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RNA-seq is being used increasingly for gene expression studies and it is revolutionizing

the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is

still evolving. Therefore, we specifically designed this study to contain large numbers of

reads and four biological replicates per condition so we could alter these parameters

and assess their impact on differential expression results. Bacillus thuringiensis strains

ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and

transcriptomics data were generated using one lane of sequence output from an Illumina

HiSeq2000 instrument for each of the 32 samples, which were then analyzed using

DESeq2. Genome coverages across samples ranged from 87 to 465X with medium

lots and culture dates identified as major variation sources. Significantly differentially

expressed genes (5% FDR, two-fold change) were detected for cultures grown using

different medium lots and between different dates. The highly differentially expressed

iron acquisition and metabolism genes, were a likely consequence of differing amounts of

iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology

since we hypothesized and confirmed the two LBmedium lots had different iron contents

(∼two-fold difference). This study shows that the noise in data can be controlled and

minimized with appropriate experimental design and by having the appropriate number of

replicates and reads for the system being studied. We outline parameters for an efficient

and cost effective microbial transcriptomics study.

Keywords: replicates, DESeq2, negative binomial, Illumina, normalization, coverage

INTRODUCTION

Ever decreasing next-generation sequencing (NGS) costs, continued technical and analytical
advances, along with diverse applications have made RNA-sequencing (RNA-seq) an ever
increasing choice for transcriptome studies (Croucher and Thomson, 2010; Marguerat and Bahler,
2010; Williams et al., 2014). RNA-seq applications include differential gene expression studies, the
detection of strand specific expression or transcript fusions, determination of alternative splicing
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isoforms, identification of specific SNP’s and their locations,
long and small RNAs, genome guided, and de novo transcript
assemblies and start sites analyses (Martin and Wang, 2011;
McGettigan, 2013; Mutz et al., 2013). It also enables detection
of weakly expressed genes and does not have to be limited by
previously sequenced genome knowledge (Marguerat and Bahler,
2010).

Various NGS platforms, assembly and statistical tools can be
used to generate RNA-seq datasets, but the overall methodology
across platforms is similar (Williams et al., 2014). While direct
RNA sequencing is possible (Ozsolak et al., 2009), for the
majority of expression studies RNA is isolated from cells and
usually undergoes rRNA depletion or poly(A) enrichment.
The transcript enriched material is then used as template
material to generate complementary DNA (cDNA) libraries via
a reverse transcription enzymatic reaction, which represents the
transcripts within each sample. Library creation may include
the addition of barcodes/adaptors so samples from multiple
conditions can be pooled, run together, and then data attributed
appropriately. In the case of indirect RNA-seq methods an
amplification step is required. Sequence data in the form of
raw reads are quality filtered/trimmed, most often aligned to
a reference genome, then the number of reads mapped to
individual genes in the reference genome are counted and then
further used to estimate differential gene expression using a range
of statistical methods (Auer and Doerge, 2010; Marguerat and
Bahler, 2010; Oshlack et al., 2010).

While RNA-seq has a number of advantages over DNA
microarrays, it is still a developing technology that faces a
number of challenges (Wang et al., 2009; Ozsolak and Milos,
2011; Mutz et al., 2013; Peixoto et al., 2015). Variation, errors,
and biases may be introduced in any of the multiple steps
used to generate and analyze the datasets (Pinto et al., 2011).
Technical and biological factors that contribute to variation,
errors, and biases include experimental design, RNA extraction
procedures, sample handling, differences in amount of starting
RNA, library preparation steps such as PCR amplification, sample
storage, GC content, and read number differences (Fang and
Cui, 2011; Peixoto et al., 2015). A number of different of
normalization methods have been developed for NGS data to
remove unwanted variance (Robinson and Oshlack, 2010; Dillies
et al., 2013). Normalizationmethods include examples such Total
Count (TC), Upper Quartile (UQ), Reads Per Million base pairs
(RPM), Reads Per Kilobase per Million base pairs (RPKM),
Trimmed Mean of M-values (TMM), Kernel Density Mean of
M-component (KDMM), and analysis packages like DESeq and
edgeR have inbuilt normalization algorithms (Anders andHuber,
2010; Robinson and Oshlack, 2010; Anders et al., 2013; Dillies
et al., 2013; Love et al., 2014). There is no clear consensus
on which normalization is the best suited for RNA-seq data.
Although, studies that have compared some of these methods
to one another show that UQ, TMM, and DESeq normalization
result in similar qualitative characteristics of the normalized
dataset and differential expression analysis (Dillies et al., 2013;
Soneson and Delorenzi, 2013). Recent studies have shown that
RNA-seq data often fits well to a negative binomial distribution
(Miller et al., 2011; Li and Tibshirani, 2013; Gierlinski et al.,

2015; Mi et al., 2015) and this method is being more widely
adopted. While a well-designed experiment and normalization
are important, they may be insufficient if there is large unknown
variance (Peixoto et al., 2015). A recent study analyzed RNA-
seq data from 48 samples obtained from seven Illumina HiSeq
2000 lanes and concluded that “bad” replicates risk skewing data
interpretation and that increasing biological replicates beyond
the typical two or three is beneficial (Gierlinski et al., 2015).

Other important considerations for an RNA-seq study
include the choice of quality trimming/filtering tools, mapping
algorithm, statistical test, required number of reads, or genome
coverage, number of biological replicates and cost (Pinto et al.,
2011; Liu et al., 2014; Peixoto et al., 2015). NGS technologies
generate large datasets that may be computationally challenging
for smaller laboratories to store, retrieve, and analyze. Thus, there
is a demand for bioinformatic tools that are proficient in data
handling i.e., are fast and have reduced error rates, have a broad
consensus and are easy to use (Wang et al., 2009; Auer and
Doerge, 2010; Fonseca et al., 2012; Sims et al., 2014). Cost is an
essential factor for most laboratories, which is directly related to
the number of reads generated per sample and the number of
replicates used. Thus, it is important to establish an acceptable
trade-off between number of reads and replicates for an efficient,
powerful, yet cost effective experiment (Liu et al., 2014).

The aim of the present study was to better understand the
required number of reads and replicate numbers for statistically
confident results in the context of a typical experimental
laboratory. Transcriptomic profiles were generated for two
closely related Bacillus thuringiensis strains (serovar berliner
ATCC10792 and CT43) under similar experimental conditions
and since the outcomes for each strain were similar to one
another we mainly present ATCC10792 analyses and analyses
for strain CT43 are shown as Supplementary Material. B.
thuringiensis is a Gram-positive, spore and Cry toxin producing
bacterium (Joung and Cote, 2001) that has been applied for
biocontrol of different insects (Baxter et al., 2011; Bravo et al.,
2011; Gassmann et al., 2014) and a number of genome sequences
are available for study (He et al., 2011; Johnson et al., 2015).
The ATCC 10792 genome (NCBI accession NZ_CM000753)
is 6,260,142 bp, was recently reannotated with 6330 genes and
13 copies for the 5S, 16S, and 23S rRNA genes predicted. The
data from this well-replicated study with 32 samples, each from
one Illumina HiSeq 2000 lane, generated a large number of
reads per sample, and significantly differentially expressed genes
were detected using DESeq2 (Love et al., 2014). Differentially
expressed (DE) genes were validated by Real Time quantitative
RT-qPCR. This study provides insights into sample and read
numbers required to derive biologically meaningful results and
will be useful to others looking to develop or assess different
bioinformatics and/or statistical approaches for RNA-seq
studies.

MATERIALS AND METHODS

Organism Growth and Sampling
Bacillus thuringiensis serovar berliner strain ATCC 10792
and Bacillus thuringiensis serovar chinensis strain CT-43 were
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obtained from the Bacillus Genetic Stock Center (www.bgsc.org)
and have Average Nucleotide Identity (ANI)-values of ≥99.63%
in reciprocal genome analyses based on BLAST (ANib). Each
strain was plated on Luria Bertani (LB) medium and cultured
at 30◦C. Single colonies were used to inoculate 5mL LB starter
cultures, which were grown at 30◦C with shaking at 200 rpm
(New Brunswick Scientific, Innova 4430) overnight. For RNA-
seq experiments, 1mL aliquots of overnight cultures were used to
inoculate 500mL baffled flasks containing 200mL of LBmedium.
Cultures were grown for 3 h at 30◦C with shaking at 200 rpm
and harvested at approximately mid-log phase (OD600, ∼0.42).
To harvest cells for RNA extraction, 40mL culture aliquots were
collected by rapid centrifugation (Sorvall, Evolution RC) at 7649
× g at 4◦C for 5min. Cell pellets were frozen in liquid nitrogen
for 10min and then stored at −80◦C. All cultures were grown
and harvested under similar conditions. A total of 16 samples
were collected per strain, with four biological replicates for each
strain, collected on four different dates and using media from
two different LB broth lots (lot #1091744 and 7220443) using
water from two different buildings to generate 32 samples for
RNA-seq analysis (Figure 1, A summary for all supplementary
material is provided Data Sheet 1. Data Sheet 2 contains growth
and RNA-seq analysis). Difco Lennox LB medium was used in
this study (Becton, Dickinson and Company, Franklin Lakes, NJ,
USA).

RNA Extraction and cDNA Library
Preparation
High quality RNA (Bioanalyzer RNA integrity numbers (RINs)
>8.5) was isolated from strain CT43 and strain ATCC
10792 using the TRIzol reagent (Invitrogen, Carlsbad, CA,

USA) combined with a bead beating step, essentially as
described previously (Wilson et al., 2013). Briefly, cell pellets
from each sample were resuspended in TRIzol reagent, then
TRIzol/cell mixtures were added to tubes containing 800mg
of 0.1mm glass beads (Biospec Products Inc., Bartlesville, OK,
USA) and cells were lysed by bead beating on a Precellys
24 high-throughput tissue homogenizer (Bertin Technologies,
Montigny-le-Bretonneux, France) with the following settings;
3 × 20 s at 6500 rpm. Chloroform was added post-lysis, mixed
by vortexing, and the mixture was centrifuged at 20,817 ×

g (Centrifuge 5417R, Eppendorf) for 15min at 4◦C. The
aqueous phase was collected and mixed with ethanol and
purified using the RNeasy Mini kit (Qiagen, Waltham, MA,
USA) in accordance with the manufacturer’s instructions and
using the optional on column DNaseI treatment. The quantity
and quality of RNA was assessed using a NanoDrop ND-
1000 spectrophotometer (NanoDrop Technologies, Wilmington,
DE) and Agilent Bioanalyzer (Agilent, Santa Clara, CA, USA).
Ribosomal RNA was depleted from the samples using a Ribo-
Zero rRNA removal kit for Gram-Positive bacteria (Epicentre,
Madison, WI, USA) and cDNA libraries were prepared and
barcoded using a ScriptSeq v2 RNA-seq Library preparation
kit. The final libraries were quantified with a Qubit double
stranded broad range assay kit and fluorometer (Invitrogen)
and quality assessed using a Bioanalyzer (Agilent). Samples were
diluted according to manufacturer’s recommendations using the
Illumina dilution calculator, and sequence data was generated
via two runs using an Illumina HiSeq 2000 instrument with
SR50 sequencing kits (50 bp single end reads) and using phiX
control DNA (Illumina, Inc., San Diego, CA, USA), as previously
described (Wilson et al., 2013).

FIGURE 1 | Sampling and major sources of variation. Strains CT43 and ATCC10792 grown in two medium lots #1091744 and 7220443 in water taken from

building 1520 and 1610. Bacteria were cultured on four different dates and four biological replicates were grown to mid-log phase for each date, harvested and then

RNA-seq data were generated using an Illumina Hiseq 2000 instrument.
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Data Analysis
Mapping, Clustering, and Quality Control
Raw reads were imported into the CLC Genomics Workbench
7.0.4 (CLCBio, a Qiagen company) and were filtered and
trimmed based on quality assessments. Sequence reads <20
nucleotides were discarded. A modified-Mott trimming
algorithm, which incorporates quality scores on a Phred scale,
was used for quality trimming in CLCBio with the quality
trimming parameter set to 0.02. Trimmed and filtered reads were
then aligned to their respective reference genomes, using the
default “prokaryote genomes” and unique reads settings. Raw
data variance was observed by Principle Component Analysis
(PCA) and by cluster analysis using JMPGenomics 6.0 (SAS
Institute, Cary, NC, USA).

Data Access
The genomes used in this study have been described (He et al.,
2011; Johnson et al., 2015) and are available from the NCBI
GenBank database under accession numbers for NZ_CM000753
and NC_017208 for strains ATCC10792 and CT43, respectively.
RNA-seq data have been deposited in NCBI Gene Expression
Omnibus (GEO) database under accession number GSE71189
and raw sequence data deposited at the NCBI Sequence Read
Archive (SRA) under accession number SRP041628.

Differential Gene Expression Analysis:
DESeq2
Uniquely mapped reads were incorporated into a tabular format
(Data Sheet 3) and analyzed using the DESeq2 differential
expression analysis pipeline (Love et al., 2014). Differentially
expressed (DE) genes were identified based on comparisons
between medium lots and culture dates for each strain using a 5%
False Discovery Rate (FDR) and a two-fold expression difference
to detect significantly DE genes (Data Sheets 4–6).

RT-qPCR Validation of RNA-seq Results
RNA-seq data for the differentially expressed genes was validated
using real-time quantitative PCR (RT-qPCR) as previously
described (Wilson et al., 2013). Six B. thuringiensis strain
ATCC10792 genes that represented a range of differential
expression values from RNA-seq data were chosen for validation.
Primers used to validate medium and the date effects are listed in
Data Sheet 7.

Determination of Iron Content in Media
and Water
Iron content for the LB medium and for the water sources from
the two different building sources were quantified by elemental
analysis using a Perkin Elmer ELAN 6100 Inductively Coupled
Plasma-Mass Spectrometer (ICP-MS), as previously described
(Zhang et al., 2010). Water source and media lot pH were
measured using colorpHast pH-indicator strips (EMDMillipore,
Billerica, MA, USA).

Alteration of Sequence Read and
Biological Replicate Numbers
To observe the effect of using fewer biological replicates and
lower sequence read numbers on differential gene expression
detection, data available from all biological replicates per strain
within each condition (i.e., same medium lot and date of culture)
were grouped in sets with replicates for another condition
(Figure 1). The number of biological replicates varied from
two to four and the number of differentially expressed genes
were determined using DESeq2 (Data Sheet 8). For example,
a set of two replicates 1A/2A were grouped with 9A/10A for
differential expression estimation. When analyzing the effect
that the total number of reads per sample had on the number
of differentially expressed genes, the original number of reads
obtained for each sample with genome coverage ranges from
87 to 465x was considered as 100% reads (Supplementary File
1. Subsets with randomly reduced reads of 75, 50, 25, 10,
and 5% of the original number of reads were generated using
the “sample reads” option in the genome finishing module
of CLC Genomics Workbench 7.0.4 (CLCBio). Each subset
was remapped with the respective reference genome prior to
performing differential gene expression analysis via DESeq2
(Data Sheet 9).

RESULTS

RNA-seq Experiments
Samples were harvested for all cultures during mid-exponential
growth. The average culture turbidity, as measured by optical
density at OD600nm, was 0.422 ± 0.04 (range 0.384–0.504) for
strain ATCC10792 and 0.415 ± 0.05 for CT43 at the time of
sample collection (Table 1 and Supplementary File 1). For each
sample 15–30M raw reads were generated and the resulting
genome coverages were between 87 and 465X post-quality
filtering and trimming. Post-trimming and mapping results for
strain ATCC10792 is provided in Table 1 and similar results
were obtained for strain CT43 (Supplementary File 1). The
ribosomal RNA depletion strategy worked well and similarly
for both strains as indicated by an analysis showing that
on average for both strains only 0.07% of trimmed, mapped
reads aligned to the 5S, 16S, and 23S rRNA genes (S.D. ±
0.05 and 0.06 for ATCC 10792 and CT43, respectively). For
both strains, medium lot and culture date were identified
as important variance sources during Principal Component
Analysis (PCA) and cluster analysis of raw data (Figure 2).
Variation across biological replicates was low with the linear
(Pearson) correlation values within like replicates for both
ATCC10792 and CT43 ranging from between 0.95 and 0.99 (Data
Sheet 7).

Differential Gene Expression Analysis
using DESeq2: Medium Lot and Date Effect
As variation based on medium lots and culture dates was
detected, differential expression analysis was conducted to
examine the effect of different media, and culture dates on
transcriptomic profiles. When all replicates per strain and
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TABLE 1 | Summary of trimmed and mapped reads for strain ATCC10792.

ATCC10792 (Ref. genome

size = 6260142)

Sample OD600 Total no. of reads

(trimmed)

*Genome coverage Total mapped reads to

CDSs

Unique reads to

CDSs

1A 0.394 26,986,606 202x 19,762,858 19,708,701

2A 0.398 11,787,714 87x 7,579,068 7,534,508

3A 0.384 27,315,600 203x 19,174,331 19,098,676

4A 0.404 53,643,496 400x 37,447,561 37,326,511

5A 0.398 51,109,286 380x 37,229,691 37,112,202

6A 0.420 57,636,652 430x 41,566,889 41,466,848

7A 0.406 49,915,906 370x 34,855,294 34,747,534

8A 0.452 52,689,519 392x 37,104,818 36,999,659

9A 0.384 20,291,318 160x 9,640,962 9,590,311

10A 0.386 13,356,476 105x 6,185,482 6,154,691

11A 0.398 22,487,034 177x 9,762,915 9,698,237

12A 0.392 25,052,676 197x 10,408,386 10,361,349

13A 0.482 21,857,603 172x 9,475,191 9,444,912

14A 0.476 27,286,565 215x 10,871,957 10,828,524

15A 0.504 26,104,043 206x 9,558,505 9,484,938

16A 0.468 30,818,722 243x 21,037,052 20,987,988

*See Data Sheet 2 for calculation details.

100% reads were applied to the analysis, 735 and 1086 genes
(5% False Discovery Rate (FDR) and two-fold change) were
observed to be differentially expressed between medium lots
(#1091744 vs. #7220443) for strains ATCC10792 and CT43,
respectively. A complete list of altered gene expression based
on medium lot difference is provided in Supplementary File
3 for ATCC10792 and CT43. In response to the different
medium lots, genes related to iron acquisition and metabolism
were consistently differentially expressed for both strains. A
summary of iron related genes that passed both 5% FDR and
two-fold expression difference significance thresholds is shown
(Table 2, ATCC10792; Data Sheet 4 for CT43). Based on the
differential expression results, it was hypothesized that iron
had become limiting for cultures grown in medium from lot
1091744 compared to cells grown in medium prepared from
the other lot. An elemental analysis of sterile media prepared
from different lots revealed that higher amounts of total iron
were indeed present in medium lot #7220443 compared to
medium lot #1091744 (Table 3). Both media were prepared
at pH∼ 7.0.

When analyzing the data based on different culture dates

within a particular medium lot (the date effect) for ATCC10792,

403 genes were identified as differentially expressed for

cultures in medium lot #1091744 when culture from the date
2/23/12 was compared with 3/6/12. Similarly, for cultures
grown in medium lot #7220443 when comparing cultures
from dates 3/13/12 and 3/15/12, 458 genes were identified
as differentially expressed in ATCC10792 (Supplementary File
4). Similar results were obtained for strain CT43 when
differential gene expression analysis was conducted for the
culturing date effect within a particular medium lot (Data
Sheet 6).

Real Time-Quantitative PCR Validation
(RT-qPCR)
Six genes exhibiting a broad range of strain ATCC10792
expression differences for both medium lot and date effect
comparisons were selected for confirmation by RT-qPCR.
Comparison of DESeq2 estimated expression differences with
measurements determined by RT-qPCR showed that the two
different data sets had correlation coefficient (R2)-values of 0.90
and 0.92 for genes chosen for medium lots and culture dates,
respectively (Figure 3).

Effect of Reduced Number of Replicates
and Reads on Differential Gene Expression
Detection
In order to investigate the number of reads and replicates
required to detect differentially expressed genes with confidence,
the number of reads as well as replicates were varied, and
the subsequent outcome on differential gene detection was
determined. Based on knowledge from the literature as well as
a realistic range for number of replicates in any biological study
considering time, money and sample availability, here we focused
on two to four replicates.

A set of four replicates from each medium lot and any
one of the two culture dates with 100% of the trimmed reads
(∼12–58 M) was analyzed (Table 4). A total of 887 genes
were detected as significantly differentially expressed upon
analyzing the differential gene expression between medium
lots for ATCC10792 at thresholds of two-fold differential
gene expression and FDR ≤ 0.05. Analyses that included sets
of three and two replicates led to the detection of 885 and
720 differentially expressed genes, respectively (Table 4). The
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FIGURE 2 | Variation analysis of raw read count data for strain ATCC10792 and strain CT43. (A) Principal Component Analysis (PCA) for ATCC10792 using a

Pearson correlation coefficient and colored by media, (B) Hierarchical cluster analysis of the same data for strain ATCC10792, (C) PCA for CT43 and (D) CT43 cluster

analysis.

significantly differentially expressed genes with three replicates
had 743 and two replicates had 607 genes common with the
results from the four replicates analysis (Figure 4A). In order
to examine how fewer biological replicate numbers affected
differential gene expression results for an experiment containing
a modest number of reads, the 25% read dataset was selected
for further analysis. The 25% read dataset was created by
randomly removing 75% of the total reads that had been filtered
and trimmed for quality (100%; ∼12–58M reads). The sets of
replicates and their reduced (25%) read coverages were: 1A,
2A, 3A, 4A (∼3–13M) vs. 9A, 10A, 11A, 12A (∼3–6M) for
analysis with all four replicates; 1A, 3A, 4A (∼7–13M) vs. 9A,
11A, 12A (∼5–6M) for three replicates and 1A, 4A (∼7–13M)
vs. 9A, 12A (∼5–6M) two replicates, which gave 696, 689, and
501 significantly differentially expressed genes, respectively
(Table 4). There were 591 genes detected with three replicates
and 413 genes detected with two replicates that were in common
with the set of four replicates when the 25% subset of reads was
analyzed for all (Figure 4B). Four out of the seven RT-qPCR
validated genes (BTHUR0008_RS03645, BTHUR0008_RS17455,

BTHUR0008_RS20850, and BTHUR0008_RS17460) were
among the genes considered significant for all conditions in
25% read dataset analysis. Moreover, the same four genes were
also considered significant for analyses that included four, three,
and two replicates with 100% of the available reads; as well as
for analyses that contained 5–100% reads and compared four
replicates (Figures 4, 5).

Selection of an appropriate sequencing depth or genome
coverage is a concern in the field, which impacts sensitivity,
detection of weakly expressed genes as well as considerations
such as cost and replicate numbers (Fang and Cui, 2011; Liu
et al., 2014; Williams et al., 2014). The outcome of reducing read
numbers on the detection of differentially expressed genes was
examined in this study. The initial quality trimmed and filtered
reads for strain ATCC10792 (∼12–58 M/sample, Supplementary
File 1) are referred to as 100% of the reads, which were randomly
subsampled to generate input files with 75, 50, 25, 10, and 5%
(Supplementary File 7) of the total available reads for a four
replicate differential gene expression analysis of cells grown in
different media lots. A trend of fewer genes being considered
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TABLE 2 | Genes related to iron acquisition and metabolism differentially expressed in strain ATCC10792 grown in medium lot #1091744 over #7220443.

Differentially expressed Iron genes (medium lot #744 vs. #443)

Locus_tag Product log2 fold change Padj (FDR = 5%)

BTHUR0008_RS01670 Iron ABC transporter permease 2.67 <0.001

BTHUR0008_RS01675 Ferrichrome ABC transporter permease 2.70 <0.001

BTHUR0008_RS01680 ABC transporter substrate-binding protein 2.94 <0.001

BTHUR0008_RS01685 Ferredoxin–NADP reductase 2.56 <0.001

BTHUR0008_RS02820 Iron-enterobactin transporter ATP-binding protein 1.30 <0.001

BTHUR0008_RS02825 Iron ABC transporter permease 1.45 <0.001

BTHUR0008_RS02835 Iron siderophore-binding protein 1.23 <0.001

BTHUR0008_RS03465 Iron transporter FeoA −1.23 <0.001

BTHUR0008_RS06975 Ferredoxin −1.04 <0.001

BTHUR0008_RS10095 Fe-S oxidoreductase −1.43 <0.001

BTHUR0008_RS10345 Iron(III) dicitrate-binding protein 1.96 <0.001

BTHUR0008_RS15775 Ferrichrome ABC transporter permease 2.50 <0.001

BTHUR0008_RS15780 Iron ABC transporter permease 2.34 <0.001

BTHUR0008_RS15785 Iron-hydroxamate ABC transporter substrate-binding protein 2.51 <0.001

BTHUR0008_RS17445 Iron-uptake system-binding protein 3.45 <0.001

BTHUR0008_RS17450 Ferrichrome ABC transporter permease 2.88 <0.001

BTHUR0008_RS17455 Iron ABC transporter permease 3.72 <0.001

BTHUR0008_RS17460 ABC transporter ATP-binding protein 3.40 <0.001

BTHUR0008_RS17465 IroE protein 2.50 <0.001

BTHUR0008_RS20850 Iron ABC transporter ATP-binding protein 3.70 <0.001

BTHUR0008_RS20855 Iron ABC transporter permease 3.24 <0.001

BTHUR0008_RS20860 Iron-hydroxamate ABC transporter substrate-binding protein 4.02 <0.001

BTHUR0008_RS21120 Ferrichrome ABC transporter substrate-binding protein 2.70 <0.001

BTHUR0008_RS21675 Ferrichrome ABC transporter substrate-binding protein 1.60 <0.001

BTHUR0008_RS21745 Heme-degrading monooxygenase IsdG 2.41 <0.001

BTHUR0008_RS21760 ABC transporter permease 1.40 <0.001

BTHUR0008_RS21765 Heme ABC transporter substrate-binding protein 2.31 <0.001

BTHUR0008_RS23110 Iron transporter FeoA 1.13 <0.001

BTHUR0008_RS23575 Ferritin −1.60 <0.001

BTHUR0008_RS25020 Iron ABC transporter substrate-binding protein 2.17 <0.001

BTHUR0008_RS25025 Iron ABC transporter permease 1.70 <0.001

BTHUR0008_RS25030 Iron ABC transporter permease 1.31 <0.001

BTHUR0008_RS25035 Iron ABC transporter ATP-binding protein 1.10 <0.001

BTHUR0008_RS25920 Ferrichrome ABC transporter permease 1.74 <0.001

BTHUR0008_RS25930 Iron-dicitrate ABC transporter ATP-binding protein 1.30 <0.001

BTHUR0008_RS25935 Ferrichrome ABC transporter substrate-binding protein 2.72 <0.001

TABLE 3 | Elemental analysis of the two media lots and water sources.

Media sample Total Fe (ppm) Fe2+ (ppm)

Lot #1091744 1520 0.15 ± 0.01 0.02 ± 0.02

Lot #7220443 1060 0.30 ± 0.01 0.07 ± 0.02

WATER SOURCE (BUILDING)

1520 0.01 ± 0.01

1060 0.01 ± 0.00

as differentially expressed was observed as fewer reads were
incorporated into the analysis (Table 5) and there was a core of
328 DE genes regardless of differing read levels (Figure 5).

Along with the genes that were commonly detected as

significantly differentially expressed between datasets of varying

number of biological replicates and/or numbers of reads, the

genes that were exclusively detected within each of these datasets
was also important. Between datasets of four and three replicates
using 100% of the reads, 144 genes were exclusively detected
as differentially expressed within the four replicates dataset
(Figure 4A). When these 144 genes were examined in the dataset
consisting of three replicates, it was found that ∼60% (87 of 144
genes) were not detected in the differentially expressed gene list as
they fell below the two-fold expression threshold. Approximately
24% (34 of 144 genes) dropped below the FDR threshold due
to minor deviations from the set limits. For example, one of the
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FIGURE 3 | RNA seq data validation: Correlation between RNA seq and

RT qPCR results for differential gene expression in Bt strain

ATCC10792 grown on different medium lots (#744–443) and dates

(2/23/12–3/6/12). The log2 transformed expression ratio values from RNA seq

(x-axis) and RT qPCR (y-axis) were plotted against each other and correlation

coefficient (R2)-values were calculated. Seven genes plotted for medium

effect: BTHUR0008_RS06920, BTHUR0008_RS03645,

BTHUR0008_RS15085, BTHUR0008_RS17455, BTHUR0008_RS20850,

BTHUR0008_RS17460 and BTHUR0008_RS19345. Six genes plotted for

date effect in samples from medium Lot #744 (2/23/12 vs. 3/6/12):

BTHUR0008_RS30620, BTHUR0008_RS19140, BTHUR0008_RS01820,

BTHUR0008_RS21040, BTHUR0008_RS26070 and BTHUR0008_RS08955.

genes “BTHUR0008_RS07395” had a difference of 0.04 between
the log 2-fold values from four and three replicates and thus
fell below the fold-change cut-off with a difference of 0.02; yet
another gene “BTHUR0008_RS29930” had an adjusted p-value
difference of –0.04 between values from four and three replicates
and dropped out at the FDR set threshold with a difference of
0.01. The remaining 16% (23 of 144 genes) did not show up
in the differentially expressed genes as their p-adjusted values
were set to “NA” by automatic independent filtering based on
low mean normalized counts in DESeq2. Similarly, for datasets
of four and two replicates (Figure 4A), out of the 280 genes
that were exclusively detected as differentially expressed with
four replicates, almost half (139/280) of the genes fell below the
two-fold threshold, ∼11% (32/280) dropped below FDR cut-off
and ∼40% (109/280) were left out due to independent filtering
in DESeq2. Those genes that were exclusive to sets of two and
three replicates but were not detected as differentially expressed
with four replicates (Figure 4A), were also seen to be left out
because of the same reasons as mentioned above, which led to
their not meeting the significant differential expression criteria. A
similar trend was also observed for the genes exclusively detected
to datasets of four, three and two replicates with 25% of the
reads (Figure 4B) as well as for such genes between datasets
maintaining all four replicates but reads varying from 5 to 100%
(Figure 5).

DISCUSSION

In this study, we analyzed large transcriptomic datasets from
B. thuringiensis ATCC10792 and CT43 using negative binomial

distribution in DESeq2 for the assessment of differential gene
expression. Analysis was performed in different combinations
of the data sets to better understand the major challenges of
experimental design, variation, required number of replicates
and adequate sequencing depth associated with RNA-seq data
analysis. Based on our results, as well as previously reported
comparisons, we outline important considerations and provide
design recommendations for cost-effective RNA-seq results
with sufficient statistical power. Improving NGS technologies
and instrumentation has led to reproducible results with little
technical variation (Marioni et al., 2008) and the preference of
the field has shifted toward biological replicates over technical
replicates just as array based transcriptomics evolved earlier
(Fang and Cui, 2011). Biological replication is important as
without estimating the variability within a group it is not
possible to estimate true differences between the groups under
observation and conclusions from such results cannot be
generalized (Auer and Doerge, 2010; Robasky et al., 2014).
In transcriptomic studies one aims for an adequate trade-off
between the number of replicates as well as reads such that it
is cost-effective and provides sufficient statistical confidence for
interpretation (Fang and Cui, 2011; Liu et al., 2014; Todd et al.,
2016).

Recommended Number of Replicates and
Reads
Higher numbers of biological replicates provide a better
representation of biological variance across samples for
transcriptomic analysis (Churchill, 2002; Yang and Speed,
2002; Fang and Cui, 2011). It also reduces chances of any
“bad replicates” skewing results or adding unwanted variation
(Gierlinski et al., 2015). However, it is not practical nor is it
always possible to have very large number of replicates for each
condition in biological studies due to time, sample availability
and cost constraints and the addition of replicates beyond a
certain level has diminishing returns and will depend on the
nature of the study’s goal (Liu et al., 2014). Our results are similar
to previous studies that show a greater proportional increase
in the number of differentially expressed genes when moving
from two to three replicates compared to from three to four.
Similar trends of decreasing DE genes were observed when
replicates and reads were removed from analysis. Having read
numbers in the same range across samples is a consideration.
Similarly, higher genome coverages with large number of reads
have also been shown to result in higher DE gene detections
but within limits (Haas et al., 2012). It has been reported that
with reads below 5M a considerable drop in DE gene numbers
is observed, but increasing reads beyond 10M results in only
slight increments in detection and adding replicates at this point
has a much higher effect instead (Haas et al., 2012; Liu et al.,
2014). Our analyses with sets of randomly sampled 5–75% of the
total available reads while maintaining four replicates depicted a
similar trend in consensus with previous findings. In addition,
here we performed a combined analysis with reduced reads
(25% subset) and reducing replicate numbers (Marguerat and
Bahler, 2010; Martin and Wang, 2011; Williams et al., 2014).
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TABLE 4 | Effect of decreasing number of replicates on significantly differentially expressed genes while maintaining 100 and 25% of the reads.

Number of replicates (ATCC10792)* Differentially expressed genes (FDR 5%, two-fold) Genes commonly detected with all four reps

100%Reads 25%Reads 100%Reads 25%Reads

4 (1A, 2A, 3A, 4A)/(9A, 10A, 11A, 12A) 887 696 100% (887) 100% (696)

3 (1A, 3A, 4A)/(9A, 11A, 12A) 885 689 83.5% (741) 84.9% (591)

2 (1A, 4A)/(9A,12A) 720 501 68.4% (607) 59.3% (413)

*All combinations of available replicates were tested. Results for replicates with most similar read numbers are shown.

FIGURE 4 | Venn analysis of DE genes detected with varying replicate numbers. (A) Venn diagram depicting the effect of 2–4 replicates while maintaining

100% of the reads, on significantly differentially expressed genes and the genes commonly detected within sets of varying replicates for strain ATCC10792. (B) Venn

diagram for differentially expressed genes detected with 25% reads (∼5–10M) and 2–4 replicates for strain ATCC10792.

The results depicted that the set of three replicates and 25%
reads (∼7.5–13M) detected a similar number of DE genes as
four replicates and 25% reads with most of the genes commonly
detected between the two sets. Moreover, the number of DE
genes detected with three and four replicates with 100% reads
was not much greater than when 25% reads with the most
similar numbers were used. Thus, based on all the above it is
recommended that designing an experiment with as low as
three good replicates (high correlation coefficients, indicating
reproducibility across samples) and at least 5–10 million reads
per sample would be the most efficient and cost effective design
for a microbial transcriptomics study.

It is not just the “number” of DE genes detected with
increasing number of replicates and reads, but also whether the
genes detected with a set of fewer replicates and/or reads forms
a subset of the genes detected with the set of higher number
of replicates and reads or if they are “newly” identified genes.
We performed an overlap assessment for the DE genes detected
from all combinations of analysis to look at core as well as
exclusive subsets of genes and used RT-qPCR for validating a
representative few. The major reasons for exclusively detected
genes were related to FDR and p-value cut-offs and filtering out
of the lowly expressed genes via the independent filtering in
DESeq2. Genes with expression and p-values very close to the
cut-off range moved above and below the limits with changes in

the numbers of reads and replicates. Due to these reasons such
genes varied between data subsets and were therefore not found
among the commonly detected core genes. Thus, by applying well
considered cut-offs tailored to the aim of the study as well as
the expected gene expression profile one can potentially avoid
missing out on genes relevant to the analyses. This signifies
the importance of choosing appropriate threshold limits set for
each study and examining the broader context of expression
changes by considering pathway and operons as two examples.
Deeper sequencing coverage (more replicates and reads) may
still be required for studies that are more discovery-based than
hypothesis-driven (Yang et al., 2012;Wilson et al., 2013). A higher
coverage may also be desirable to deal with sequencing errors and
polymorphisms larger than single base differences (Wang et al.,
2009;Williams et al., 2014) or to detect a rare transcript or variant
or lowly expressed genes.

Differentially Expressed Genes and
Experimental Design Considerations
The majority of typical laboratory experiments would control for
much of the variation identified in this study by using media
prepared from all the same stock, by using defined media, and/or
by randomizing treatment/control samples if they had to be
cultured on different dates. However, there may be circumstances
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TABLE 5 | Effect of decreasing number of reads on significantly

differentially expressed genes while maintaining all four replicates.

Number of reads

(ATCC10792) (%)

Differentially expressed

genes (FDR 5%, two-fold)

Genes commonly detected

with 100% reads

100 887 100% (887)

75 843 95% (803)

50 793 89.4% (722)

25 696 78.5% (611)

10 574 64.7% (487)

5 449 50.6% (376)

FIGURE 5 | Venn diagram depicting effect of reducing number of reads

on DE gene numbers. The effect of decreasing of read numbers on

significantly differentially expressed genes and the number of genes commonly

detected within sets of 100, 50, 25, 10, 5% reads for strain ATCC10792.

such as long term continuous growth studies where rich media
cannot be prepared from the same lot or batch, in which case
being able to build such variables into statistical, or other,
tests is an important consideration. RNA-seq analysis identified
significantly differentially expressed genes based on medium lot
and culture date differences, two major variation sources in
the dataset. The highly differentially expressed iron acquisition
and metabolism genes, were a likely consequence of differing
amounts of iron in the twomedia lots. Indeed, in this study RNA-
seq was a tool for predictive biology since we hypothesized and
confirmed the two LB medium lots had different iron contents.
The large (∼two-fold) difference in measured iron contents
was surprising and may be of broader interest to the research
communities that use this media. Our results are in agreement
with earlier studies showing the importance of culture medium
choices in transcriptomics (Blair et al., 2013). In this study, other
experimental factors beyond the type of media used were shown
to be important.

Significance of the Available Data Set
This dataset has relevance to researchers interested in Bacillus
biology. The genus Bacillus contains representatives such B.
thuringiensis (e.g., BMB171, Bt407), Bacillus subtilis (e.g., BSn5),
Bacillus anthracis (e.g., Ames), and others (Aronson et al., 1986;
Alam et al., 2011; Bishop and Robinson, 2014) that occupy
diverse ecological niches and have important biotechnological
roles. Moreover, this is a rich dataset with four biological
replicates and high genome coverage (85–465X), which may
interest researchers in testing, developing, and evaluating
bioinformatics software for RNA-seq analyses in future for
example in testing/developing normalization algorithms and
mapping tools etc. (Peixoto et al., 2015; Seyednasrollah et al.,
2015; Medina et al., 2016). This data set could also be utilized
toward generating and testing new globally acceptable RNA-seq
analysis pipelines such as the recently developed “PANDORA”
(Moulos and Hatzis, 2015), which could then permit further
comparisons and developments and improving existing RNA-seq
analysis pipelines.

In conclusion this study outlines the significance of a
well-controlled experimental design, choice of threshold
parameters, adequate number of reads and replicates
toward an efficient and cost effective transcriptomics study.
Moreover, the depth and complexity of this RNA-seq
data will be useful to others for a range of studies such
as for insights into Bacillus physiology and for further
developments in the field of bioinformatics for microbial
transcriptomics.
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