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Abstract

Thalamic alterations occur in many neurological disorders including Alzheimer's

disease, Parkinson's disease and multiple sclerosis. Routine interventions to

improve symptom severity in movement disorders, for example, often consist of

surgery or deep brain stimulation to diencephalic nuclei. Therefore, accurate delin-

eation of grey matter thalamic subregions is of the upmost clinical importance.

MRI is highly appropriate for structural segmentation as it provides different views

of the anatomy from a single scanning session. Though with several contrasts

potentially available, it is also of increasing importance to develop new image seg-

mentation techniques that can operate multi-spectrally. We hereby propose a new

segmentation method for use with multi-modality data, which we evaluated for

automated segmentation of major thalamic subnuclear groups using T1-weighted,

T*
2 -weighted and quantitative susceptibility mapping (QSM) information. The pro-

posed method consists of four steps: Highly iterative image co-registration, manual

segmentation on the average training-data template, supervised learning for pattern

recognition, and a final convex optimisation step imposing further spatial constraints

to refine the solution. This led to solutions in greater agreement with manual seg-

mentation than the standard Morel atlas based approach. Furthermore, we show that

the multi-contrast approach boosts segmentation performances. We then investi-

gated whether prior knowledge using the training-template contours could further

improve convex segmentation accuracy and robustness, which led to highly precise

multi-contrast segmentations in single subjects. This approach can be extended to

most 3D imaging data types and any region of interest discernible in single scans or

multi-subject templates.
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The thalamus is composed of a complex set of sub-nuclei. It is consid-

ered the central relay station for sensory and motor information as

nearly all sensory and motor signals are sent to the thalamus prior to

reaching the cortex. It is also thought to have an integrative role as

thalamic structures receive, process, sort and send information

between specific subcortical and cortical areas, and might be involved

in regulation of sleep and wakefulness, memory, emotion, conscious-

ness, awareness, attention, ocular motility, learning and motor control

processes (Jürgen, 2011; Sherman & Guillery, 2002; Steriade &

Llinás, 1988).

The thalamus is composed of several major substructures. The

internal medullary lamina is a thin sheet of white matter that runs lon-

gitudinally through the thalamus separating it into medial and lateral

regions. In the anterior part, the internal medullary lamina forks to iso-

late the anterior thalamic nucleus; thus, thalamic nuclei can be broken

down into four regions based on their position relative to the lamina,

that is, anterior, medial, lateral and posterior subnuclear groups

(Chien, Cheng, & Lenz, 2016; Michael Conn, 2016).

Lesions to thalamic nuclei and their connections to the cortex can

result in a wide range of neurological deficits. Thalamic alterations have

been identified in several neurodegenerative diseases including

Alzheimer's disease, Parkinson's disease, Huntington's disease and mul-

tiple sclerosis, the majority of which present evidence of atrophy in

one or more substructures of the thalamus (Amano, 2004; Kassubek,

Juengling, Ecker, & Landwehrmeyer, 2005; Power & Looi, 2015; Ste-

riade & Llinás, 1988). Neurological patients also often undergo brain

surgery and deep brain stimulation targeting thalamic subnuclei, thus

accurate and reliable localisation of such structures are key for both

research and delivering effective clinical treatments (Ondo, Almaguer,

Jankovic, & Simpson, 2001; Steriade & Llinás, 1988).

New developments in imaging techniques, including 3–7 Tesla

MRI, provide greater contrast and higher spatial specificity to study

the thalamus. Therefore, new strategies need to be investigated for

clinical and research applications, which could potentially lead to suit-

able tools for predicting cognitive impairment and for monitoring dis-

ease progression in neurological patients (Gringel et al., 2009).

To date, several methods have been proposed to delineate sub-

thalamic regions with MRI, a few of which used diffusion MRI. For

example, Behrens et al. (2003) described a diffusion tensor imaging

(DTI) based segmentation procedure based on coarse tractography

patterns from the thalamus to the cortex, and Wiegell, Tuch, Larsson,

and Wedeen (2003) developed a k-means clustering algorithm to

detect groups of coherent DTI-based fibre orientation. Lambert et al.

(2012) identified three main regions on diffusion weighted imaging

(DWI) using a clustering algorithm based on a probabilistic index of

connectivity. The use of the mean-shift algorithm (Duan, Li, & Xi,

2007) has also been proposed, whereby regional clusters and shapes

are inferred from the local modes of a density estimator computed

with a multivariate kernel (Duan et al., 2007). Furthermore, Jonasson

et al. (2007) proposed a level-set method whereby a region-based

force (defined using a diffusion similarity index between the most rep-

resentive tensor of each level set and its neighbours) drives a set of

coupled level-set functions each representing a segmented region.

High angular resolution diffusion images (HARDI) have also been

investigated for segmenting the thalamus. Grassi et al. (2008) pro-

posed a k-means clustering approach whereby a specific number of

initialised centroids are updated based on a weighted sum of the

Euclidean distance of voxels to centroids and Frobenius distance of

their orientation distribution function. Notably, however, all diffusion

MRI based methods are hampered by low spatial resolution. In an

attempt to overcome this limitation, Deoni, Rutt, Parrent, and Peters

(2007) explored with some success the use of high-resolution quanti-

tative MRI, namely, T1 and T2 mapping, with a modified k-means clus-

tering approach that combined T1/T2 information and center-of-mass

distances to Morel atlas segmentations (Morel, Magnin, Jeanmonod,

et al., 1997). Further using anatomical images, Magon et al. (2014)

developed a method to segment thalamic subnuclei using a voxel-wise

majority vote after co-registration to multiple atlases.

Past efforts also focused on the MRI acquisition. Bender, Mänz,

Korn, Nägele, and Klose (2011), for example, proposed an inversion

time optimisation strategy to enhance the T1-weighted contrast

between grey and white matter using the 3D magnetization-prepared

rapid acquisition of gradient echo (MPRAGE) sequence. Tourdias,

Saranathan, Levesque, Su, and Rutt (2014) subsequently optimised

MPRAGE for 7 T MRI and proposed imaging at the white matter null

regime both for enhancing the contrast between the thalamus and

surrounding tissues and for depicting several subnuclear groups.

Thalamus segmentation with quantitative susceptibility mapping

(QSM)—a relatively new quantitative MRI contrast—has also gained

increasing interest in recent times. Deistung et al. (2013) illustrated

that high-resolution QSM is a superior contrast to depict thalamic

substructures than T*
2-weighting, the local field or R*

2 maps. Therefore,

considering QSM's ability to provide quantifiable information about

iron content (Hametner et al., 2018), that iron accumulation has been

associated with several neurological disorders (Ward, Zucca, Duyn,

Crichton, & Zecca, 2014) and that thalamic lesions are not uncommon

in such disorders (Kassubek et al., 2005; Steriade & Llinás, 1988), it is

highly plausible that enabling reliable segmentation of thalamic sub-

structures with multiple MRI contrasts including QSM could have a

major impact on the study of ageing and disease.

Traditionally, however, the anatomy of the thalamus has been

inferred from post-mortem tissue examinations. The most widely used

histological atlas was developed by Morel et al. (Morel et al., 1997)

using an iterative approach for reconstructing the mean model from

six series of maps derived from different stacks of histologically

processed brains. The model, thus, is an average template incorporat-

ing topological and geometric features from only a few individuals.

More recently, Ilinsky et al. (2018) derived a model for the thalamus,

with focus on parcellation of connectivity distinct motor-related

nuclei, which identified major subcortical afferent zones. A probabilis-

tic atlas of thalamic nuclei has also been proposed by Iglesias et al.

(2018). The atlas was derived combining ex vivo MRI and histological

data from six autopsy samples, and it can be applied to in vivo MR

images for segmentation by solving a Bayesian inference problem.

Morel's and other similar proprietary atlases are widely used for

guiding MRI-based segmentations in neurosurgical planning, although
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notably, the direct superposition onto brain scans is often not fit for

precision measurements, a situation often aggravated by age-related

differences (Steriade & Llinás, 1988). Therefore, the development of

image-guided segmentation approaches is highly relevant in this

context.

1.1 | Our contribution

This work proposes a new multi-contrast segmentation algorithm, and

its optimisation, to exploit the full potential of T1-, T
*
2 -weighted and

QSM contrast differences in thalamic subregions. We show that using

multi-contrast information maximises segmentation performance, by

exploiting structures that become visible and enhanced in specific MR

imaging contrasts. In the proposed method, regions of interest defined

in template space are learnt and then approximated in single subjects

with spatial constraints that ensure robustness. Our multi-contrast

segmentation framework can be extended to any data types and

regions of interest. In Figure 1, we show a preview of the output of

our approach. In this 3D view, the surface, which is colour-coded by

average absolute distance error with respect to the ground truth's

outer boundary, illustrates that local error modes are typically of the

order of <10%. In the following sections, we provide a detailed

description of the proposed method, and optimization as well as vali-

dation results.

2 | METHODS

The proposed semi-automated method consists of four steps: Spatial

normalisation, manual (reference) segmentation, pattern recognition

and a final refinement step using a convex formulation.

Details on study subjects, MRI acquisition and pre-processing are

given below. For now, we will assume all subject data has been spatially

co-registered to a common reference space, from which multi-subject

templates (one for each contrast) have been computed. We will also

assume hereafter (specific details given below) that regions of interest

have been manually traced (at least once) with the aid of such templates.

We then consider the following multi-class labelling problem.

2.1 | Classification

For each voxel in the image volume domain Ω � R3, Ω = {1, …,

n1} × {1, …, n2} × {1, …, n3}, we assign one of ℓ class labels, with each

class referring to a segmented region. Let X = {xi, i = 1, …, n}, where

n = n1 n2 n3, be the vectorised volume in template space. For each xi,

we have c image intensities or MRI parameter values, f1(xi), …, fc(xi),

one from each imaging contrast available; in this study, T1-, T*
2

-weighted signals and QSM. We then identify a set of possible class

labels, {0, 1, …, ℓ−1}; in this particular context, we set 0 to be the

background region, 1 the lateral thalamic subnuclear group, 2 the

medial group and 3 the posterior group. The manual segmentation in

template space is required to define the label set for the volume X as

Y = {yi, i = 1,…, n}, where yi ∈{0, 1, 2, 3}.

2.2 | Feature space

In the reference coordinate system, we then build the feature space:

Ψ = {ψ ij, i = 1, …, n; j = 1, …, m}, assigning to each voxel xi, i = 1, …, n, in

the image volume, an m-dimensional feature vector. Features describe

objects, in our case voxel information reflecting thalamic tissue prop-

erties. In this work, we set out to develop a multi-spectral approach to

exploit features from several contrast types, whereby the key features

are intensity/MRI parameter values: fk(xi), k = 1, 2, 3 from T1, T
*
2

-weighted MRI and QSM, which return different contrast characteris-

tics for tissues with different local concentrations of water, iron, mye-

lin and so forth. For each contrast, we also selected additional

features which are the result of an empirical study of the feature

space. These are mean, μ and standard deviation, σ, across the

26-neighbourhood and intensity/MRI parameter values for the six

closest 3D neighbours in each contrast, leading to a feature space of

m = 27 dimensions. All features were then scaled by their normalised

variance (i.e. with mean shifted to the origin and total variance for all

features scaled to 1). It should be noted that this feature space was

selected for the present application through an investigation of classi-

fication accuracy versus feature space dimensionality on a data sub-

set. This might differ for other data types and/or target regions.

F IGURE 1 Three-dimensional rendering of the thalamus segmentation using our multi-contrast approach. The surface is colour-coded by
average absolute distance with respect to ground truth's outer boundary
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2.3 | Classifiers

Let us consider the feature space Ψ and the label set Y for n voxels.

Each template voxel is therefore described by the pair (ψ i, yi), where

ψ i is the m-dimensional feature vector of voxel xi and yi is its label.

We define the labelled training dataset as T = ψ1,y1ð Þ,…, ψn,ynð Þf g .
We set out to solve a classification problem based on supervised

learning, in which we train a classifier to derive a decision mapping for

new observations. Initially, we explored the performance of several

classification methods including support vector machine, random for-

est, Naive-Bayes, k-nearest neighbours (k-NN) and Parzen classifiers

using a data subset. In this preliminary study, we obtained greater

accuracy with two classifiers: k-NN (k = 3) and Parzen classifiers,

which are described in (Theodoridis & Koutroumbas, 2008) and, for

the sake of completeness, are summarised in Appendix A. Results for

the other classifiers are reported in Appendix B. As pointed out in the

context of feature selection, the optimal choice of training classifier

may also vary according to data type and/or target region.

2.4 | Convex segmentation

Classification routines yield a posterior probability distribution

p̂ ujfð Þ∈Rn× ℓ for each class, that is the probability for voxel x to be

assigned class u(x) = l given the measured data f(x). From this, winner-

takes-all segmentation can be derived selecting the class with the

highest probability value in each voxel. This, however, often results in

scattered clusters of misclassified voxels that break the smoothness

and continuity of segmented regions. Hereby, therefore, we introduce

an additional convex optimisation step to further improve the spatial

cohesiveness of tissue segments.

More precisely, we consider a labelling function u : Ω ! Rℓ that

represents the unique assignment of a label to each voxel x in the

image domain Ω. Because this is a hard combinatorial problem, we use

a convex relaxation to facilitate the optimisation, see (Lellmann &

Schnörr, 2011) for an overview. The notion of labelling function is

relaxed to u taking values in the convex set defined by the unit

simplexΔℓ≔ u∈Rn !Rℓju≥0,
Pℓ

i=1ui =1
n o

. Then, by choosing

J convex, we solve the following convex segmentation (CS) problem:

min
u:Ω!Δℓ

X
x∈Ω

− logp̂ u xð Þj xð Þð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

data term

+ λTV uð Þ|fflfflffl{zfflfflffl}
regulariser

, ð1Þ

whereby the data term is the negative logarithm of the posterior

probability distribution computed by the classifier, and the regulariser

is the total variation (TV) of the labelling function u defined as the L1-

norm of a discrete finite-difference approximation of the two-

dimensional gradient (Appendix C).

The TV regulariser on the relaxed u is the convex equivalent to

the length penalty on the original hardcoded labelling function and, as

such, it can be thought of as introducing a penalty for long or irregular

interfaces between different classes. The parameter λ > 0 balances

the data term and the regulariser in the minimisation. We solve (1)

using the fast primal-dual algorithm described in Chambolle, Cremers,

and Pock (2012) and Pock, Cremers, Bischof, and Chambolle (2009).

2.5 | Convex segmentation with additional priors

Individual datasets are overall inferior to group-wise templates in terms of

signal- and contrast-to-noise ratio. With a view then to ensure segmenta-

tion robustness at the single-subject level, we extended the forward

model by the introduction of a priori information on themanual segmenta-

tion of the training template. We enabled the weighting of posterior prob-

abilities, p̂ ujfð Þ, according to template-based constraint as follows:

min
u:Ω!Δℓ

X
x∈Ω

− log 1−wð Þp̂ u xð Þjf xð Þð Þ+wmð Þ+ λTV uð Þ ð2Þ

where w ∈ [0, 1] is a normalised weight determining the level of prior

information constraining the data term, m: Ω ! {0, 1}ℓ is a labelled

mask of thalamic subregions, and λ > 0 is the regularisation parameter.

2.6 | Study subjects

Training (Dataset I) and test (Dataset II) datasets consisted of N = 43

(age: 59 ± 7, [50–69] years old, 19 female/24 male) and N = 116 (age:

54 ± 19, [20–79] years old, 56 female/60 male) healthy subjects, respec-

tively. The latter was an ageing cohort previously investigated with QSM

(Acosta-Cabronero, Betts, Cardenas-Blanco, Yang, & Nestor, 2016). All

elderly subjects (age > 50 years old) were free of neurological or major

psychiatric illness and performed normally on cognitive screening: Mini-

mental state examination (MMSE > 27; Folstein, 1975).

2.7 | MRI scanning protocol

The imaging protocol, QSM reconstruction and spatial normalisation

methods (briefly summarised below) are essentially identical to those

in a previous ageing study (Acosta-Cabronero et al., 2016).

All participants were scanned on a Siemens Verio 3 Tesla MRI

system with a 32-channel head coil (Siemens Medical Systems,

Erlangen, Germany) under the following imaging protocol:

T1-weighed data were acquired using a 3D MPRAGE sequence

(Mugler & Brookeman, 1990) with the following scan parameters:

Inversion time = 1,100 ms, flip angle (α) = 7�, echo time

(TE) = 4.37 ms, receiver bandwidth (RB) = 140 Hz per pixel, echo

spacing = 11.1 ms, repetition time (TR) = 2,500 ms; 256 × 256 × 192

matrix dimensions (straight-sagittal orientation), 1 × 1 × 1 mm3 voxel

size, twofold parallel acceleration and further 7/8 partial Fourier

undersampling for phase encoding. The total scan time was 5:08 min.

T*
2-/susceptibility-weighted data were obtained from a fully flow-

compensated, 3D spoiled gradient-echo sequence. Scan parameters

were: α = 17
�
, TE = 20ms, RB = 100Hz per pixel, TR = 28ms; matrix,

256×224×80 with voxel resolution of 1×1×2mm3; and twofold

parallel acceleration for phase encoding. The total scan time was

CORONA ET AL. 2107



5:32min. All susceptibility maps were inspected to exclude subjects

with severe calcifications or microbleeds.

2.8 | MRI data pre-processing

2.8.1 | QSM reconstruction

QSM is a relatively new contrast modulated by the local content of

chemical species that have different magnetic susceptibilities than

soft tissue and water (Wang & Liu, 2015). Myelin phospholipids and

calcifications, for example, are more diamagnetic than water; whereas,

iron—the most abundant transition metal in the human brain and the

dominant source of QSM contrast—is greatly paramagnetic (Hametner

et al., 2018).

Technically, QSM uses complex-valued information from three-

dimensional (3D) gradient echo MRI sequences. Multi-channel com-

plex data were combined for optimal phase reconstruction using an

adaptive algorithm (Walsh, 2000), preceded by an in-house algorithm

for reference channel selection that automatically identifies the chan-

nel with the highest fifth percentile SNR across a brain mask. Com-

bined phase images were then unwrapped with a direct Laplacian

approach (Schofield & Zhu, 2003), and the background field induced

at tissue–air interfaces was removed using the SHARP filtering

method (Schweser, Deistung, Lehr, & Reichenbach, 2011), with a ker-

nel radius of 5 mm. Finally, nonlinear MEDI (Liu et al., 2013), a

regularised dipole inversion algorithm, was used to find a unique solu-

tion (a) that is model consistent with the input local field and (b) that

matches the anatomical structure depicted on magnitude images.

F IGURE 2 Anatomical detail from group-average MRI templates. (a) Representative axial cuts (from left to right) of T*
2-, T1-weighted and

QSM templates for the test dataset (Dataset II). (b) Magnified views of the left thalamus for the three templates
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Specific details on the susceptibility reconstruction methodology used

in this study can be found elsewhere (Acosta-Cabronero et al., 2016).

2.8.2 | Spatial standardisation

Radio-frequency (RF) bias corrected (Tustison et al., 2010) T*
2

-weighted magnitude images were affine co-registered to their

corresponding bias-corrected MPRAGE volume using ANTs (http://

stnava.github.io/ANTs/; Avants, Tustison, & Song, 2009). Subse-

quently, all bias-corrected anatomical T1-weighted MPRAGE images

were used to generate a study-wise space using a previously

described ANTs routine (Acosta-Cabronero et al., 2016; Avants,

Epstein, Grossman, & Gee, 2008). Finally, all T*
2 -weighted images and

susceptibility maps were normalised to the same coordinate system

through the warp composition of the above transformations and high-

order interpolation, to match the 1mm isotropic voxel resolution of

the MPRAGE volume.

2.8.3 | Manual (reference) segmentation

Three templates were subsequently obtained from averaging T1-, T
*
2

-weighted and QSM data across subjects in the study-wise space

(Figure 2). This was performed separately for training and testing data.

Free-hand segmentations were guided by the three contrasts simul-

taneously toggling between views in ITK-SNAP (http://www.itksnap.

org). The references throughout were the internal white matter lamina

of the thalamus, and other contrast variations consistent with prior

knowledge based on the Morel atlas. Three major thalamic subregions,

namely, lateral, medial and posterior nuclear groups, were manually

traced as illustrated in Figure 3. The manual annotations from the

training-average template were utilised in the training phase of the algo-

rithm as ground truth. In addition, thalamic subregions from the average

test template (Dataset II) and for N = 16 (ages: 24, 25, 38, 47, 51, 62,

63, 64, 68, 70, 72 and 78) individual test datasets were delineated for

algorithm validation (section 2.9), giving intra-rater Dice scores of 98.23

and 84.89 for template and mean single-subject segmentation, respec-

tively. Inter-rater variability was not calculated in this study.

2.9 | Performance evaluation

Segmentation performance was assessed through visualisation of the

confusion matrix (incorporating exact error distributions). For simplic-

ity, however, in this study, we report two representative summary

measures: The global classification error rate (i.e. the overall propor-

tion of erroneously classified voxels) and the true positive (TP) rate

for non-background (i.e. subnuclear group) regions. In the first

instance, algorithm performance evaluations were carried out for the

thalamus nuclear group segmentation from high SNR templates

(Dataset II average), including a comparison with standard Morel atlas

based segmentation. Subsequently, error measures were also com-

puted for individual (noisier, multi-contrast) test data.

Morel segmentation was performed using a co-registration based

approach. This used a pre-optimised routine for unimodal (T1-

weighted MRI) registration in ANTs (‘antsRegistrationSyN.sh’, http://

stnava.github.io/ANTs) incorporating both rigid (multi-resolution) and

F IGURE 3 Manual
segmentation of three major
thalamic subnuclear groups. Left:
Bilateral contours overlaid onto
the Dataset II QSM template. Red
contours denote the lateral nuclear
group, green contours correspond
to the medial group, and cyan
contours illustrate the posterior
group segmentation. Right:
Magnified view of the left
thalamus showing manual
contours overlaid onto T*

2- and T1-
weighted templates. (a) Manual
contour overlays onto the N = 116
average QSM template. (b) T*

2

-weighting (c) T1-weighting
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non-linear (multi-resolution, b-spline SyN; Avants et al., 2008) trans-

formation steps. This has recently suggested as the state-of-the-art

approach in this context (Ewert et al., 2019). Morel atlas labels were

obtained from the original source (Krauth et al., 2010) in 0.5-mm iso-

tropic resolution, MNI152 template (Montreal Neurological Institute,

McGill University, Canada) co-ordinates. The high-resolution MNI152

template was thus co-registered to our study-wise template to map

Morel labels onto our study space. N.b. Morel labels were redefined

(i.e. merged together where appropriate) to conform the nuclear

group labels used in this work.

2.10 | Methods summary

In Algorithm 1, we summarise the proposed methodology for multi-

contrast MRI segmentation. The first stage of the algorithm trains a

classifier for use in stage two. Given then a ‘new’ multi-contrast MRI

dataset to be segmented, all contrast images must be first realigned to

a common space, then the ‘new subject’ segmentation pipeline can be

applied as follows:

• supervised classification (testing), given the trained classifier, its

mapping is applied to independent test data yielding class labels

and posterior probabilities.

• multi-class convex segmentation, where posterior probabilities are

used in the data term of the convex optimisation formulation

defined in Equation (1).

The supervised learning and convex segmentation steps of the

algorithm were implemented in MATLAB R2017b (The Mathworks

Inc., Natick, MA) and are available at https://github.com/

veronicacorona/multicontrastSegmentation.git.

Algorithm Procedural steps for multi-contrast segmentation.

Training stage

Input: Multi-contrast training data

1: Spatial normalisation

2: Contrast-specific template generation

3: Manual (or atlas based) template segmentation

4: Supervised classification (training)

F IGURE 4 Top row: Posterior probabilities of the four thalamic tissue classes for theN = 116 template dataset obtained with Parzen classification.
Bottom row: (left) labels derived from the posterior probabilities, and (right) refined segmentation using convex segmentation (CS) on the posterior map
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Output: Trained classifier

New segmentation

Inputs: Multi-contrast test data and a trained classifier

5: Spatial normalisation

6: Supervised classification (testing)

7: Multi-contrast convex segmentation

Output: Regional contours

Remark 1 All MRI datasets in this study were spatially standardised

via nonlinear co-registration to a common coordinate system.

This enabled custom training from a single set of regional con-

tours in template space. Future applications of this algorithm

could alternatively consider using manual tracings from each

individual training dataset. The only requirement is that all con-

trasts for a given subject must share a common frame of

reference.

F IGURE 5 Error rates for (left) classification and (right)
classification followed by convex segmentation (CS) on Dataset II
average template data. Bars represent misclassification frequency,
that is, overall proportion of errors relative to the manually traced
ground truth

F IGURE 6 Convex segmentation results (for the template Dataset II) from different algorithmic implementations and the Morel atlas overlay
onto the Dataset II QSM template. The blue overlay represents the ground truth's outer contour. Red, green and cyan contours are the results for
the different approaches

TABLE 1 Segmentation performance for the new algorithmic
implementations and the standard Morel method applied on the
Dataset II template

Classifiers % global error % TP (nuclei)

3-NN + CS 7.0 74.8

Parzen + CS 6.9 88.4

Morel atlas 13.3 69.7

Note: The proposed implementations outperformed standard Morel

segmentation on both performance metrics: Global error and true positive

(TP) rate. The bold values indicate the best results as lowest global error

and highest TP.

TABLE 2 Classification error as a function of classifier and λ

parameter

3-NN Parzen

λ % error λ % error

0.1 9.5 4 7.3

0.5 7.0 4.5 7.2

1 7.0 5 6.9

1.5 10.0 5.5 6.9
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3 | RESULTS

In what follows we present our numerical results obtained indepen-

dently for Dataset II described in section 2.4 (Sherman & Guillery, 2002).

3.1 | Qualitative assessment

In this implementation, classifiers were set out to assign four posterior

probabilities per voxel, that is, those of belonging to background, lat-

eral, medial and posterior subregions of the thalamus. Figure 4a–d

shows posterior probability maps using the Parzen classifier on the

average Dataset II template. The figure indicates that accurate classifi-

cation of specific subnuclear groups and the background region is fea-

sible; supporting, thus, the choice of feature space and classifier.

Overall, the best performing algorithms in our preliminary assessment

were k-NN and Parzen classifiers (see results for other classifiers in

Appendix B). For k-NN, the optimal number of nearest neighbours, k,

was k = 3. For the Parzen classifier, the empirically optimal parameter

h, that is, the width of the Gaussian smoothing kernel, was

h = 0.1668. Figure 4e further confirmed that the Parzen classifier out-

put is overall in agreement with a priori knowledge on the regional

distribution of subnuclear groups. However, as predicted, winner-

takes-all local classification introduced undesirable regional disconti-

nuities. This was substantially mitigated through the additional CS

step as shown in Figure 4f.

3.2 | General performance evaluation

3.2.1 | Convex segmentation validation

The introduction of convex segmentation systematically improved

classification performance as shown in Figure 5, which, in turn, also

F IGURE 7 Algorithm performance comparison as a function of input MRI data for Dataset II. The red line indicates the error rate for the
Morel atlas segmentation. Classification errors were greatly reduced when combining QSM with other contrasts. The global minimum error was
obtained using all three contrasts

F IGURE 8 Classification error (with respect to manual gold standard) as a function of w. Bars denote mean error (from average Dataset II
template segmentation) for each possible combination of input data. Data points and error bars denote mean and SEM across N = 12 test
datasets. The red lines indicate the empirical optima w (w = 0.4 for 3-NN and w = 0.9 for Parzen)
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confirmed that posterior probability maps from both k-NN and Parzen

classifiers are suitable pre-conditioners for the CS formulation in (1).

3.2.2 | Algorithm comparison

Figure 6 illustrates segmentation results for all methods herein evalu-

ated. Outputs from the proposed multi-contrast method were in

greater agreement with the manual ground truth than atlas-based

Morel segmentation, which is solely based on template co-

registration.

It is worth noting that in this particular implementation the back-

ground region outsizes (approximately 4:1) the extent of putative tha-

lamic regions. Therefore, segmentation results are reported in Table 1

both as global classification errors and true positive rates; the latter

computed for non-background regions only. Such an evaluation con-

firmed the proposed algorithm outperforms Morel atlas segmentation

on all performance metrics. Pre-conditioning with 3-NN and Parzen

based posterior probabilities minimised classification error and true

positive rates, respectively.

3.2.3 | Regularisation parameter selection for
convex segmentation

The 3-NN and Parzen based segmentation results in Figure 6 and

Table 1 were obtained through solving the convex optimisation prob-

lem defined in (1), which has a regularisation multiplier, λ, that requires

optimisation for optimal solution smoothness. In this study, λ was

optimised empirically on a small subset: For 3-NN, we chose λ = 1,

and for Parzen λ = 5. We then confirmed the validity of this choice

calculating overall classification errors (on the N = 116 template

dataset) for a range of regularisation parameters. Results from this val-

idation experiment are summarised in Table 2.

3.2.4 | Algorithm performance as a function of
input data type and number of contrasts provided

A unique aspect of the proposed algorithm is that it can integrate

information from several MRI contrasts capturing simultaneously dif-

ferent views of the anatomy. In this study, we hypothesised that T1-,

T*
2 -weighting and QSM all provide differentially relevant information

about internal thalamic boundaries. In order to substantiate this claim,

we estimated algorithm performance for all the available combina-

tions, that is, one, two or three data types, using the same

27-dimensional feature space that was previously optimised. CS

errors are shown in Figure 7 for pre-conditioning with both 3-NN and

Parzen classifiers. Interestingly, using single contrasts alone as input

data led to systematically greater error rates than when using QSM in

combination with other contrast types. Confirming our hypothesis,

the best segmentation performance was obtained when using all MRI

information. Although some differences were observed, overall both

pre-conditioning approaches, that is, 3-NN and Parzen classification,

yielded relatively similar error rates throughout.

3.3 | Convex segmentation with additional priors
for increased performance in single subjects

We also confirmed that constraining the data term for fidelity with

training-average tissue priors is feasible and desirable to improve

accuracy and robustness in single-subject thalamic subnuclei segmen-

tation. The consistency weight, w in (2), represents a trade-off

between the calculated posterior probabilities and template-based

priors. On a N = 6 test subset, we explored how classification error

varies as a function of w. This is illustrated in Figure 8, which indicated

that 3-NN is generally preferred (to Parzen based training) in this con-

text; 3-NN pre-conditioning resulted in greater accuracy with optimal

performance for a critical w = 0.4.

F IGURE 9 Representative convex segmentation for single-
subject data with and without training-average priors. The blue
overlay represents the ground truth's outer boundary. Red, green and
cyan contours are the results for the different approaches. Contours
are plotted onto the QSM contrast. (a) Convex segmentation with
(left) 3-NN and (right) Parzen based pre-conditioners. (b) Weighted
convex segmentation with 3-NN (left, 40% prior) and Parzen based
pre-conditioners (right, 90% prior)
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F IGURE 10 Extended view (z-slices) for single-subject thalamus segmentation using 3-NN based pre-processing and w = 0.4. The blue
overlay represents the ground truth's outer boundary. Red, green and cyan contours are the segmentation results for the three subnuclear
groups. Contours are plotted onto the QSM contrast

F IGURE 11 Three-dimensional rendering of thalamus segmentation for subject #2, using 3-NN pre-processing and w = 0.4.The surface is
colour-coded by average absolute distance with respect to ground truth's outer boundary
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F IGURE 12 Three-dimensional rendering of thalamus segmentation for subject #3, using 3-NN pre-processing and w = 0.4. The surface is
colour-coded by average absolute distance with respect to ground truth's outer boundary

F IGURE 13 Three-dimensional rendering of thalamus segmentation for subject #4, using 3-NN pre-processing and w = 0.4. The surface is
colour-coded by average absolute distance with respect to ground truth's outer boundary

F IGURE 15 Three-dimensional rendering of thalamus segmentation for subject #6, using 3-NN pre-processing and w = 0.4. The surface is
colour-coded by average absolute distance with respect to ground truth's outer boundary

F IGURE 14 Three-dimensional rendering of thalamus segmentation for subject #5, using 3-NN pre-processing and w = 0.4. The surface is
colour-coded by average absolute distance with respect to ground truth's outer boundary
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The primary aim of this analysis was to evaluate if performance

with this extension was pre-processing method dependent. In light of

Figure 8, we can conclude that for this particular problem 3-NN classi-

fication seems be the optimal pre-processing method. However, fur-

ther cross-validation work is required to establish optimal w with

greater certainty and specificity.

From a qualitative standpoint, Figure 9 illustrates the improvement

in single-subject segmentation when weighting the fidelity term by the

training-data based prior. Weighted segmentations with both super-

vised learning approaches (i.e., 3-NN and Parzen) converged to solu-

tions that were overall in close agreement with the manual ground

truth. Extended results for the same subject using 3-NN are shown in

Figure 10. The remaining 3-NN based single-subject results are shown

as 3D surface plots in Appendix D (Figures 11–15), which illustrate that

thalamus segmentations in single subjects follow, with no exception in

this small test dataset, a similar structural pattern. Segmentation results

for the Dataset II template are also shown in Appendix D (Figure 16).

4 | DISCUSSION

In this study, we present a data-driven method to segment several

internal thalamic boundaries using multi-contrast MRI data. We had

three imaging contrasts available to drive the segmentation proce-

dure: T1, T
*
2-weighting and QSM. We confirmed that using all informa-

tion maximised performance, and also found evidence suggesting that

QSM was the most informative contrast type for this segmentation

problem. Different data types or new implementations for other ana-

tomical regions will require new calibration work.

This work was motivated by the observation that study-wise MRI

templates obtained using highly iterative non-linear coregistration

routines are showing superb anatomical detail over and above what

can be inferred from individual datasets. It is therefore unsurprising

these are being used to trace regions of interest that are not available

from automated segmentation tools (Acosta-Cabronero et al., 2016;

Betts, Acosta-Cabronero, Cardenas-Blanco, Nestor, & Dzel, 2016).

Although this is an effective strategy, it assumes both that there are

no co-registration errors in the calculation of the study-wise template

space and that the manual reference is an exact definition of the

region of interest, which are somewhat inaccurate assumptions. In this

work, we broke away from this idealisation and propose to correct

these errors with two additional steps: One of pattern recognition,

followed by convex segmentation promoting (from a Bayesian stand-

point) segmentation boundaries that are short, continuous and regular

while also consistent with contrast variations in single subjects. Fur-

thermore, to capitalise on the facts (a) that multiple MRI contrasts are

typically acquired in the same imaging session, and (b) that different

MRI contrast types could act in concert to help resolve tissue bound-

aries, the algorithm was implemented in multivariate form. In turn, this

new method yielded regional boundaries that were in good agreement

with manually traced contours. This was in stark contrast with the

output from Morel atlas based segmentation of the same subnuclear

groups, confirming that data-driven approaches (such as that which is

hereby proposed) signify an improvement (with respect to co-

registration based atlas labelling methods) in terms of consistency

with manual segmentation. Future work is warranted to carry out

additional comparisons with other state-of-the-art methods (such as

those cited in the introduction), and target other highly relevant deep

brain nuclei.

It is also worth noting that posterior probability maps from indi-

vidual datasets can be noisy. In this study, with a view to make the

convex segmentation algorithm more robust in this regime, we intro-

duced an additional data fidelity weight in (2) to enable additional

prior knowledge to be transferred from the training reference to

single-subject segmentations. Such an approach led to significant

improvements for both classifiers, although we noted optimal perfor-

mance (i.e. lower errors with respect to the gold standard) specifically

for 3-NN based modelling and inclusion of 40% prior knowledge. Intu-

itively, w-dependent errors reflect the complex interaction between

co-registration performance, accuracy on training-template manual

delineation and the algorithm's ability to identify biologically meaning-

ful boundaries between tissue types. In other words, the finding that

segmentation errors were systematically minimised by w < 1 con-

firmed that the proposed algorithm effectively corrects for co-

registration and/or manual initialisation errors. We cannot guarantee,

however, that the proposed implementation (i.e. 3-NN classification

with λ = 1 and CS with w = 0.5) will be optimal for other regions

and/or data types. This warrants further investigation. We also would

F IGURE 16 Three-dimensional rendering of the thalamus segmentation for Dataset II (N = 116) average templates, using 3-NN pre-
processing and w = 0.4. The surface is colour-coded by average absolute distance with respect to ground truth's outer boundary
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like to point out that future work could also formulate the classifica-

tion and convex optimisation steps as a joint problem to reduce the

propagation of errors. Additionally, in future work the TV segmenta-

tion term will be extended to 3D.

An important consideration for early adopters of this method is

that posterior probability maps can only be obtained from models

trained on separate data. In this study, we had sufficient power to

split the dataset into training and test subsets. However, future stud-

ies wanting to implement this algorithm with limited available data

may consider, for example, an algorithmic extension for synthetic data

augmentation.

In conclusion, this work presented a highly versatile multi-

contrast segmentation framework and its successful application to

identify thalamic substructures. In practice, this method can be seen

as the basis to segment any brain structure identifiable (or labelled) on

any widely available template or atlas (e.g. the Ilinsky atlas (Ilinsky

et al., 2018)). In addition to developing appropriate forward pipelines

for bootstrapping training data augmentation, further improvements

might be obtained using, for example, deep learning, which may elimi-

nate the need for ad hoc spatial constraints.
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APPENDIX A

Classifiers in our study

In the following, we review the classifiers used in our approach,

namely k-Nearest Neighbours and Parzen classifiers (see Theodoridis

and Koutroumbas (2008) for more details). We recall that in our work

the dataset is built on a voxel representation, namely, each voxel in

the image domain corresponds to a data point.

k-Nearest neighbours (k-NN)

The k-nearest neighbours (k-NN) algorithm is a non-parametric classi-

fier, which assigns an object to the most common class within its

k nearest neighbours. An unlabelled data point ψ is located at the cen-

tre of a cell, whose volume is not fixed and will vary until k neighbours

in the dataset of labelled examples (training set) are covered.

The k-NN density estimator is

p̂ ψð Þ= k
nVk

ðA1Þ

where n is the number of data points in the training set and Vk is the

volume of the sphere centred at ψ with radius r (the distance to the k-

th nearest neighbour). Let us assume we have ny data points of class

y ∈ Y. Using the k-NN density estimate (A1), we can approximate the

class conditional probability

p̂ ψ jyð Þ= ky
nyVk

where ky are the k nearest neighbours to ψ in the training set with

label y. The prior probability of label y is

p̂ yð Þ= ny
n
:

From Bayes theorem, the posterior probability is
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p̂ yjψð Þ= p̂ ψ jyð Þp̂ yð Þ
p̂ ψð Þ : ðA2Þ

Then, the k-NN classification rule is given by the maximum a

posteriori estimator which, from the above, is given by

ŷ = argmax
y∈Y

p̂ yjψð Þ= argmax
y∈Y

ky
k
= argmax

y∈Y
ky:

Therefore, given a new object ψ , k-NN finds the closest

k neighbours in the training set and assign to ψ the label of the preva-

iling class.

Parzen window classifier

In m-dimensional feature space, the Parzen estimator fixes a hyper-

cube of length h, and volume hm to each data point ψ . We define the

window function ϕ(u):

ϕ uð Þ= 1 j uj j ≤
h
2
, j =1,…,m

0 otherwise:

8<
:

The window function is 1 inside the hypercube and 0 outside. Let

ψ i, i = 1, …, n, be the feature vector for each of the n data points in

the training set. The number of samples in the hypercube centred at a

new point ψ is

k =
Xn
i=1

ϕ
ψ−ψ i

h

� �
:

From the above, the kernel density estimator is

p̂ ψð Þ= 1

hm
1
n

Xn
i=1

ϕ
ψ−ψ i

h

� � !
ðA3Þ

where ϕ(�) is the window function, also known as Parzen window.

Given ny data points of class y, from (A3) we can estimate the class

conditional probability as

p̂ ψjyð Þ= 1

nyh
m

Xny
i=1jyi = y

ϕ
ψ−ψ i

h

� �
:

Now if we consider a Gaussian kernel for ϕ, from Bayes theorem

(A2), the posterior probability is

p̂ yjψð Þ=
Pny

i=1jyi = ye
−1

2
ψ−ψi

hð Þ2

Pn
i=1e

−1
2

ψ−ψi
hð Þ2

:

In the classification stage, we therefore compute a posterior

probability map from which we can derive labels as

ŷ = argmax
y

p̂ yjψð Þ:

APPENDIX B

Experimental results in other classifiers

Before selecting k-NN and Parzen classifiers, several other methods

had been investigated in this study, including support vector machine

(SVM), random forest (RF) and Naive-Bayes (NB).

The SVM model maps samples as point in space and constructs a

decision boundary as a hyperplane whose margin with the nearest train-

ing sample of any class is maximised. It can apply non-linear classification

by using the kernel trick, which represents a set of mathematical func-

tion to implicitly map inputs into high-dimensional feature space. We

show the results selecting polynomial kernels of order 3, 5 and 7.

Random Forest is an ensemble learning algorithm which merges

results from many weak learners into one high quality ensemble predic-

tion. The prediction of new objects is made by averaging predictions

from all the decision trees. We chose a RUSboost algorithm and different

sizes of decision trees. We show results for 100 and 500 decision trees.

Naive-Bayes is based on the Bayes theorem and assume strong statis-

tical independence between features. Considering independent conditional

feature distributions, it reduces high-dimensional problems to multiple

one-dimensional estimation.We used a Gaussian model to fit the data.

Implementations are from the Statistics and Machine Learning

toolbox in MATLAB (Table B1).

APPENDIX C

Total variation

The total variation (TV) is defined as the L1-norm of a discrete finite-

difference approximation of the two-dimensional gradient

(r : Rn ! (R2)n of u, that is ru(i, j) = (r1u(i, j), r2u(i, j))
T, with

TABLE B1 Classification errors and TP rate for rejected
classifiers

Classifiers % classification error % TP (nuclei)

SVM order = 3 42.10 9.48

SVM order = 5 29.57 18.22

SVM order = 7 34.89 29.84

Random forest (100) 13.87 43.18

Random forest (500) 13.53 60.95

Naive-Bayes 29.31 66.58

Note: SVM performances are very poor, in particular the generalisation for

minor classes. RF has a relatively low misclassification error but the TP

rate is not sufficient to accurately identify thalamic nuclei. NB results in

bad classifications, although TP rate for nuclei class is the highest among

the rejected classifiers.
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r1u i, jð Þ=
u i+1, jð Þ−u i, jð Þ if i< n1

0 if i= n1

(

r2u i, jð Þ=
u i, j+1ð Þ−u i, jð Þ if j< n2

0 if j= n2:

(

The total variation is then in the discrete setting

TV uð Þ= ruk k2,1 =
X
i, jð Þ∈Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1u i, jð Þj j2 + r2u i, jð Þj j2

q
:

APPENDIX D

3D rendered surfaces of segmentation results for single subjects

Here, we show 3D visualisations of segmentation results using noisy,

single-subject test data in contrast to results from high SNR, average

template data errors. It was noted that the local error mode for each

subject was below 10% across the external surface. Of note, the

highest segmentation errors were observed near the location of the

anterior thalamic nucleus, which was an expected result due to the

close proximity of large highly deoxygenated blood vessels.
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