes

from references indicating that detyrosinated microtubule are more stable than tyrosinated

microtubule [36–38]. Moreover, it is established that the half-life of tyrosinated microtubule is

of the order of minutes while the half-life of detyrosinated microtubule is of the order of hours

[58–60]. That difference by one order of magnitude in the microtubule half-lives is reflected in

our model by the choice of a depolymerizing rate constant for detyrosinated microtubule

Table 1. Parameter values of the computational models.

Description Parameter Unit CDTN CDTP

Initial concentration
Detyrosinated tubulin μM 0 0

Tyrosinated tubulin μM 5 5

Detyrosinated microtubule μM 0 0

Tyrosinated microtubule μM 0 0

Tubulin Tyrosine Ligase (TTL) μM 1 1

Tubulin Carboxy Peptidase (TCP) μM 1 1

Reactions rates
Polymerization of detyrosinated microtubule kp1 μM-1.min-1 0.975 0.975

Polymerization of tyrosinated microtubule kp2 μM-1.min-1 0.975 0.975

Depolymerization of detyrosinated microtubule km1

mc1

min-1

μM

0.478

2.75

11.74

2.75

Depolymerization of tyrosinated microtubule km2
mc2

min-1

μM

4.78

0.48

4.78

0.48

Detyrosination k1 μM-2.min-1 1 1

Tyrosination Vm2

Km2

min-1

μM

0.2

1.9

7.70

1.9

https://doi.org/10.1371/journal.pcbi.1010236.t001

PLOS COMPUTATIONAL BIOLOGY Computational model of the microtubule tyrosination cycle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010236 June 27, 2022 5 / 26

https://doi.org/10.1371/journal.pcbi.1010236.t001
https://doi.org/10.1371/journal.pcbi.1010236


Fig 2. Parameterization of the computational model CDTP with HCI quantification combined with BIOCHAM

parameter optimization procedures. (A) Representative images of immunostaining of tyrosinated tubulin (Tyr) in

green, detyrosinated tubulin (Detyr) in red in MEF cells and hTERT RPE-1 cells (left). Cells were co-stained with

Hoechst. Scale bars: 20 μm. (B) Quantification of the tyrosination status by high-content imaging (Right). Tubulin and

microtubule are predominantly observed in tyrosinated form (Z’-factor> 0.5). The plotted values are the average of

single-cells values ± SD. (C) Best satisfaction degree obtained by the parameter search procedure by varying only one

kinetic parameter independently, showing failure to reproduce the observed behaviour. The BIOCHAM command

used is: search_parameters(F(Time == 5 /\ Tyr = factor1 � Detyr /\ F(Time == 20 /\
Tyr = factor2 � Detyr)), [0 <= p <= 100], [factor1 -> 10, factor2 -> 10]) where p is

the kinetic parameter to optimize. (D) Best satisfaction degree obtained by the parameter search procedure by varying

couples of two kinetic parameters simultaneously, showing perfect satisfaction of the specification with one couple of

parameters only: (Vm2, km1). The BIOCHAM command used is: search_parameters(F(Time == 5 /\
Tyr = factor1 � Detyr /\ F(Time == 20 /\ Tyr = factor2 � Detyr)), [0 <= p1 <= 100,
0 <= p2<= 100], [factor1 -> 10, factor2 -> 10]) where p1 and p2 are two kinetic parameters to

optimize. (E) Landscape of the satisfaction degree obtained by scanning the parameter values of the couple (Vm2, km1).

The BIOCHAM command used to obtain the landscape is: scan_parameters(F(Time == 5 /\
Tyr = factor1 � Detyr /\ F(Time == 20 /\ Tyr = factor2 � Detyr)), (0 <= Vm2
<= 15), (0 <= km1 <= 30), [factor1 -> 10, factor2 -> 10], resolution:30).
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(km1) ten times smaller than for tyrosinated microtubule (km2). The kinetic parameters mc1

and mc2 correspond to Michaelis constants for the detyrosinated and tyrosinated microtubule

depolymerization reactions, and without direct experimental data, their values are inferred

using a parameter search procedure to obtain the known tyrosinated microtubule half-life of

the order of 5 minutes [58–60] (see Parameter search procedure in Materials and Methods).

We do not have any prior value for the detyrosination reaction rate constant, k1, but we set its

value to 1 μM-2.min-1 knowing that TCP should act slowly on microtubule [61].

With these parameter values, the numerical integration of the ODE associated to the CDTN

model gives the evolution of all the molecular concentrations over time (Fig 1D). These results

are in accordance with the detyrosination activity of the VASH1/SVBP complex on the tyrosi-

nation cycle species which has already been quantified in related work [32]. The temporal evo-

lution of the molecular species [32], are consistent with the numerical simulation of the CDTN

model (Fig 1D). Indeed, the tyrosinated species are almost absent after five minutes [32];

detyrosinated microtubule is the main molecular species at steady state while detyrosinated

tubulin increases slightly over time [32]. Furthermore, the half-lives of tyrosinated and detyro-

sinated microtubules are of the order of minutes and hours respectively (Fig 1D) which is con-

sistent with literature data [32,58–60,62].

CDTP model obtained by fitting the CDTN model to experimental data

We performed HCI experiments to quantify the tyrosination status in hTERT RPE-1 and MEF

cells (Figs 2A, 2B, S1 and S1 Data). Tubulin and microtubule are found to be predominantly

tyrosinated (Fig 2B and S1 Data). The observed ratio of fluorescence of tyrosinated over detyr-

osinated species is greater by a tenfold ratio in those cellular models (Fig 2B and S1 Data).

Our goal is thus to find the minimal changes in the CDTN model that make the system sta-

bilize with a tenfold ratio of tyrosinated over detyrosinated species no later than five minutes

knowing that the tyrosinated microtubule half-life is of the order of minutes [58–60]. We for-

malized that constraint in quantitative temporal logic and used BIOCHAM software to search

for parameter values to reproduce that observed behavior by continuous optimization (see

Parameter search procedure in Materials and Methods).

The polymerization rate constants (kp1, kp2) are assumed to be the same in the cellular mod-

els under study and are not optimized, since the tyrosination status has no effect on the poly-

merization capability of tubulin and the polymerization rates of tyrosinated and detyrosinated

tubulin are known to be similar [63,64].

Interestingly, by trying first to change one kinetic parameter only, in the CDTN model,

none of the optimization runs could reproduce the observed behavior (Fig 2C). This is a strong

indication, though not a formal proof, that the desired behavior cannot be obtained by chang-

ing one parameter only.

Then, optimization runs were performed on all pairs of kinetic parameters. Remarkably,

the optimization procedure successfully satisfied the temporal specification for one single pair

of kinetic parameters: (Vm2, km1) (Fig 2D). The modulation of the tyrosination reaction (Vm2)

in synergy with the modulation of the detyrosinated microtubule depolymerization reaction

(F) Unperturbed numerical simulation of the CDTP model showing the maintenance of a high level of tyrosination.

The FO-LTL formulae used to infer the new parameter values for has been updated to infer new parameters with

minimal difference from their original values from the CDTN model: search_parameters(F(Time == 5 /\
Vm2 = VarVm2 /\ km1 = Varkm1 /\ Tyr = factor1 � Detyr /\ F(Time == 20 /\
Tyr = factor2 � Detyr)), [0 <= Vm2 <= 15, 0 <= km1 <= 30], [VarVm2 -> 0.2, Varkm1
-> 0.478, factor1 -> 10, factor2 -> 10]).

https://doi.org/10.1371/journal.pcbi.1010236.g002
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(km1) thus appears sufficient to reproduce the increase of tyrosination status observed experi-

mentally in proliferative cells. Though not particularly intuitive, and thus especially instructive,

this computational result can be compared to some known facts from literature that TTL acts

very quickly on tubulins, reflected here by change on Vm2 and microtubules are very dynam-

ical in proliferative cells, reflected here by change on km1 [55].

It is worth remarking that the pair of kinetic parameters (km2, mc2), though failing to satisfy

the temporal specification, could nevertheless achieve a satisfaction degree of 0.76 (Fig 2D). In

these optimized solutions, the system appears always slower to stabilize (twenty minutes), and

the inferred values do not seem biologically realistic since mc2 from (km2, mc2) gets a small

value in 10−8 added to a concentration MTTyr up to 10−2 making in effect the reaction inde-

pendent of the reactant in that case.

The changes limited to Vm2 and km1 can fully satisfy the specification, yet with many solu-

tions. In order to visualize the set of solutions, we scanned parameter values for the couple

(Vm2, km1) in reasonable ranges and visualized the satisfaction degree landscape of our behav-

ioral specification (Fig 2E). The landscape indicates that the formula seems fully satisfied along

a one-dimensional curve indicating an infinite set of solutions for this pair of parameters (Fig

2E). We performed a new parameter optimization to choose the values minimizing the differ-

ence to the original values. This gave the new values of Vm2 and km1 chosen for our CDTP

model of proliferative cells, representing an increase by 24.56 fold of km1 and an increase by

38.54 fold of Vm2 (Table 1). This minimal change with respect to the CDTN model suffice to

reproduce by simulation the experimental observation that the tyrosinated molecular species

stabilize around five minutes at a greater concentration than detyrosinated molecular species

by a factor ten (Fig 2F).

TTL activation cannot significantly increase the tyrosination status in

living cells

We use the CDTP and CDTN computational models to understand the effect of the activation

of the TTL enzyme on the tyrosination status in proliferative and neuronal cellular models.

First, parameter sensitivity analysis can be used to determine the sensitivity of the tyrosinated

species to the tyrosination rate constant Vm2 using BIOCHAM (see Robustness measure pro-

cedure in Materials and Methods). The sensitivity indices of the CDTP and CDTN models indi-

cate a tolerance of five hundred percent for the parameter Vm2, before the tyrosination status

deviates from their equilibrium state by eighty and fifteen percent, respectively (Fig 3A and

3B). This indicates that increasing the tyrosination status in this way would necessitate: a very

high modulation of the tyrosination rate constant Vm2 in neuronal cells which may not be fea-

sible pharmacologically, and a moderate modulation in proliferative cells. Therefore, we fur-

ther simulate the addition of an activator that could increase the tyrosination reaction by a

factor ten in the computational models by increasing the tyrosination rate constant Vm2 after

the systems have reached their steady state (Fig 3C and 3D). In both models, tyrosinated spe-

cies increased slightly without exceeding detyrosinated species (Fig 3C and 3D). Increasing the

tyrosination reaction rate constant is thus not sufficient in our models to trigger a significant

increase of the tyrosination status.

These observations can be explained because tyrosinated tubulin is the product of a chain

of two reactions in the cycle: the detyrosinated microtubule depolymerization followed by its

tyrosination (Fig 1A). The level of tyrosinated species at equilibrium is thus limited by both

reaction rates and activating the tyrosination reaction alone is not effective. In the CDTP

model, the level of detyrosinated tubulin remains very low, and in the CDTN model, the level

of detyrosinated microtubule remains predominant.
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It may be worth mentioning that the obtention of this kind of explanation was our main

motivation for developing a mechanistic modeling approach. Indeed, through a cell-free high-

throughput screen using a proprietary chemical library, we had identified four compounds

increase the tyrosination status of tubulin C-terminals by activating the TTL enzyme (S2 Fig).

These active compounds were screened for validation in cell-based high-content screens using

proliferating cells, here MEF cells, and hiPSC derived neurons (S3 Fig). However, none of

these compounds triggered a significantly increase of the tyrosination status compared to the

control conditions (S4 and S5 Figs). The difference in compound activities between the cell-

free (S2 Fig) and cell-based (S4 and S5 Figs) assays were the primary motivation of our mecha-

nistic centric approach. The computational models rationalize the lack of activity of proprie-

tary screened compounds in proliferating and neuronal cellular models, by providing one

mechanistic reason for the incapacity to directly increase the tyrosination status pharmacologi-

cally by activating TTL only, in cells.

Fig 3. Mathematical model predictions of the tyrosination reaction activation in proliferative and neuronal cells

explaining failures of compound screening. (A) Sensitivity analysis of the equilibrium value of TyrDetyr obtained for

different coefficients of variation of the kinetic parameter Vm2 in the computational model CDTP, indicating a

tolerance of five hundred percent for the parameter Vm2 before TyrDetyr deviates from its equilibrium state by eighty

percent. The BIOCHAM command used is: sensitivity(F(G(TyrDetyr = x)), [Vm2], [x -> 10],
robustness_coeff_var: c), where c is the robustness coefficient value. (B) Similar sensitivity analysis in the

computational model CDTN, indicating a tolerance of five hundred percent for the parameter Vm2 before TyrDetyr

deviates from its equilibrium state by fifteen percent. The BIOCHAM command used is: sensitivity(F(G
(TyrDetyr = x)), [Vm2], [x -> 0.065386], robustness_coeff_var: c) where c is the

robustness coefficient value. (C) Perturbed numerical simulation in the model CDTP. The tyrosination rate constant

Vm2 is increased at 20 units of time (min) by a factor ten. The numerical simulation shows that the tyrosination status

do not increase. (D) Perturbed numerical simulation in the model CDTN. The tyrosination rate constant Vm2 is

increased at time 60 (min) by a factor ten. The numerical simulation shows that tyrosinated species slightly increase

but are not greater than detyrosinated species at steady state.

https://doi.org/10.1371/journal.pcbi.1010236.g003
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Prediction of the effect of detyrosination inhibition experimentally validated

The CDTP model can be further investigated by parameter sensitivity analyses to determine

the sensitivity of the tyrosinated species to the detyrosination rate constant k1. The sensitivity

indices of the CDTP model indicates a tolerance of one hundred percent for the parameter k1

before the tyrosination status deviates from its equilibrium state by seventy percent (Fig 4A).

Sensitivity analysis indicates that the tyrosination status can be modulated by a strong modula-

tion of the detyrosination rate constant. Therefore, we simulate the addition of an inhibitor of

the detyrosination reaction that could decrease the detyrosination activity, mimicking a dose

response experiment in the CDTP model by decreasing the detyrosination rate constant k1

after the system reaches its steady state (Fig 4B). In the CDTP model, the ratio between tyrosi-

nated and detyrosinated species increases with a decrease of k1 (Fig 4B). Decreasing the detyro-

sination reaction is thus predicted to trigger an increase of the tyrosinated species.

Fig 4. Mathematical model predictions of the detyrosination inhibition with experimental validation in proliferative cells. (A)

Sensitivity analysis of the equilibrium value of TyrDetyr obtained for different coefficients of variation of the kinetic parameter k1 in the

computational model CDTP, indicating that the equilibrium value of TyrDetyr is sensitive for strong variation of k1. The BIOCHAM

command used is: sensitivity(F(G(TyrDetyr = x)), [k1], [x -> 10], robustness_coeff_var: c). where c

is the robustness coefficient value. (B) Dose response diagram from the CDTP model by varying the kinetic parameter k1. The

BIOCHAM commands used are: change_parameter_to_variable(k1), dose_response(k1, 0, 10, time:100,
show:TyrDetyr). The BIOCHAM command draws a dose-response diagram by linear variation of the initial concentration (the

dose) of the input object, here k1, and plotting the output object (the response), here the molecular species: Tyr, Detyr and TyrDetyr,

showing an increase of the tyrosination status with a decrease of k1. (C) Compounds screening in dose response of the chemical

compound parthenolide. Representative images showing immunostaining of Tyr (green) and Detyr (red) on MEF cells pretreated with or

without paclitaxel. Compound concentrations: Parthenolide (1.2 μM (log)), Paclitaxel (5 μM), Parthenolide + Paclitaxel (1.2 μM (log)

+ 5 μM). Cells were co-stained with Hoechst. Scale bars represent 20 μm. There was no extraction for free tubulin and the visualization of

co-localization is potentially impacted. (D) Dose response diagrams of the tyrosination status from 4 conditions: DMSO, Paclitaxel,

Parthenolide and Parthenolide+Paclitaxel, showing that the tyrosination status increase by inhibiting the detyrosination reaction.

Parthenolide concentrations are indicated on the x-axis. Paclitaxel concentration is fixed to 5 μM. We observe that the parthenolide and

DMSO error bars overlap at concentrations above 1.5 μM (log). At this parthenolide concentration, the cell morphologies are indeed

altered, cytoplasms are reduced, and the cells appear to be highly stressed.

https://doi.org/10.1371/journal.pcbi.1010236.g004
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We have performed HCI experiments to validate the model prediction using the reference

inhibitor of TCP, parthenolide, on MEF cells in dose response [38] (Figs 4C, 4D, S1 and S1

Data). The use of parthenolide increases the tyrosination status (Fig 4D). HCI experiments

(Fig 4D) confirm the CDTP model prediction (Fig 4B) of the effect of inhibiting the detyrosi-

nation reaction on the tyrosination status.

Interestingly, an increase of k1 in the model (Fig 4B) induces a decrease of the ratio Tyr/

Detyr but does not induce a sigmoidal response as observed experimentally by increasing

parthenolide (Fig 4D). We can hypothesize from these observations and our previous model-

ing assumptions, that parthenolide has a sigmoidal effect on the enzyme TCP while the action

of TCP, carried in the computational model by the parameter k1, has a smooth action on tyro-

sinated microtubule.

Inhibiting the detyrosination reaction alone is therefore effective to increase the tyrosina-

tion status. Our computational models thus predict and capture the effect of inhibiting the

enzyme TCP [38]. Those predictions are validated with high-content imaging experiments

and literature data and provide a mechanistic explanation of the capacity to directly increase

the tyrosination status pharmacologically by inhibiting TCP only.

Model predictions for new drug combinations and neuronal applications

In the perspective of designing new screening experiments in neuronal cellular models, we

investigate the CDTN model. As presented, tyrosinated tubulin is the product of a chain of two

reactions in the cycle: the detyrosinated microtubule depolymerization followed by its tyrosi-

nation. Activating only one reaction is not efficient. The effect of activating the detyrosinated

microtubule depolymerization can be investigated by simulating the addition of an activator

by increasing the rate constant km1 after the system has reached its steady state. In these condi-

tions, a slight increase of tyrosinated species is observed (Fig 5A), suggesting that when the sys-

tem reaches its steady state, increasing the detyrosinated microtubule depolymerization rate

constant alone does not enable an increase of the tyrosination status. We also observe an

important increase of detyrosinated tubulin which suggests that a pull of tubulins becomes

available to reentering the tyrosination cycle (Fig 5A).

Now, one can simulate a prospective drug combination by increasing detyrosinated micro-

tubule depolymerization and tyrosination rate constants (Vm2, km1) in synergy after the system

reaches its steady state (Fig 5B). The level of tyrosinated species becomes quickly larger than

detyrosinated species (Fig 5B). Increasing in synergy the tyrosination and detyrosinated

microtubule depolymerization reactions is thus predicted to trigger a significant increase of

the tyrosinated species. Biologically, increasing depolymerizing factors should increase detyro-

sinated microtubule depolymerization, and allow tubulin to be directly available for retyrosi-

nation, while at the same time, increasing tyrosination activity should increase the probability

of tubulin to be tyrosinated. It is worth noting that for different parameter increases of the tyr-

osination activity (Vm2) and detyrosinated microtubule depolymerization (km1), an increase of

the tyrosination status can be observed (Fig 5C).

In other work, inhibition of the detyrosination reaction in neurons have been performed

experimentally [25]. In particular, the inhibition of the detyrosination reaction was reported to

decrease detyrosinated species [25]. This confirms one prediction of the CDTN model for which

the addition of an inhibitor of the detyrosination reaction (k1) can decrease the detyrosinated

species and increase the tyrosination status (Fig 5D). These results are explained by the fact that

the tyrosinated microtubule is a direct reactant of the detyrosination reaction (Fig 1A). The

level of tyrosinated microtubule can therefore be increased by decreasing the reaction activity of

its transformation into detyrosinated microtubule in proliferative and neuronal cells.
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Our mathematical model CDTN confirms that the inhibition of the TCP enzyme increases

the tyrosination status in neuronal cells. Furthermore, the model predicts that the activation of

two particular kinetic parameters, the tyrosination and detyrosinated microtubule depolymeri-

zation rate constants, in synergy, should suffice to enable an increase of the tyrosination status

in living cells.

Discussion

To our knowledge, the simple mathematical model presented here is the first mechanistic

mathematical model of the tyrosination cycle and microtubules dynamics, developed in tight

accordance with HCI experiments. The first expected outcome of such a mathematical model

is to better understand the regulation mechanisms governing the microtubule tyrosination

cycle, without considering all known and unknown microtubule-regulating proteins and their

respective cross-talking signaling pathways.

Fig 5. Prediction of drug combinations for potential new screen for neurodegenerative disorders. (A) Perturbed

numerical simulation in the model CDTN. The detyrosinated microtubule depolymerization rate constant km1 is

increased by a factor ten at 60 units of time (min). The numerical simulation shows a slight increase of tyrosinated

species suggesting that when the system reached its steady state, increasing the detyrosinated microtubule

depolymerization reaction alone does not enable an increase of the tyrosination status. (B) Perturbed numerical

simulation in the model CDTN. The detyrosinated microtubule depolymerization rate constant km1 and the

tyrosination rate constant Vm2 are increased at 60 units of time (min) by a factor ten. The numerical simulation shows

that the level of tyrosinated species become quickly larger than detyrosinated species. Increasing in synergy the

tyrosination and detyrosinated microtubule depolymerization reactions is predicted to be sufficient to trigger a

significant increase of the tyrosinated species. (C) Prediction of drug combinations combining an increase of the

tyrosination rate constant (Vm2) and the detyrosinated microtubule depolymerization rate constant (km1) by different

factors showing a synergistic effect to increase the tyrosination status. (D) Perturbed numerical simulation in the

model CDTN. The detyrosination rate constant k1 is decreased by a factor one hundred at 60 units of time (min). The

numerical simulation shows that tyrosinated species slowly increase and become predominant at steady state.

https://doi.org/10.1371/journal.pcbi.1010236.g005
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Our generic model is parameterized for neurons and proliferating cells for which the

observed microtubule behaviors and tyrosination status are different. Interestingly, our use of

BIOCHAM optimization procedures with semi-qualitative semi-quantitative temporal logic

constraints formalizing the experimental observations, showed that the minimal change in the

parametrization of both models concerned two specific reaction kinetic parameter values only.

Our mathematical models provide fundamental mechanistic insights to better understand

the microtubule dynamics and its dependence to the tyrosination status. They explain the inca-

pacity to increase the tyrosination status by activating the tyrosination reaction alone due to

the chain reactions present in the cycle and thus rationalize the failures of previous internal

cell-based compound screening experiments. Moreover, the mathematical models predicted

the inhibition of the detyrosination rather than the activation of the tyrosination has an effect

on the tyrosination status in living cells and this prediction is experimentally validated in pro-

liferative cells. Increasing the tyrosination status of microtubules may be achieved by a direct

decrease of the TCP activity or its regulators because the association of TCP with microtubules

is phosphorylation dependent [65,66].

Furthermore, several numerical analyses under perturbed conditions suggest a prospective

drug combination as a novel approach to increase the tyrosination status of microtubules. The

strategy is to increase the activity of the tyrosination and detyrosinated microtubule depo-

lymerization reactions in synergy. TTL might be directly activated, although no drug was

approved yet, or indirectly, via the inhibition of its inhibitors, since TTL activity is decreased

through phosphorylation [35]. Another approach is to activate or inhibit, in synergy, signaling

pathways that are known to modulate depolymerizing factors and involved in the modulation

of the tyrosination cycle such as PKC, BDNF/TrkB, JNK, Stathmin pathways [66–70]. It is

worth noting that these pathways are known to be dysregulated in neurodegenerative diseases

[71–74].

Overall, our mechanistic-centric approach modeling the tyrosination cycle enhances the

early drug research by providing critical mechanistic insights and identifying promising tar-

gets. We anticipate that our mathematical model should impact further investigations of the

post-translational modifications of microtubules and their dysregulation in cancer, cardiomy-

opathies and other diseases [20–22]. The mathematical model aims at being extended beyond

the cellular models presented in this paper. In particular, the inclusion of new parametriza-

tions corresponding to other cell types for which dysregulation of the tyrosination cycle is

associated with pathological conditions will be useful to expand its applications in drug discov-

ery screening and cellular assay validation.

Materials and methods

Cell line models

We worked with hTERT RPE-1 cell line, an epithelial cell immortalized with hTERT from

human retina (ATCC) and MEF cells, Mouse Embryonic Fibroblasts, produced by A.

Andrieux’s group as proliferating cells. and CNS.4U neural cells (Ncardia) as hiPSC derived

neurons. As hiPSC derived neurons cells we used CNS.4U neural cells (Ncardia).

Culture method

hTERT RPE-1 cells were grown in DMEM/F12(1,1) supplemented with 10% fetal bovine

serum and hygromycin (Life Technologies) 0.01 mg/ml in an atmosphere of 5% CO2 and 95%

air at 37˚C. Cells were maintained under standard conditions. For all experiments cells were

plated overnight at 4 000 cells per well and 1 000 cells per well in CellCarrier-384 Ultra micro-

plates (Perkin Elmer).
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MEFs were thawed one week before experiment and grown in DMEM 1g/L Glucose sup-

plemented with 1% Glutamax and 10% fetal bovine serum in an atmosphere of 5% CO2 and

95% air at 37˚C. For all experiments cells were plated overnight at 2 500 cells per well and 2

000 cells per well in CellCarrier-384 Ultra microplates (Perkin Elmer).

CNS.4U cells were thawed directly in CellCarrier-384 Ultra microplates (Perkin Elmer)

coated with poly-L-ornitin 0.01% (P4957, Sigma Aldrich) and laminin (1mg/mL), 7 days

before experiment and they are maintained following suppliers’ instructions. In the first exper-

iment with CNS.4U, cells were plated at a density of 6 000 cells/well and 9 000 cells/well in the

second one.

Cell free assay for TTL activators

A short biotinylated peptide corresponding to last 15 amino acids of the C-ter of tubulin was

used as a substrat for TTL enzyme: Biotinyl-V-D-S-V-E-G-E-G-E-E-E-D-E-E. The enzyme

TTL is pre-incubated with compound during 15min at room temperature. Then, the peptide

substrat is added. Peptide was incubated at room temperature with different concentrations

(10–100 μM) for TTL at a final concentration of 55nM in a reaction volume of 50μl (MES

50mM; KCl 100mM; MgCl2 25mM; DTT 0.001M; ATP 0.0003M et L-Tyrosine 0.001M in 5%

DMSO) during 30min. After 30min, reaction was stopped by the addition of TFA to a final

concentration of 1%. The final volume was about 100μl.

Reaction products were analyzed by RapidFire/MS using the conditions

described above

The RapidFire 365 (Agilent Technology) high-throughput system (RF) was coupled to a

G-6460 triple quadrupole mass spectrometer (Agilent) operated in electrospray negative-

ion mode. A type C cartridge was used for sample trapping and elution. The RapidFire

method employs a solid phase extraction (SPE) sample cleanup step directly coupled to MS

detection.

Samples were aspirated for 600 ms, followed by 4000 ms loading and washing with mobile

phase A of 98% ddH2O+2%ACN+TFA0.01% at a flow rate of 1.5 mL/min. A fixed loop of

40 μL samples was loaded onto the cartridge. Samples were then eluted for 5000 ms with

mobile phase B of 80% CAN + 20% ddH2O + TFA 0.01% at a flow rate of 1.25 mL/min, fol-

lowed by reequilibrating the cartridge with mobile phase A at 0.7 mL/min for 500 ms.

MS parameters: Gas Temp: 200; Drying Gas: 9; Nebulizer: 40; Sheath Gas Temp: 400; Seath

Gas Flow: 12; VCap: 3500; Nozzle Voltage: 300; Delta EMV: 400

MRM transitions for tubulin peptide substrat and reaction products were m/z 858.3!

669.5, m/z 939.8! 719.8, respectively. The dwell time for each transition was 4 ms. Peak areas

were integrated, and the areas under curves are converted into the amount of substrate

remaining and the product formed using a substrate and reaction product calibration curve.

TCP inhibition with parthenolide combined with paclitaxel

MEF cells were plated overnight at 2 500 cells per well and 2 000 cells per well in CellCarrier-

384 Ultra microplates (Perkin Elmer). Cells were distributed under 30 μl of medium. Next day

plates were centrifuged before and after compounds adding at 900 rpm, 5 minutes, 20˚C.

Parthenolide was added with an ECHO 550 (Labcyte) in dose response from 1.7 to 50 μM in

duplicate. After parthenolide, paclitaxel was added too in half microplates with ECHO 550

(Labcyte) at a final concentration of 5 μM. Compounds were incubated on cells 1h, 4h and

24h, then plates were fixed and labeled.

PLOS COMPUTATIONAL BIOLOGY Computational model of the microtubule tyrosination cycle

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010236 June 27, 2022 14 / 26

https://doi.org/10.1371/journal.pcbi.1010236


Immunostaining

After incubation with compounds, cells were washed once with methanol and fixed 6 minutes

with methanol (Fisher Medical) at room temperature. Cells were washed twice with PBS

+/+ and permeabilized 15 minutes in PBS/BSA 2%/Triton 0,1%. After permeabilization solu-

tion aspiration, cells were incubated overnight at 4˚C with a mixture of specific tubulin anti-

bodies in PBS/BSA 2%/Triton 0,1%: YL1/2 (Tyr-tubulin antibody, Origene) and detyrosinated

alpha Tubulin antibody (Abcam) at a 1/500 dilution, in some experiments a third primary

antibody was used an anti-alpha tubulin (Abcam) at a 1/1000 dilution. Cells were rinsed twice

in PBS +/+ and incubated 1 hour at room temperature with a mixture of secondary antibodies

(Life Technologies) at a 1/1000 dilution in PBS/BSA 2%/Hoechst 33342 0,1%: Alexa Fluor 488

anti-mouse or anti-rat, Alexa Fluor 568 anti-rat or anti-rabbit and Alexa Fluor 647 anti-rabbit.

Cells were washed twice in PBS +/+ and stayed in it.

Immunostaining was performed using the following primary antibody: anti-tyrosinated

tubulin antibody (Abcam, Ab6160 1:1000) and anti-detyrosinated tubulin antibody (Abcam

Ab48389 1:200) in a 0.5% triton solution. A single primary antibody has been used both for

tyrosinated and detyrosinated tubulin ensuring the specificity and consistency of the analysis.

The following secondary antibody were used: anti-rabbit Alexa fluor 488 antibody (Life

A11034 1:1000), anti-rat Alexa fluor 647 (Life A21247 1:1000) and Hoechst (Life technologies

H3570 1:1000) to stain for nuclei. We had to change the secondary antibody to adapt the dif-

ferent wavelengths for the imaging requirements depending on the cellular models. The choice

of a secondary antibody does not change the primary antibody specificity and we did not com-

pare the absolute intensity results between the experiments.

High-content imaging and image analysis

High-content imaging descriptors measure the fluorescence level of different markers carried

by antibodies that bind to biological species. Here, we are interested in tyrosinated (Tyr) and

detyrosinated (Detyr) species in different cellular models. HCI descriptor values are measured

and extracted at the single cell level through an image analysis (described below), which pro-

vides raw data for analysis. The major types of descriptors are shape-based, intensity-based,

texture-based, and microenvironment-based [75]. In the current work, we are interested in

intensity-based descriptors that are computed on actual intensity values in each channel of the

image on a single-cell basis and HCI descriptor values corresponds to the intensity values of

the markers averaged over a cell population.

Image acquisition was performed using either the Cell Voyager 8000 (Yokogawa Inc.) or

the Opera Phenix (PerkinElmer, Waltham, MA, USA) high content screening systems. Images

were captured using a 40X or 20X water immersion objective depending of the cell line and

the cell morphologies.

Confocal images acquired by the Opera Phenix were then analyzed using the Harmony

software (PerkinElmer) and those acquired by the Cell Voyager 8000 were first transferred to

the Columbus Image Data Storage and analyzed using the Columbus Analysis System

(PerkinElmer).

Since we used proliferative cells and neurons as cellular models, we had to optimize the

image segmentation parameters to perform a consistent detection of the cellular compart-

ments (nucleus and the cytoplasm) in these cellular models. To improve the nuclear segmenta-

tion, the nuclear staining channel image is first filtered using a regular Gaussian convolution

kernel. Then, the nuclei segmentation is performed using the dedicated building block. To pre-

vent false positive cell segmentations, nuclei were rejected at this stage based on morphological

and intensity criteria. Using this filtered population of nuclei, the cytoplasm segmentation is
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performed using a region growing algorithm on a microtubule channel depending on the cel-

lular model. Cells in contact with the edges of the image are discarded to prevent quantifica-

tion on cropped cells, and finally signal intensity quantifications are performed on this

selected cell population objects and exported at a single cell level.

Modeling software biochemical abstract machine (BIOCHAM)

The Biochemical Abstract Machine (BIOCHAM) is a modelling software for cell systems biol-

ogy based on Chemical Reaction Networks (CRN), with some unique features for static analy-

sis, and dynamic analyses using temporal logic constraints. BIOCHAM is compatible with the

Systems Biology Markup Language (SBML). BIOCHAM is a free software protected by the

GNU General Public License GPL version 2 (http://lifeware.inria.fr/biocham4/). The online

version 4.5.17 of BIOCHAM was used in this study.

Parameter search procedures

Our CRN model of the detyrosination/tyrosination cycle (CDT) is interpreted by parametric

Ordinary Differential Equations (ODE). The models CDTN and CDTP differ by the values of

two reaction kinetic parameters.

The model CDTN is parameterized with kinetic constants taken from the literature with

some hypotheses or inferred from a parameter search procedure. The kinetic parameters mc1

and mc2 correspond to Michaelis constants for the detyrosinated and tyrosinated microtubule

depolymerization reactions, and without direct experimental data, their values are inferred

using BIOCHAM’s optimization procedure that aims at finding the values of (mc1, mc2) that

make the tyrosinated species concentrations equal to 2.5 around five minutes knowing that

their half-lives is of the order of minutes [58–60]. That constraint can be expressed in BIOC-

HAM by the following logical formula of First-Order Linear Time Logic with linear con-

straints over the reals, FO-LTL(Rlin), logic [52]:

FðTime ¼¼ 5=nTyr ¼ factor1Þ

and objective value factor1 = 2.5. The formula states that finally (F), at time around five units,

the tyrosinated species concentration has some value assigned to variable factor1. Such a

FO-LTL(Rlin) formula given with some objective values for its free variable (here factor1) can

be evaluated on a simulation trace to give a continuous satisfaction degree in the interval [0,1]

which indicates how far from satisfaction is the formula, between false (0) and true (1). Such a

degree of satisfaction of the formal specification of the cell behaviour is used as objective func-

tion to guide search during parameter optimization.

BIOCHAM software uses the Covariance Matrix Adaptation Evolution Strategy

(CMA-ES), a state-of-the-art black-box continuous non-linear optimization algorithm [76], to

infer parameter sets satisfying such FO-LTL(Rlin) constraints [51,52].

In our study, we optimized the kinetic parameters mc1 and mc2 to parameterize the CDTN

model using the following BIOCHAM command:
search_parameters(

F(Time == 5 /\ Tyr = factor1),
[0 <= mc1 <= 10, 0 <= mc2 <= 10],
[factor1 -> 2.5]

).

The two different kinetic parameter values of the CDTP model have been obtained by

BIOCHAM’s optimization procedures for fitting the CDTN model to experimental properties

observed in proliferative cells and formalized in quantitative temporal logic [51,52]. The

parameter search procedure aims at finding the minimal changes in the CDTN model to make
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the system stabilize before five minutes and with a tenfold ratio of tyrosinated over detyrosi-

nated species in accordance to our experimental and literature data. That constraint can be

expressed in BIOCHAM by the following logical formula:

FðTime ¼¼ 5=nTyr ¼ ratio1 � Detyr=nFðTime ¼¼ 20=nTyr ¼ ratio2 � DetyrÞÞ

and objective values ratio1 = ratio2 = 10. The formula states that finally (F), at time around

five units, the ratio Tyr over Detyr has some value assigned to variable ratio1, and later on (F)

at time around 20, the ratio Tyr over Detyr has value ratio2. Such a FO-LTL(Rlin) formula

given with some objective values for its free variables (here ratio1 and ratio2) can be evaluated

on a simulation (or experimental) trace to give a continuous satisfaction degree in the interval

[0,1]. In our study, we optimized parameter values using the following BIOCHAM command

schema, given below for two parameters (Vm2, k1):
search_parameters(

F(Time == 5 /\ Tyr = factor1 � Detyr
/\ F(Time == 20 /\ Tyr = factor2 � Detyr)),

[0<= Vm2 <= 1000, 0 <= k1 <= 100],
[factor1 -> 10, factor2 -> 10]

).

Robustness measure procedure

In BIOCHAM, the continuous satisfaction degree of an FO-LTL(Rlin) formula, evaluated on a

given simulation (or experimental) trace, and given with objective values for the free variables,

is used to guide the search to compute (locally) optimal parameter values, but also to compute

parameter sensitivity indices and model robustness measures with respect to parameter pertur-

bation [52]. In BIOCHAM, parameter sensitivity indices are computed by estimating the

mean satisfaction degree (i.e. robustness [77]) of the temporal specification by varying each

parameter independently [52]. We computed the sensitivity indices of the ratio between tyrosi-

nated and detyrosinated species (TyrDetyr) at steady state (given here by value 0.065386 for

that ratio) to variations of the reaction kinetic parameters by a coefficient of 100%, such as the

detyrosination rate constant (k1) below, using the following BIOCHAM command:
sensitivity(

F(G(TyrDetyr = x)),
[k1],
[x -> 0.065386],
robustness_coeff_var: 1

).

Landscape of behavioural constraint satisfaction degree

The following BIOCHAM command is used to obtain the landscape of Fig 2E:
scan_parameters(

F(Time == 5 /\ Tyr = factor1 � Detyr /\ F(Time == 20 /\ Tyr ==
factor2 � Detyr)),

(0 <= Vm2 <= 15),
(0 <= km1 <= 30),
[factor1 -> 10, factor2 -> 10],
resolution:30).

This command returns some statistics and draws the landscape of the satisfaction degrees

(truncated to 1) of a FO-LTL(Rlin) formula obtained by varying two parameters in given inter-

vals. Here, the FO-LTL(Rlin) formula is: F(Time == 5 /\ Tyr = factor1 � Detyr
/\ F(Time == 20 /\ Tyr = factor2 � Detyr)) and the kinetic parameters (Vm2,

km1) are scan within the specified intervals (0–15, 0–30) respectively.
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Multistability analysis

BIOCHAM software can check necessary conditions for the existence of multiple non-degen-

erate steady states in the differential dynamics of a reaction model, by checking the existence

of positive circuits in a labeled influence graph associated to the structure of the reaction net-

work [78].

When applied to our reaction model, the BIOCHAM command:
check_multistability.

returns the absence of such positive circuits. This proves the absence of multiple non degen-

erate steady states in the ODE system and ensure the uniqueness of the stable state reached

from different initial conditions.

Unperturbed numerical simulation

Unperturbed numerical simulations correspond to the numerical simulations of the computa-

tional models CDTN and CDTP as parameterized. Numerical simulations of the computational

models CDTN and CDTP were carried out within BIOCHAM.

BIOCHAM reaction models can be interpreted in multiple ways. In the differential seman-

tics, we can run the software command numerical_simulation. That command performs a

numerical integration from time 0 up to a given time x specified with the command option
(time:x).

By default, BIOCHAM uses the numerical solver bsimp (Implicit Bulirsch-Stoer method of
Bader and Deuflhard) of the GNU Scientific Library to perform numerical simulations. BIOC-

HAM offers other numerical solvers for continuous, stochastic and boolean models not used

in this study.

Numerical simulations results were exported in csv format file using the command export_-
plot(“FILENAME”). The resulting csv file was downloaded and copied pasted within the soft-

ware GraphPad 8.3.0 for a better rendering of figures. The landscape figures were directly

produced by BIOCHAM.

Perturbed numerical simulation

We simulated the effect of adding an activator or an inhibitor compound in the parameterized

computational models CDTN or CDTP by increasing or decreasing kinetic parameters for a

given time condition.

In BIOCHAM, perturbed numerical can be achieved by using events to change some

parameter values during simulation once a condition becomes satisfied. A condition can be

based on time (variable Time) or on molecular species values. For instance, when time

becomes greater than 20 (units of time) in a numerical simulation, we decreased or increased

the value of some kinetic parameters, hence the name perturbed numerical simulation.

We performed several perturbed numerical simulations using the computational models

CDTN and CDTP. The BIOCHAM command:
add_event(Time > 20, k1 = 0.01)

specifies that when the time becomes greater than 20 (unit of time), the kinetic parameter

k1, i.e. the detyrosination rate constant, is set to 0.01. This command simulates the addition of

an inhibitor of the detyrosination reaction at time 20.

We also performed several perturbed numerical simulations using the unperturbed compu-

tational models CDTN and CDTP to simulate prospective drug combinations. The commands
add_event(Time > 20, km1 = 4.78, Vm2 = 2)

and
add_event(Time > 20, km1 = 0.478, Vm2 = 0.2)
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specify changes of values of the depolymerization rate constant of detyrosinated microtu-

bule, km1, and the tyrosination rate constant, Vm2, at next time greater than 20 (time units),

and then later on at next time greater that 20.

In our study, we performed the following perturbed numerical simulations for simulating:

• the addition of an activator of TTL, by increasing the tyrosination rate constant (Vm2),

• the addition of an inhibitor of TCP, by decreasing the detyrosination rate constant (k1),

• the addition of an activator of the depolymerization factors, by increasing the detyrosinated

microtubule depolymerization rate constant (km1),

• the addition of an activator of the depolymerization factors synergistically combined with

the addition of an activator of TTL, by increasing both the detyrosinated microtubule depo-

lymerization rate constant (km1) and the tyrosination rate constant (Vm2).

Data analysis

The data processed in the study come from numerical simulations, parameter search and sen-

sitivity analysis using BIOCHAM software (unperturbed and perturbed numerical simula-

tions), raw data from the image analysis which were processed by software Colombus and

Harmony.

The data from numerical simulations, sensitivity analysis and parameter scan were

uploaded and processed within GraphPad 8.3.0 software for the creation of figures.

For all datasets exported from image analysis from Columbus and Harmony, python scripts

have been developed to extract the HCI descriptors of interest in order to export the data in

csv format file to be used by GraphPad 8.3.0 software. The HCI descriptors of interest are

those representing the quantification of Tyr, Detyr and the Tyr/Detyr ratio in the respective

experiments. The Tyr/Detyr ratio has been computed during the image analysis process or

directly from the HCI descriptors Tyr and Detyr within the scripts.

From processed data from image analysis, GraphPad 8.3.0 software was used for the crea-

tion of figures, to compute descriptive statistics and for curve fitting. The Z’- factor displayed

within GraphPad figure was computed within Excel sheet using the Z’-factor formula

described above.

Statistical analysis

In high-content imaging, the Z’-factor criteria is classically used in order to evaluate the quality

of chosen readout and judge the response quality of a particular assay [79]. The Z’-factor indi-

cates the extent of separation between positive and negative. It is defined as:

Z’ � factor ¼ 1 �
3ðsp þ snÞ

jmp � mnj

where μp and σp are the mean and standard deviation of the positive control (or alternately, the

treated samples) and μn and σn are those of the negative control.

The Z’-factor ranges from -1 to 1, with the following interpretation:

• 1> Z’ > = 0.5: statistical distribution from the negative and positive controls are well sepa-

rated: separation band is large

• 0.5> Z’ > = 0: statistical distribution from the negative and positive controls are separated:

separation band is small
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• Z’< 0: statistical distribution from the negative and positive controls overlap: no separation

band, the negative control signal variation and the positive control signal variation bands

overlap

Supporting information

S1 Fig. Plate layout for tyrosination status quantification and detyrosination reaction inhi-

bition in MEF cells and hTERT cells. MEF and hTERT RPE-1 cells were screening using 5

compounds in dose response and kinetic. Compound names: Parthenolide, IB737, IBZ36,

IBZ35, Paclitaxel. Negative control: DMSO. Positive control: Paclitaxel at 5 μM. Dose response

range for the screened compounds: from 1.7 μM to 50 μM in duplicate. Incubation time: 1

hour, 4 hours and 24 hours. Antibodies: Tub Tyr (Origen, SM2202P) + A488, Tub deTyr

(Abcam, ab48389) + A647. Following treatment, an image analyses was performed (see Mate-

rials and Methods). Following image analysis, raw data were processed (see Materials and

Methods). The HCI descriptors Tyr, Detyr, Tyr/Detyr were used for data analysis. The tyrosi-

nation status quantification data analysis used the wells from the negative controls at 1 hour.

The detyrosination reaction inhibition data analysis used the wells were Parthenolide and

Parthenolide+Paclitaxel were screened in dose response at 1 hour and the wells from the nega-

tive and positive controls.

(TIF)

S2 Fig. Example of compound activities on the tyrosination status of tubulin C-terminals

in cell free assay. Dose response diagrams in replicates (n1, n2) showing an increase of the tyr-

osination status (% Effect) of tubulin C-terminals by activation of the TTL enzyme in cell free

assay. Data in each graph were fit using a sigmoidal dose-response curve with the ExcelFit soft-

ware. Compound EC50 values in μM: (Compound 1: 1.63E-05 (n1), >3.00E-05 (n2)), (Com-

pound 2: 6.77E-06 (n1), 6.77E-06 (n2)), (Compound 3: 6.83E-06 (n1), 6.09E-06 (n2)),

(Compound 4, 2.98E-06 (n1), 3.31E-06 (n2)). The X axis in each graph is presented as log10

values.

(TIF)

S3 Fig. Plate layout for compound screening in MEF cells and CNS.4U cells. MEF and

CNS.4U cells were screening using 4 chemical compounds in dose response and kinetic. Com-

pound names: Compound 1, Compound 2, Compound 3, Compound 4. Negative control:

DMSO. Positive control: Paclitaxel at 5 μM. Dose response range for the screened compounds:

from 0.3 μM to 10 μM in duplicate. Incubation time: 5 min. Antibodies: Tub Tyr (Life Tech-

nologies, A11077) + A568, Tub deTyr (Life Technologies, A21245) + A647. Following treat-

ment, an image analyses was performed (see Materials and Methods). Following image

analysis, raw data were processed (see Materials and Methods). The HCI descriptor Tyr/Detyr

were used for data analysis. The data analysis for compound screening in MEF and CNS.4U

cells used all the wells.

(TIF)

S4 Fig. High-content imaging descriptor Tyr/Detyr from compound screening in MEF

cells. MEF cells were screening using 4 compounds in dose response and kinetic. Compound

names: Compound 1, Compound 2, Compound 3, Compound 4. Negative control: DMSO.

Dose response range for the screened compounds: from 0.3 μM to 10 μM in duplicate. At any

dose, the tyrosination status did not significantly increased (Z’ < 0.5). Incubation time: 1 hour.

Following treatment, an image analyses was performed (see Materials and Methods). Follow-

ing image analysis, raw data were processed (see Materials and Methods). The HCI descriptor
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Tyr/Detyr was extracted and fit using a sigmoidal dose-response curve to the data, using the

GraphPad Prism 8.3.0 software. Log IC50 values in μM: (Compound 1, -3.354), (Compound 2,

Not converged), (Compound 3, -5.121), (Compound 4, -5.391). DMSO values were interpo-

lated using a line curve. The X axis in each graph is presented as log10 values, and the data are

plotted as the mean ± SD.

(TIF)

S5 Fig. High-content imaging descriptor Tyr/Detyr from compound screening in CNS.4U

cells. CNS.4U cells were screening using 4 compounds in dose response and kinetic. Com-

pound names: Compound 1, Compound 2, Compound 3, Compound 4. Negative control:

DMSO. Dose response range for the screened compounds: from 0.3 μM to 10 μM in duplicate.

At any dose, the tyrosination status did not significantly increased (Z’ < 0.5). Incubation time:

5 minutes. Following treatment, an image analyses was performed (see Materials and Meth-

ods). Following image analysis, raw data were processed (see Materials and Methods). The

HCI descriptor Tyr/Detyr was extracted and fit using a sigmoidal dose-response curve to the

data, using the GraphPad Prism 8.3.0 software. Log IC50 values in μM: (Compound 1, -6.818),

(Compound 2, -5.905), (Compound 3, -5.732), (Compound 4, -6.29). DMSO values were

interpolated using a line curve. The X axis in each graph is presented as log10 values, and the

data are plotted as the mean ± SD.

(TIF)

S1 Data. High-content imaging data for tyrosination status quantification and detyrosina-

tion reaction inhibition in hTERT RPE-1 cells and MEF cells.

(ZIP)

S2 Data. High-content imaging data from compounds screening in MEF cells and CNS.4U

cells.

(ZIP)
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Validation: Jeremy Grignard, Véronique Lamamy, Eva Vermersch, Philippe Delagrange,

Thierry Dorval, François Fages.
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