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Conditional overexpression of TGFβ1 promotes
pulmonary inflammation, apoptosis and mortality
via TGFβR2 in the developing mouse lung
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Abstract

Background: Earlier studies have reported that transforming growth factor beta 1(TGFβ1) is a critical mediator of
hyperoxia-induced acute lung injury (HALI) in developing lungs, leading to impaired alveolarization and a pulmonary
phenotype of bronchopulmonary dysplasia (BPD). However, the mechanisms responsible for the TGFβ1-induced
inflammatory signals that lead to cell death and abnormal alveolarization are poorly understood. We hypothesized that
TGFβ1 signaling via TGFβR2 is necessary for the pathogenesis of the BPD pulmonary phenotype resulting from HALI.

Methods: We utilized lung epithelial cell-specific TGFβ1 overexpressing transgenic and TGFβR2 null mutant mice to
evaluate the effects on neonatal mortality as well as pulmonary inflammation and apoptosis in developing lungs. Lung
morphometry was performed to determine the impaired alveolarization and multicolor flow cytometry studies were
performed to detect inflammatory macrophages and monocytes in lungs. Apoptotic cell death was measured with TUNEL
assay, immunohistochemistry and western blotting and protein expression of angiogenic mediators were also analyzed.

Results: Our data reveals that increased TGFβ1 expression in newborn mice lungs leads to increased mortality,
macrophage and immature monocyte infiltration, apoptotic cell death specifically in Type II alveolar epithelial cells (AECs),
impaired alveolarization, and dysregulated angiogenic molecular markers.

Conclusions: Our study has demonstrated the potential role of inhibition of TGFβ1 signaling via TGFβR2 for improved
survival, reduced inflammation and apoptosis that may provide insights for the development of potential therapeutic
strategies targeted against HALI and BPD.
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Background
Transforming growth factor beta 1 (TGFβ1) is a secretory
cytokine that binds to the Type II TGFβ receptor
(TGFβR2), which then complexes with the type I TGFβ
receptor (TGFβRI or ALK1 or ALK5). This binding
initiates TGFβ signaling via smad phosphorylation and
nuclear translocation [1]. There is growing evidence
that TGFβ signaling is involved in the regulation of
branching and septation phases of lung development
[2,3]. In contrast, TGFβ1 has been documented to
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induce inflammation and apoptosis in lung epithelial
cells [4,5].
Premature infants require supplemental oxygen and/or

mechanical ventilation for prolonged time periods, and
may subsequently develop Bronchopulmonary Dysplasia
(BPD). BPD, the most common chronic respiratory
disease in infants, is characterized by the presence of
impaired alveolarization and dysregulated vascularization
[6]. Understanding the mechanisms responsible for the
development of BPD has focused on the identification of
signaling or remodeling molecules that are crucial in
lung development and/or response to lung injury. One
such signaling pathway that is known to be a central
mediator in hyperoxia induced acute lung injury (HALI)
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and BPD is TGFβ signaling [1,7]. Previous studies have
demonstrated increased expression of TGFβ, both total
and bioactive forms, in bronchoalveolar lavage fluid and
tracheal aspirates of infants developing BPD [8,9].
Many studies have demonstrated that TGFβ1 is a

critical regulator of HALI [10,11]. Hyperoxia mediated
TGFβ1 sets into flow a deluge of inflammation
[12,13]. However, the mechanisms responsible for the
TGFβ1-induced immunogenicity and the levels of inflam-
matory signals that lead to cell death are poorly understood.
Therefore, this study was aimed to investigate the
quantitation of endogenous immune cells regulated by
TGFβ1, which result in cell death. In addition, we
wanted to assess the role of TGFβ1 in alveolarization and
impact on molecular mediators known to be associated
with development of HALI and BPD. Furthermore, we
wanted to evaluate if all or some of the above-mentioned
effects of TGFβ1 signaling were mediated via TGFβR2.
We hypothesized that TGFβ1 signaling via TGFβR2 is

necessary for the pathogenesis of HALI and the BPD
phenotype resulting from hyperoxia. Therefore, we used
lung epithelial cell-specific TGFβ1 transgenic (TG) mice
model to demonstrate TGFβ1-induced inflammation and
apoptosis in developing lungs. In addition, we also evalu-
ated Angiopoietin (ANGPT) 1 and ANGPT2 protein
expression in the above model systems as ANGPT2 has
been described to have a critical role in HALI and
BPD [14,15]. Furthermore, in order to assess the receptor
specificity of these effects, we used lung epithelial
cell-specific TGFβR2 null mutant (knockout or KO)
mice to evaluate the effects of TGFβ1-induction on mor-
tality as well as pulmonary inflammation and apoptosis in
developing lungs.

Methods
Animals
All animal studies were approved by the Institutional
Animal Care and Use Committee at the Yale University
School of Medicine. The TGFβ1TG mice were generated
as previously described [3,16], and express TGFβ1 with
maternal exposure to doxycycline (dox) in the drinking
water. These triple-TGFβ1 TG mice are expressing the
active form of human TGFβ1 and the levels and down-
stream effects of the same (upon dox activation) over time
have been previously reported [16]. Maternal exposure to
dox was performed from postnatal (PN) day 1–7 or from
PN7 to PN10 [17]. Lung epithelial-cell specific deletion of
TGFβR2 (TGFβR2KO) has been recently described and
these mice were utilized for our experiments [18].

Bronchoalveolar lavage fluid collection
The mouse lungs were lavaged three times with 300
microliters of PBS using standard techniques and inflation
pressure, as previously described [19]. The bronchoalveolar
lavage fluid (BALF) was centrifuged at 400 g for 5 min at
4°C. The cell pellet was re-suspended in 1% FBS for FACS
analysis.

Tissue preparation
Mouse pups were sacrificed at PN7 or PN10. They were
subjected to a standard protocol for lung inflation
(25 cm) [20]. The right lungs were immediately flash frozen
using liquid nitrogen and immediately stored at −80°C
while the left lungs were fixed in 10% neutral buffered
formalin and processed for histological analysis.

Oxygen exposure
For the exposure to hyperoxia (100% O2), newborn (NB)
mice (along with their mothers) were placed in cages in
an airtight Plexiglas chamber (55 × 40 × 50 cm), as
described previously [21-23]. Exposure to oxygen was
initiated on PN1 and continued till PN7 of life. Two
lactating dams were used. Mothers were alternated in
hyperoxia and room air (RA) every 24 h. The litter size
was kept limited to 12 pups to control for the effects of
litter size on nutrition and growth. Throughout the
experiment, they were given free access to food and
water. Oxygen levels were constantly monitored by an
oxygen sensor that was connected to a relay switch
incorporated into the oxygen supply circuit. The inside
of the chamber was kept at atmospheric pressure, and
mice were exposed to a 12 h light–dark cycle.

Lung morphometry
H&E stained sections were photographed using an
Olympus microscope with an in built digital camera
system at 100× magnification (Olympus, Tokyo, Japan).
Alveolar size was estimated from the mean chord length
of the airspace, as previously described [19]. Alveolar
septal wall thickness was estimated using Image J soft-
ware, adapting the method described previously for bone
trabecular thickness, for the lung [19]. 10× magnification
images were obtained with Olympus 1X70 Microscope
using Cellsens Dimension software. Radial alveolar
count (RAC) and secondary septal crests were done
as previously described [24,25].

TUNEL assay
For apoptosis quantification, TdT-mediated dUTP nick
end labeling (TUNEL) staining was performed according
to manufacturer’s instructions keeping positive and
negative controls (Roche Diagnostics). 20× magnification
images were obtained with Olympus 1X70 Microscope
using Cellsens Dimension software. Briefly 5 areas were
selected (covers almost the entire histologic specimen)
from each slide and 200 cells were counted using Cellsens
software from Olympus microscope, followed by manually
counting of TUNEL positive cells. The TUNEL index was



Sureshbabu et al. Respiratory Research  (2015) 16:4 Page 3 of 12
calculated by randomly selecting 3 of the 5 high-power
fields in each slide, counting 200 cells in each area,
and expressing the number of TUNEL-positive cells
as a percentage [17].

Immunohistochemistry
Whole lungs were isolated from NB PN7 and PN10 mice
and immediately fixed in 10% neutral buffered saline.
Lung serial sections were stained with antibodies prosurfac-
tant protein C (Catalog #AB3786, Millipore), vWF
(DAKO), Myeloperoxidase (Biovision) and cleaved caspase
3 (Catalog #9661, Cell Signaling Technology). Sections were
developed with Vectastain ABC kit (Catalog #PK4001,
Vector laboratories) followed by hematoxylin staining
(Catalog #H3401, Vector laboratories). 10× or 20×
magnification images were obtained with Olympus
1X70 Microscope using Cellsens Dimension software
and vWF staining was quantified by image J software.

Myeloperoxidase (MPO) ELISA from NB lung tissue
The snap-frozen lungs were thawed, weighed, and trans-
ferred to different tubes on ice containing 1 ml of Tissue
Protein Extraction Reagent (T-PER; Pierce Biotechnology).
Cells or lung tissues were homogenized at 4°C. Cell or
lung homogenates were centrifuged at 10,000 g for
10 min at 4°C. Supernatants were transferred to clean
microcentrifuge tubes. Total protein concentrations in the
lung tissue homogenates were determined using a Biorad
protein assay kit (Catalog #500–0006; Biorad) and MPO
levels were evaluated in lung tissue homogenates using a
mouse ELISA kit (Catalog #ab155458; Abcam) according
to the user’s manual.

Western blot analysis
NB mice whole lungs were harvested in lysis buffer and
protein concentrations were determined using Bradford
assay [19]. Protein extracts (both cellular and tissue
homogenates) were loaded on to a Mini-Protean TGX
gel electrophoretic system. Proteins were electroblotted
onto an immunoblot PVDF membrane (Biorad catalog
#162–0177). After transfer, non-specific binding was
prevented with 5% skimmed milk TBS-Tween. After
blocking, the membrane was incubated with anti-phospho
AKT (ser 473) (Catalog #4060), anti-caspase-3 (Catalog
#9662), and anti-cleaved caspase 3 (Catalog #9662) obtained
from Cell Signaling Technology, USA. Anti-ANGPT1
(Catalog #AB10516), anti-ANGPT2 (Catalog #176002)
and anti-Endoglin (Catalog #05-1424) were obtained
from Millipore, USA. Chemiluminescent bands were
visualized using SuperSignal West Pico or Femto substrate
(Thermo Scientific, Rockford, IL). Rabbit polyclonal or
monoclonal antibodies reactive to above proteins of
interest were purchased from Cell Signaling Technology,
Inc. (Danvers, MA). Quantification of western blots was
performed using Image J software version 1.46 (NIH,
Bethesda, MD).

Multicolor flow cytometry
After the indicated duration of dox exposure to NB
TGFβ1TG and TGFβ1TG X TGFβR2KO mice, they
were sacrificed and their lungs were perfused through
the right ventricle with 5 ml of ice cold PBS. The lungs
were excised and single cell suspensions were prepared
using digestion buffer as previously described [26].
Resultant single cell suspensions were stained for respective
surface antigens and subsequently acquired on BD-LSRII
flow cytometer. FACS analysis was performed with the use
of FlowJo software.

Antibodies
The following monoclonal antibodies directed to the
respective proteins, conjugated to different flurochromes
were used. Ly6c (clone: HK1.4), F4/80 (clone: BM8),
CD45 (clone: 30-F11), CD103 (clone: 2E7) and MHC-II
(clone: M5/114.152) were purchased from eBioscience
(San Diego, CA). CD11c (clone: HL3) and CD11b (clone:
M1/70) were purchased from BD Biosciences (San Jose, CA).
CD206 (clone: C068C2) was purchased from BioLegend
(San Diego, CA). All the antibodies that were used for FACS
were monoclonals and highly specific. These were the
concentrations of antibodies: CD11c (1 μg/ml), CD11b
(0.05 μg/ml), F4/80 (0.2 μg/ml), CD206 (0.2 μg/ml), Ly6c
(0.05 μg/ml), MHC-II (0.05 μg/ml).

Statistical analysis
All statistical analyses were performed using Graph Pad
Prism, version 5.0 (GraphPad Software, San Diego CA).
The data were expressed as the mean ± SEM of a minimum
of 3 independent experiments with a minimum of 4 mice
in each group. Groups were compared with the Student’s
two-tailed unpaired t test, 1-way ANOVA (followed by
Tukey’s Multiple Comparison post-hoc test) or the Kaplan
Meier Survival Analysis, as appropriate, using GraphPad
Prism 5.0. A ‘p’ value of < 0.05 was considered statistically
significant in all tests.

Results
Effect on survival, in room air, of lung epithelial
cell-specific conditionally overexpressing TGFβ1TG mice
lacking lung epithelial-cell specific TGFβR2
Since NB TGFβ1TG mice are known to have a high
mortality upon dox activation in room air, in the first
PN week, as previously reported [3], we evaluated the
role of TGFβ1-signaling via TGFβR2 in lung epithelial
cells in vivo on survival. Hence, we assessed survival in
TGFβ1TG mice lacking TGFβR2, upon TGFβ1 activation
from PN1 – PN7. TGFβ1TG X TGFβR2KO mice showed
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significantly lower mortality as compared to lung targeted
overexpressing TGFβ1TG mice (Figure 1).
This suggests that lung-mediated signaling via

TGFβR2 has such a significant effect that it can over-
come the dramatic mortality that has been observed
when increased concentrations of TGFβ1 are present
at these critical (saccular/early alveolar) stages of
lung development.

Characterization of pulmonary (lung tissue and BALF)
inflammatory myeloid compartment, in room air, of lung
epithelial cell-specific conditionally overexpressing
TGFβ1TG mice lacking lung epithelial-cell specific TGFβR2
It was initially reported that TGFβ1 overexpression in
mice lungs leads to mononuclear-rich inflammation
[16]. Since our aim in the present manuscript was to
understand TGFβ1-mediated immune signaling in
hyperoxia-induced cell death in neonates, we decided to
focus on evaluating the macrophage/monocyte populations
in the lung by flow cytometry. We hypothesized that
reduced inflammation in lung tissue myeloid compartment
could lead to TGFβ1TG X TGFβR2KO mice survival, and
hence we evaluated this response. The mononuclear
phagocytic system (monocytes, macrophages and dendritic
cells) collectively plays a critical role in the maintenance
of tissue integrity [27]. To evaluate the role of the
mononuclear phagocytic system, TGFβ1TG, WT and
TGFβTG X TGFβR2KO mice lungs and BALF cells
were phenotypically analyzed for pro-inflammatory
macrophages and lung tissue resident macrophages.
Monocytes were analyzed for Ly6Chigh and Ly6Clow cells.
Lung pro-inflammatory macrophages resemble M1-like
macrophages and are CD45+ F4/80+ CD206− and CD11c−,
whereas tissue resident macrophages resemble the M2
phenotype, expressing CD45+ F4/80+ CD206+ and CD11c+.
We found significant reduction in inflammatory macro-

phages and Ly6Chigh monocytes in the lung tissue of the
TGFβ1TG X TGFβR2KO mice, compared to TGFβ1TG
Figure 1 Effect of TGFβ1 exposure on overall survival in maternally e
mice. NB TGFβ1TG, and TGFβ1TG X TGFβR2KO littermate mice were exposed
Where NB: newborn; PN: postnatal; TGFβ1TG: TGFβ1 transgenic mice; TGFβ1T
knockout mice. N = 7 in each group; **p < 0.01 and ***p < 0.001 TGFβ1TG vs
mice. No such differences in inflammatory macrophages
and Ly6Chigh monocytes were observed when compared to
WT littermate lungs. The numbers of tissue resident mac-
rophages were slightly reduced in the lungs of TGFβ1TG X
TGFβR2KO mice when compared to WT littermates. We
observed no differences in Ly6Clow monocytes among the
groups (Figure 2A). Ly6Clow monocytes were significantly
decreased in the BALF of TGFβ1TG X TGFβR2KO and
WT mice, as compared with TGFβ1TG mice (Figure 2B).
Taken together, the above data suggests that signaling

via TGFβR2, at least in part, mediates the pulmonary
inflammatory response of TGFβ1 in developing lungs.

Effect on lung apoptotic cell death specifically in Type II
alveolar epithelial cells (AECs), in room air, of lung
epithelial cell-specific conditionally overexpressing
TGFβ1TG mice lacking lung epithelial-cell specific TGFβR2
Next, we evaluated cell death in lung targeted overexpress-
ing TGFβ1TG mice and TGFβ1TG X TGFβR2KO mice
from PN7 – PN10. We used TUNEL and immunohisto-
chemistry respectively. TGFβ1TG X TGFβR2KO mice
showed significantly decreased TUNEL positive index and
decreased cleaved caspase 3 staining in Type II AECs (sur-
factant protein C positive), as compared to TGFβ1TG mice
(Figure 3A – C).

Effect on lung morphometry and vessel density, in
room air, of lung epithelial cell-specific conditionally
overexpressing TGFβ1TG mice lacking lung epithelial-cell
specific TGFβR2
Lung architecture was assessed and chord length as well as
septal thickness were found to be significantly decreased in
TGFβ1TG X TGFβR2KO as compared to TGFβ1TG mice
(Figure 4A – C). In concordance, we found the RAC and
secondary septal crest numbers as well as vessel density
improved in the TGFβ1TG X TGFβR2KO as com-
pared to TGFβ1TG mice (Figure 4D – G). This sug-
gested that absence of TGFβR2 in TGFβ1 signaling
xposed doxycycline to NB TGFβTG, and TGFβTG X TGFβR2KO
to maternal dox at PN1 - PN7 and then overall survival was assessed.
G X TGFβR2KO: TGFβ1 transgene mice crossed with TGFβ receptor II
. TGFβ1TG X TGFβR2KO and TGFβR2KO vs. TGFβ1TG respectively.



Figure 2 TGFβ1-induced inflammation in TGFβ1TG and TGFβ1TG X TGFβR2KO mice. Multicolor flow cytometric analysis showed
significantly greater staining of inflammatory macrophages and LY6C high monocytes in TGFβ1TG mice lungs as compared to WT controls.
TGFβ1TG X TGFβR2KO developing lungs showed significantly decreased staining of inflammatory macrophages and LY6C high monocytes as
compared to TGFβ1TG mice. (B) Ly6Clow monocytes were significantly decreased in the BALF of WT mice, as compared with TGFβ1TG mice.
BALF: bronchoalveolar lavage fluid. N = 4 in each group; *p < 0.05, **p < 0.01 and ***p < 0.001.
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resulted in decreased apoptotic cell death and preserved
alveolar architecture as well as vascular development.

Effect on molecular mediators, in room air, of lung
epithelial cell-specific conditionally overexpressing
TGFβ1TG mice lacking lung epithelial-cell specific TGFβR2
To further understand the mechanism of TGFβ1-
induced cell death, we examined molecular markers
including endoglin (or TGFβR3), ANGPT1, ANGPT2,
Phospho-AKT (Ser 473), BAX and cleaved caspase 3.
We noted that Phospho-AKT was increased while
endoglin, BAX, caspase 3 and cleaved caspase 3 were
decreased in TGFβ1TG X TGFβR2KO as compared to
TGFβ1TG mice lungs (Figure 5A). Densitometric ana-
lysis showed significantly increased ANGPT1 to
ANGPT2 ratio in TGFβ1 exposed NB TGFβTG X



Figure 3 Effect of TGFβ1 on lung apoptotic cell death. (A) TdT-mediated dUTP nick end labeling (TUNEL) was assessed in NB TGFβ1TG and TGFβ1TG
X TGFβR2KO littermates where maternal dox exposure from PN7 – PN10 was carried out. Scale bar: 50 μm (B) Bar graph showing the percentage of TUNEL
positive cells indicating the apoptosis quantification in TGFβ1TG mice and TGFβ1TG X TGFβR2KO littermates. (C) Representative serial sectioning images of
cleaved caspase 3 and surfactant protein C staining in the lung specimens of TGFβ1TG mice and TGFβ1TG X TGFβR2KO littermates. Scale bar: 50 μm.
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TGFβR2KO lungs as compared to TGFβ1TG mice
lungs (Figure 5B).
This suggested that the decreased apoptotic cell death

response could be due to increased presence of molecu-
lar mediators of cell survival in the absence of TGFβR2
in TGFβ1 signaling processes in developing lungs.
Effect on lung architecture, upon hyperoxia exposure,
in TGFβR2KO mice
Given the fact that hyperoxia exposure is known to
increase TGFβ in developing lungs and lead to abnormal
alveolarization [1,11,13,28,29], we finally examined if lack
of signaling via its putative receptor TGFβR2, upon



Figure 4 Effect of TGFβ1 on lung morphometry. (A) Representative images of lung histology (H&E stain) of NB TGFβ1TG mice and TGFβ1TG X
TGFβR2KO mice. Scale bar: 100 μm (B) Bar graph showing the mean chord length in TGFβ1TG mice and TGFβ1TG X TGFβR2KO mice. (C) Bar
graph showing the septal thickness in TGFβ1TG mice and TGFβ1TG X TGFβR2KO mice. (D) Bar graph showing the radial alveolar count in
TGFβ1TG mice and TGFβ1TG X TGFβR2KO mice. (E) Bar graph showing the secondary septal crest numbers in TGFβ1TG mice and TGFβ1TG X
TGFβR2KO mice. (F) Representative images of lung immunohistochemistry of vessel density (vWF staining) of NB TGFβ1TG mice and TGFβ1TG X
TGFβR2KO mice. Scale bar: 100 μm (G) Bar graph showing quantification of vessel density in TGFβ1TG mice and TGFβ1TG X TGFβR2KO mice.
N = 4, in each group; *p < 0.05, **p < 0.01.
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Figure 5 TGFβ1 signaling in NB TGFβ1TG, and TGFβ1TG X TGFβR2KO mice lungs. (A) Western blot analysis showed upregulation of
phospho AKT, and down regulation of ANGPT2, and pro-apoptotic proteins (BAX; cleaved caspase 3) in NB TGFβ1TG X TGFβR2KO lungs as
compared to TGFβ1TG mice. (B) Densitometric analysis showed increased ANGPT1 to ANGPT2 ratio in maternal dox exposed NB TGFβ1TG X
TGFβR2KO lungs as compared to TGFβTG mice. N = 3, in each group; *p < 0.05.
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hyperoxia exposure, would have an impact on the pulmon-
ary phenotype. Hence, we assessed the lung architecture in
TGFβR2KO mice exposed to hyperoxia from PN1 – PN7
and confirmed our histologic observations by chord length
and septal thickness measurements. Chord length and sep-
tal thickness were significantly decreased in hyperoxia
exposed TGFβR2KO mice as compared to TGFβR2 flox
(control) mice (Figure 6A - C). In addition, we noted a
significant decrease in the homing of inflammatory cells
(neutrophils), as detected by MPO staining (Figure 6D - E).
This protective effect in the hyperoxia-exposed

TGFβR2KO mice lungs was further confirmation of our



Figure 6 TGFβR2KO mice have improved lung morphometry in hyperoxia settings. (A) Representative images of lung histology (H&E stain) of NB
TGFβR2KO mice exposed to RA or 100% O2 from PN1 – PN7 with appropriate controls. Scale bar: 100 μm (B) Bar graph showing morphometric analysis
of mean chord length in hyperoxia exposed PN7 TGFβR2KO mice as compared to room air controls. (C) Bar graph showing morphometric analysis of
septal thickness in hyperoxia exposed PN7 TGFβR2KO mice as compared to room air controls. (D) Representative images of immunohistochemistry
of myeloperoxidase (MPO) staining showing of inflammatory cells (neutrophils) in the lungs NB TGFβR2KO mice exposed to RA or 100% O2 from
PN1 – PN7 with appropriate controls. Scale bar: 100 μm (E) Bar graph showing MPO levels (measured by ELISA) in hyperoxia exposed PN7 TGFβR2KO
mice as compared to room air controls. N = 4 in each group; *p < 0.05, ***p < 0.001.
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results of TGFβ1-induced signaling being mediated
through this receptor having a significant impact on
TGFβ1-mediated effects in developing lungs.
To summarize, we show that the detrimental effects of

increased mortality, pulmonary inflammation, cell death
and impaired alveolarization of enhanced lung epithelial
cell specific TGFβ1 signaling in developing lungs are
mediated, in part, via TGFβR2. In addition, specific
molecular mediators of cell survival are associated with
these responses in developing lungs. A proposed model
of these molecular mediators leading to their ultimate
effects has been shown in Figure 7.

Discussion
In the present study, lung epithelial cell specific tar-
geted conditional TGFβ1TG and epithelial cell specific
TGFβR2 conditional null mutant mice were used to
explore the molecular mechanisms of TGFβ1-induced
injury in developing lungs. This context is particularly
important for the study of HALI and BPD that arise in
the critical developing stages of lungs, with abnormal
TGFβ1 signaling in vivo [30]. Although the pathogenesis of
BPD is not well understood, increased TGFβ (secondary to
hyperoxia exposure) signaling in the saccular/early alveolar
stages is said to be one of the causative factors for
the development of impaired alveolarization secondary
to inflammation [1,31,32].
High levels of TGFβ1 (as well as β2 and β3) immunore-

activity have been reported in the developing lung in the
bronchial and alveolar epithelium of the NB mouse [13].
Furthermore, hyperoxia exposure increases TGFβ-signaling
[13]. A TGFβ-neutralizing antibody (1D11) was effective in
improving alveolarization, extracellular cellular matrix
assembly and microvascular development in NB mice



Figure 7 Proposed schema of the mechanism of TGFβ1-induced
TGFβR2-mediated effects in the developing lung. A proposed
model illustrating the mechanism of TGFβ1-induced specific molecular
mediators resulting in decreased inflammation, apoptosis and mortality
in NB TGFβ1TG X TGFβR2KO, as compared to TGFβ1TG mice.
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exposed to hyperoxia (85% O2) for 10 PN days [13].
However, 1D11 is a pan-specific TGFβ IgG1 antibody
that targets all the 3 isoforms of TGFβ i.e. 1–3 [13].
In our earlier report, exposure of hyperoxia (100% O2) to
the lung epithelial cell targeted TGFβ1TG mice led to
increased mortality, which was significantly diminished
by using a c-JunNH2-terminal kinase (JNK) pathway
inhibitor [17]. In addition, the JNK-pathway inhibitor
was able to ameliorate the BPD pulmonary phenotype
of impaired alveolarization in the TGFβ1TG mice [17].
Chronic hyperoxia (85% O2) exposure from PN1 to PN28
in mice led to a 4-fold increase of TGFβR2 (among
other TGFβ signaling molecules), along with impaired
alveolarization characterized by approximately doubling of
the mean linear intercept, in the lung [1].
Our work extends the above observations by providing

specificity of the effects of the TGFβ1 isoform as well as
its signaling via the specific receptor TGFβR2. In addition,
by using lung epithelial cell targeted overexpression and
null mutant mouse models, respectively, we are able to
localize the effects to be secondary to the production of
TGFβ1 and inhibition of its signaling in particular cell
types in the developing lung.
As mentioned above, hyperoxia contributes significantly

to the development of HALI and BPD in neonates [33].
To this end, we were able to demonstrate the specificity
of such a protective response, as evidenced by TGFβ1TG
X TGFβR2KO mice having improved survival (up to PN6)
as compared to PN1 of TGFβ1TG mice, in room air. The
fact that this survival advantage was noted in room air
lends credence to our hypothesis that this is a specific
TGFβ1-induced TGFβR2-mediated effect, and not con-
founded potentially by other mediators that are activated/
released upon hyperoxia exposure.
Other investigators have reported that TGFβ1 induced

inflammation in adult lung injury model systems [34],
but we were unable to locate any such effects reported
in NB mice. Adding novel information, we demonstrated
diminished pulmonary inflammation in TGFβ1TG mice
in which TGFβR2 signaling had been abrogated. In
addition, we were able to demonstrate that specifically it
was the accumulation of inflammatory macrophages and
monocytes in the lungs of TGFβ1TG mice. In contrast,
TGFβ1TG X TGFβR2KO NB mice were found to have
diminished levels of pro-inflammatory macrophages.
We have reported earlier that hyperoxia exposure in-

creases TGFβ1 expression as well as cell death in A549
cells upon hyperoxia exposure in a dose-dependent
manner [17]. Others have shown that exposure to hyperoxia
of primary alveolar epithelial Type II cells led to increased
sensitivity to TGFβ-induced apoptosis [1]. Furthermore, we
provide data that worsening of lung morphometric indices
(chord length, septal thickness, RAC and secondary septal
crest numbers) and decreased vessel density in the
TGFβ1TG mice were dependent, in part, by signaling via
TGFβR2. In support of these observations, we provide novel
mechanistic in vivo data of increased apoptosis via the
mitochondrial active BAX dependent pathway in the
presence of increased TGFβ1 in developing lungs, which is
abrogated by concomitant inhibition of TGFβR2 signaling.
We have previously reported that TGFβ1TG mice

lungs have increased expression of apoptotic cell death
mediators, specifically Fas-L and caspase-3 [17]. In the
present study, we extend those observations by showing
increased BAX and cleaved caspase-3.
We found increased ANGPT2, and Phospho-AKT

(Ser 473), but no change in ANGPT1. We have previously
reported on the role of increased ANGPT2 as a critical
contributing factor in HALI in adult [14,35] and neonatal
[19,23] mice. In addition, we have also noted a significant
association of increased ANGPT2 in hyperoxia-induced
human diseases in adults (ALI) [14] as well as neonates
(BPD) [14,15]. Since TGFβ1 has been shown to be associ-
ated with BPD and overexpression lung models of TGFβ1
mimic the pulmonary phenotype of BPD as reported by us
[17] and others [3,36], our data implicates ANGPT2 as a
novel downstream molecule amenable to potential thera-
peutic modulation in HALI in the NB lung. Since ANGPT1
levels did not change and both ANGPT 1 and 2 signal
through the Tie2 receptor, our data suggest that targeting
the ligand ANGPT2 in HALI would be the preferred option
in such a scenario. Endoglin is part of the TGFβR complex
and has been shown to be increased in human BPD [37].
Our data would suggest that TGFβ1 signaling increases the
expression of endoglin. AKT is a well-known survival factor
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reported to have a role in different experimental models of
BPD [38-41]; we now implicate AKT as a down streaming
signaling molecule in our TGFβ1 overexpressing mouse
lung model of BPD. We further confirmed the specificity
of the TGFβ1 signaling pathway by noting the reversal of
the effects noted above in the TGFβ1TG X TGFβR2KO
mice lungs.
Among other models of BPD, cyclical stretch during

invasive mechanical ventilation in NB mice in room
air and/or hyperoxia (40% O2) has also been reported
to increase TGFβ-signaling and apoptotic cell death,
including cleaved caspase 3 [42-44]. Activation of
AKT has been shown to protect NB rats from HALI
and BPD [39].
Investigators have reported additional molecules in NB

mice lungs that have been associated with inhibition of
TGFβ-signaling to improve the pulmonary phenotype
relevant to HALI and BPD [11,45-47]. As also mentioned
earlier, increased pulmonary levels of TGFβ have been
reported in association with human BPD [9,48,49].
Interestingly, increased endoglin [37], decreased ANGPT1
[37], and increased ANGPT2 [14,15] in the NB lung have
all been associated with human BPD.
To explore the wider importance, we finally subjected

TGFβR2KO mice to hyperoxia exposure from PN1 –
PN7. Lung architecture (as measured by chord length
and septal thickness) was significantly decreased
(with equivalency to room air controls), in addition
to decreased inflammation, in TGFβR2KO hyperoxia-
exposed mice lungs suggesting inhibition of TGFβ1
signaling mediated via its receptor TGFβR2 has a
protective role in hyperoxia settings.
In conclusion, our data provides evidence suggesting

TGFβR2KO comprehensively prevents the deleterious
effects of TGFβ1 signaling by increased ANGPT1/
ANGPT2 ratio, phosphorylation of AKT and decreased
cleavage caspase 3 expression (including specifically in
Type II AECs). Our study has demonstrated the potential
role of inhibition of TGFβ1 signaling via TGFβR2 for
improved survival, reduced inflammation and apoptosis
that may provide insights for the development of novel
therapeutic strategies targeted against HALI and BPD.
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