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Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-
dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously
or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-
dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network
within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-
synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition
to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented
sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons
connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are
temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected
through gap-junctions. This spatial average, essentially a feedback signal from the neuron’s output, determines whether particular
gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes.
We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world
images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents
a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The
system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and
contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

1. Introduction: Cognition and Consciousness

Cognitive brain functions including sensory perception and
control of behavior are ascribed to computation in net-
works of neurons (“neurocomputation”). In each biological
neuron, dendrites (and the cell body/soma) receive and
integrate synaptic inputs to a threshold for axonal firing as
output—“integrate-and-fire.” Even though the behavior of
an actual biological neuron is quite complex, in replicating
complex behaviors, neurons are frequently modeled as
simple integrate-and-fire neurons. Neuronal firings and their
chemical synaptic transmissions are presumed to act like “bit
states” in silicon computers. Information flows directionally

through landscapes of integrate-and-fire neurons in feed-
forward and feedback networks, accounting for various
forms of brain cognition [1].

What cannot be easily accounted for is consciousness.
Subjective phenomenal experience—conscious awareness–
does not naturally ensue from information processing [2].
Without consciousness, nonconscious cognitive process-
ing and behaviors are performed habitually, for example,
on “autopilot” [3] or in “zombie mode” [4]. Without
addressing consciousness per se, neuroscientists aim to
identify the “neural correlate of consciousness” (NCC), brain
systems active concomitantly with conscious experience
[1].
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Cognition and consciousness may, or may not, coincide.
Complex behaviors like walking or driving are at times
nonconscious autopilot functions and at other times accom-
panied by conscious perception and control. For example,
we may drive to work on nonconscious autopilot while
daydreaming—our conscious minds roaming elsewhere. But
if a horn sounds or a light flashes, our conscious mind
returns to conscious perception and control. Studies of
stimulus-independent thought (“mind wandering”) show
activity literally moving around the brain as the content of
consciousness changes [5].

Measurable brain activity correlating most closely with
consciousness (i.e., the NCC) is synchronized electrical
activity in a particular frequency band (30 to 90 Hz) of
the electroencephalogram (EEG) called gamma synchrony
[6, 7]. EEG signals including gamma synchrony are produced
by membrane potentials reflecting integration in dendrites
and cell bodies, that is, not from axonal firings. Gamma
synchrony can occur locally within a brain region, between
neighboring regions, or globally distributed among spatially
separated brain regions.

The mechanism of long-range gamma synchrony
remains unclear [8]. Melloni et al. [9] assume long-range
synchronization of neural assemblies to be the key event
mediating access to consciousness. Different mechanisms
which could induce synchronous oscillations are reviewed
by Ritz and Sejnowski [10]. Local gamma synchrony requires
something other than directional axonal-dendritic or
axonal-cell body neurocomputation mediated by chemical
synapses and axonal firings. Local gamma synchrony
depends on dendrites of neighboring neurons fused and
synchronized by electrical synapses or gap junctions [11–14].
In the context of neural networks, gap junction electrical
synapses form lateral or sideways connections mediating
synchrony (“sideways synchrony”) in input/integration
layers.

As gap junctions open and close, neuronal groups linked
laterally by gap junctions—subnetworks—evolve, and can
move as spatiotemporal envelopes, or zones of “sideways
synchrony” through the brain’s neuronal networks (as feed-
forward and feedback neurocomputation continue). Such
moving zones of sideways synchrony have been proposed
as a mobile agent/NCC (the “conscious pilot”) conveying
conscious experience and choice to otherwise nonconscious
autopilot cognition [15]. Human electrophysiological studies
show zones of synchrony moving through the brain with
changing content of consciousness [16].

2. Neural Network Modeling

Artificial neural networks are used to address various
technical problems, replicating human or animal behavior
or for modeling brain functions. In so doing, the essential
ingredients of biological neuronal function are sought, omit-
ting aspects considered inessential. A simple model capturing
all the necessary ingredients has the advantage that it can be
simulated faster compared to a more elaborate model. In this
paper we follow the approach of Gerstner et al. [17] who
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Figure 1: Three spikes traveling along axon.

focus on the spiking behavior. The molecular interaction,
that is, interactions at the level of neurotransmitters and
ion channels, is not considered. However we do consider
connections normally omitted as inessential: sideways or
lateral interneuronal connections due to dendritic-dendritic
gap junctions. Using large-scale modeling [18] this may
eventually lead to a better understanding of how the brain
functions. We start with integrate-and-fire neurons as basic
components of artificial neural networks.

One of the simplest models of how a biological neuron
operates is the integrate-and-fire model [19, 20]. In each
biological neuron, dendrites (and the cell body/soma) receive
and integrate synaptic inputs from axons of other neurons.
Inputs to dendrites and cell body are integrated over time
as a membrane activation potential. When the activation
potential reaches a critical threshold on the proximal axon,
the neuron “fires” and sends a traveling wave or spike
(Figure 1) along the length of the axon to the next synapse
and, hence, the next neuron. The spike is integrated, along
with others from other neurons, by the next neuron. This
model is shown in Figure 2.

In integrate and fire models the change of the membrane
potential Vi of a neuron i which is connected to N other
neurons is described as (modified from [21])

C(dVi/dt) = gi(Ei −Vi) + Itonic + Ii +
N∑

j=1

wijKj , (1)

where C is the capacitance of the neuron. The cell tends
naturally towards its resting potential Ei. If Vi is higher than
Ei then the term gi(Ei − Vi) ensures that the membrane
potential Vi slowly decays towards Ei. The variable gi specifies
leakage conductivity, that is, the speed with which this decay
occurs. The factor Ii takes into account that the neuron i
may receive a constant current from an arbitrary external
source. Finally, the last term

∑N
j=1 wijKj models the incoming

current due to the excitatory potential of the incoming
spike Kj on afferent j. Here, wij models the strength of the
connection between neuron i and neuron j. The potential
Vi of neuron i rises (C(dVi/dt) > 0) if gi(Vi − Ei) >

Itonic + Ii +
∑N

j=1 wijKj . Once a threshold voltage of Vthreshold

is exceeded, a spike is generated by the neuron i. The spiking
voltage Vs is assumed to rise exponentially and also to decay
exponentially.

Even though (1) is a currently accepted model of how the
membrane potential of neuron i changes over time, it is not
a particularly useful description when we want to find out
which function is actually performed by neuron i.
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Figure 2: (a) Biological neuron. (b) Abstract neuron with three neuronal inputs. An abstract neuron is described by several parameters
and state variables, for example, the activation or the connection weights. If the activation rises above a threshold, then the neuron sends a
voltage spike along the axon which is then integrated by other neurons through its dendrites.

3. A Sideways-Connected Model of
Spiking Neurons

We will now gradually simplify the equation of the mem-
brane potential in an effort to derive the function which is
computed by neuron i and also extend this equation. First,
we note that the tonic current Itonic can be subsumed into Ii.
Hence we only need to consider cases with Itonic = 0. The
external current can be treated as another input through the
afferent j = N + 1 with wij = 1. The capacitance C can also
be removed from the equation (it results in the time constant
τ = C/gi) by subsuming it into the constants gi and the
weights wij . Therefore, our simplified equation describing
the membrane potential Vi is given as

dVi

dt
= gi(Ei −Vi) + Ii (2)

with Ii =
∑N

j=1 wijKj . Using Vi(t = 0) = Ei, we obtain

Vi(t) =
(
Ei +

Ii
gi

)
(
1− exp

(−git
))

, (3)

as a solution to this equation. The membrane potential rises
exponentially and reaches Ei + (Ii/gi) for t → ∞ if the time
between spikes is smaller than the time until the neuron has
reached its resting potential. For small t, when Vi ≈ Ei, the
membrane potential rises linearly according to Vi(t) = Ei +
Iit.

With respect to the operation of the neuron we will now
consider the resting potential to be zero, that is, Ei = 0. Thus,
we obtain

dVi

dt
= −giVi + Ii, (4)

where gi defines the velocity with which the membrane
voltage of the neuron returns to the resting voltage zero and
Ii is an external input through the afferent. Let us write the
above as an update equation using a time step of dt = 1.
Let Vn

i be the new membrane potential at the next time step

which can be computed from the potential at the previous
time step Vo

i . Then we obtain

Vn
i = Vo

i − giV
o
i + Ii,

Vn
i =

(
1− gi

)
Vo
i + gi

(
Ii
gi

)
,

Vn
i =

(
1− gi

)
Vo
i + giI

′
i ,

(5)

with I′ = (Ii/gi). This is simply a temporal averaging
operation. Suppose that gi = 0.001, then this equation would
simply describe that we maintain a running average of 999
previous parts Vo

i and one part of the current input I′i . In
other words, the main operation of the neuron is to compute
a temporal average of the input I′i .

So far we have considered only inputs and outputs for a
single integrate-and-fire neuron in a feed-forward network
connected by chemical synapses. However neurons also have
electrical synaptic connections mediated by structures called
gap junctions [11–14] which may mediate gamma synchrony
supporting conscious sensations [22–24].

Gap junctions are pores on membranes of adjacent
cells composed of connexin proteins which electrically
synchronize and physically fuse the two cells, forming
continuous membranes and cell interiors. In the brain, gap
junctions occur primarily between dendrites of neighboring
neurons and mediate gamma synchrony, the best measurable
correlate of consciousness. Gap junctions enable integration
in dendrites of multiple neurons simultaneously, effecting
collective integration. In the context of artificial neural
networks, gap junctions are lateral or sideways connections
in input/integration layers.

We will model gap junctions as resistive coupling
between neurons [25, 26]. Two different functions are
assumed to be associated with each gap junction. If a gap
junction between two neurons exists, then these neurons
are resistively coupled. This coupling exists unconditionally.
However, we also assume a conditional coupling through gap
junctions in which a particular gap junction can be in one
of two modes. The gap junction can be open (electrically
coupled to the neighboring neuron) or closed (electrically
uncoupled from neighboring neuron) [27].
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Figure 3: Resistive grid. Each node point is connected to another node point via a resistor R. An input current flows into the resistive grid
through resistor R0.

We assume that a neuron has an internal activation
potential and an external membrane potential. Instead of
distinguishing between internal activation potential and
external membrane potential, we could also work with
a compartmental model, where the two potentials are
mapped to different compartments of the neuron. However,
separating between internal and external makes it easier to
visualize how the neuron operates. The internal activation
potential (which can be measured on the inner membrane)
is described by (1) or its simplified form (2). Whenever
this activation potential rises above a certain threshold, the
neuron fires. A spike is generated, and this spike travels
down the axon of the neuron. The external membrane
potential (which can be measured on the outer membrane)
is influenced by the outgoing spikes and through the
resistive coupling to other neurons. If a gap junction exists
between two neurons, then a resistor is assumed to couple
the outer membrane potential of these two neurons. The
resistor connecting the outer membranes of two neurons is
assumed to connect the two neurons irrespective of whether
the gap junction is open or closed. Such neurons form
a fixed resistive grid. This resistive grid receives as input
the temporal integration of the outgoing spikes. Another
resistive grid is assumed to be formed through open gap
junctions. This is basically a reconfigurable resistive grid
where resistors can be inserted or removed from the resistive
grid by opening or closing gap junctions. The reconfigurable
resistors are assumed to connect the internal activation

potential to neighboring neurons allowing these neurons to
fire in synchrony when gap junctions are open.

Note that in our model synchronous firing is dependent
on the input stimulus but it is not necessarily locked to
the input stimulus, that is, we have a stimulus-related
synchronization [28]. Sideways gap junction connections
induce synchronous firing. This is in line with evidence
reported by Singer and Gray [29]. Our model also only uses
local connections between neurons to establish synchronous
firing. No global connections are required. Only a few
models have been derived establishing synchronous firings
using only local connections, for example, [30, 31]. Some
models, however, require a global inhibitor to achieve
desynchronization between different objects, for example,
[32]. Schillen and König [33] use long-range excitatory delay
connections in a network of nonlinear oscillators to achieve
desynchronization. In our model, different firing rates, that
is, desynchronization, are achieved through the size of the
connected subnetworks. No global inhibitor is required.
Subnetworks of different sizes will have different firing rates.

In order to understand the function computed by a grid
of resistively coupled neurons, let us consider the function
computed by a resistive grid. In a resistive grid, neighboring
points in a network are connected by resistors. We assume
that an external current reaches each point of the network.
Such a resistive grid is shown in Figure 3. Each node of the
grid is connected via a resistor R. An input current is flowing
into this resistive grid from below through resistor R0.
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Figure 4: The external current Ie,i flowing into node i has to be
equivalent to the current exchanged with adjacent nodes.

Each neuron corresponds to a point in this grid (see
Figure 4). The external current Ie,i flowing into node i, that
is, neuron i, is assumed to be a temporal integration of the
output voltage of that same neuron. The external current
has to be equivalent to the current exchanged with nearby
neurons. Let Ic, j be the current exchanged with neuron j. Let
neuron i be connected to Nn other neurons, then we have

Ie,i =
Nn∑

j

Ic, j . (6)

Let Ve,i be the input voltage and let Vn,i, be the voltage at
node i, then we obtain

1
R0

(
Vc,i −Ve,i

) = 1
R

Nn∑

j

Vc, j − Nn

R
Vc,i (7)

or

Vc,i = R0

NnR0 + R

Nn∑

j

Vc, j +
R

NnR0 + R
Ve,i. (8)

We can rewrite this equation as

Vc,i = (1− αs)
1
Nn

Nn∑

j

Vc, j + αsVe,i (9)

with αs = R/(NnR0 + R). This operation again describes an
averaging operation. First the spatial average of neighboring
neurons is computed, and then this average is again averaged,
adding a little from the external potential.

If we assume that we only have a linear sequence of
neurons where each neuron is connected to its nearest
neighbor then the solution of this equation is [34, 35]

Vc(x) =
∫

1
2σ

e−|x|/σVe(x)dx (10)

with σ = √(1− αs)/4αs. Note that we have dropped the index
i and refer to both the input voltage Ve and the voltage Vc of

neuron i through the position x of the neuron in the lattice.
For a two-dimensional grid of neurons, parameterized by
coordinates x and y, we can approximate the function
computed by each neuron as

Vc
(
x, y

) =
∫ ∫

1
4σ2

e−(|x|+|y|)/σVe
(
x, y

)
dx dy. (11)

Figure 5 shows the result of this operation for different
values of αs, respectively, σ . The input image is shown in
Figure 5(a). Output images for αs = 0.005, αs = 0.001, and
αs = 0.0002 are shown in Figures 5(b)–5(d) where we have
assumed that the grid of neurons processing the image has
exactly the same size as the input image, that is, one neuron
per pixel. Each neuron is assumed to be connected to its
nearest neighbor. If αs is very small, that is, the resistor R is
very small compared to the input resistance R0 then a spatial
average with a very large extend is computed. For αs → 0 we
obtain

Vc,i = 1
Ns

∑

j

Vc, j , (12)

where Ns is the number of neurons in the resistively coupled
network, that is, the network essentially computes the
average of the node voltages for a sufficiently small value of
αs.

4. A Functional View of
Neural Computation through
Sideways-Connected Spiking Neurons

A neuron is said to fire when the activation rises above a
certain threshold. The integrate-and-fire model includes as
parameters the strength with which the axon of a neuron is
connected to the dendrites of the following neuron and the
threshold. A common learning theory for the adjustments
of the weights is Hebbian learning [36]. According to this
theory, the connections between two neurons increase if
both neurons are activated strongly. This allows tuning the
neurons to many types of different stimuli, that is, the
neuron fires strongly if the learned input is present. In
computational data processing, use of a threshold is often a
difficult issue. It is difficult to set the threshold at the right
level to extract the relevant data. An adaptive threshold is
often more appropriate and also more robust.

In the context of neural information processing, it is not
clear how a suitable threshold is set. If the threshold is too
high then hardly any neurons will fire. If the threshold is
too low, then almost all neurons will fire all of the time. The
threshold has to be within a suitable range for the neuron to
function. The firing threshold for cortical neurons appears
to vary spike to spike [37]. We assume that the threshold,
which is used to extract relevant information, is determined
by feeding back the output of a neuron. This allows adaptive
tuning of the neuron to relevant information.

Our model actually uses two thresholds [38]. The first
threshold is simply the standard threshold voltage. After the
activation has reached this threshold voltage, the neuron
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Figure 5: (a) Input image, (size 614× 410) (b–d) spatially averaged images (b) αs = 0.005, (c) αs = 0.001, (d) αs = 0.0002.

fires. We will call this threshold the firing threshold. It can be
set to an arbitrary but constant value. The second threshold
which we introduce is the threshold which controls whether
the gap junctions are open or closed. Traub et al. [39] work
with a voltage-dependent behavior of the gap junctions. They
used physical intuition rather than biological data to model
this dependency. However, they do state that there appears
to be a sharp threshold conductance, below which there
is no synchronizing role of the interneuron dendritic gap
junctions. In our model, the behavior of the gap junctions
is also voltage dependent. Since the gap junctions control
whether the neurons synchronize or not, we will call this
second threshold the sync-threshold.

We assume that the sync-threshold is determined adap-
tively based on the firing rates of other neurons with a related
function. Neurons with a related function are connected
through gap junctions. The resistively coupling to other
neurons enables the neuron to compute a spatial average of
the output of other neurons. The neuron will “know” how
active the other neurons are, and it is therefore able to tune its
activity with respect to the firing rate of related neurons. We
argue that the spatial and temporal average of the outgoing
spikes of neurons with related functions is used to set the
sync-threshold controlling the gap junctions. This allows the
system to perform figure/ground segmentation.

For figure/ground segmentation, one needs to signal
that several neurons actually respond to the same object,
that is, that they respond to the same stimulus. According
to our theory, this is achieved through gap junctions. We
propose that gap junctions open when the temporal average
of a neuron is above the spatial average of its output. In
addition, we assume that the firing threshold of a neuron is
influenced by the number of other neurons it is connected
to through gap junctions. In our model, we actually vary the
firing threshold based on the size of the connected network
created through open gap junctions. Instead of varying the
threshold, it is of course clear that varying the activation
achieves the same result.

We have used a varying threshold in our computational
model that we describe in detail below. For the actual
neuron it seems more likely that the firing threshold stays
constant but the activation is increased (possibly by ions
entering the neuron at positions where open gap junctions
are located). Let Ns be the number of neurons responding to
a certain stimulus. Then the firing threshold of each neuron
responding to this stimulus is assumed to be reduced by
γNs. As a result, neurons which respond to large objects

will fire with a higher frequency, and, hence, the output will
be treated as more relevant in further processing. This is
in line with analyses of the behavior of biological neurons
that stimulus-related information is encoded into the precise
timing of spikes [40].

Our neuron model which also includes the function of
gap junctions is illustrated in Figure 6. The full description
of this model is given in Algorithm 1. But first, let us briefly
describe the individual components of the model so that
we get an overview. The comments in brackets refer to the
illustration shown in Figure 6.

(i) Each neuron computes the temporal average of the
incoming spikes through the afferent (

∫
dt-box).

(ii) It fires if the temporal integral of the incoming spikes
is larger than the firing threshold (threshold-box).

(iii) Each neuron is part of two resistive grids (formed
through light and dark lateral connections).

(iv) A fixed resistive grid is formed by neurons connected
through gap junctions (light lateral connections).

(v) A reconfigurable resistive grid or sub-network is
formed by neurons connected through open gap
junctions (dark lateral connections).

(vi) Outgoing spikes are temporally integrated and spa-
tially averaged using the fixed resistive grid (upper∫
dt-box and light lateral connections).

(vii) This spatial average, essentially a feedback signal from
the neuron’s output, determines the sync-threshold
of the neuron.

(viii) Gap junctions to neighboring neurons open if the
temporal average is larger than the spatial average
otherwise they close, forming a reconfigurable resis-
tive grid. A resistor exists in this grid for every open
gap junction (sphere on dark lateral connection).

(ix) Open gap junctions allow the neurons of a sub-
network to synchronize (synchronization occurs
through spatial integration

∫
dx-box).

(x) The firing threshold of each neuron is reduced based
on the size of the sub-network to which the neuron
belongs.

Making the sync-threshold dependent on the spatial average
of the output causes the threshold to move with the signal
and allows for figure/ground separation.
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Figure 6: Artificial neuron with lateral connections (gap junctions). The operation of this model is fully specified by the algorithm given in
Algorithm 1.

Even though, in our model, all of the above functions
are integrated into one neuron, it could actually be that
some of the functions are spread over several different types
of neurons within a cortical column. For a review of the
columnar organization of the neocortex, see Mountcastle
[41].

With this basic description of the function of a neuron,
we are able to build a highly successful figure/ground
separator or rather object detector. We will show this on
some sample visual input.

5. A Detailed Example

Suppose that our model is used in the context of visual
figure/ground segmentation. We start with an initial layer
of neurons (the visual receptors). For our implementation,
we only consider cones. The cones respond to light predomi-
nantly in the red, green, and blue parts of the spectrum [42].
Thus, for color image processing, we start off with a three-
dimensional coordinate system. The coordinate axes are the
responses of the cones in the red, green, and blue parts of the
spectrum.

By the time the visual stimulus has reached the visual
cortex, that is, V1, a change of coordinate system has
occurred. The main axes are no longer red, green, and
blue but dark-bright, red-green, and yellow-blue [43]. This
transformation is due to so-called color opponent and
double-opponent cells. Mathematically, the transformation
is simply a rotation of the coordinate system [44]. For our
simple example, we are only going to use the dark-bright
channel. In order to simulate this channel, we compute the
lightness [45] of the input stimulus for every pixel of the
virtual retina. Let R, G, B be the nonlinear intensities stored
in a computer image representing the responses of the red,
green, and blue cones, then the lightness L is given as

L = 0.299 · R + 0.587 ·G + 0.114 · B. (13)

We simulate a three-dimensional sheet of 1000 neurons
which simulate the processing done by some, as of now,
unspecific area of the visual cortex. The processing we
describe could take place in V1. However, it seems that
humans are not aware of the processing occurring in V1 [46].
The processing is more likely to take place in some higher
visual area in particular if higher features such as form or
motion are used.

In our simulation, each neuron has a random position
inside a volume of size N = 100 × 100 × 10 units.
Each neuron receives its input from three neurons of the
virtual retina. The size of the retina is 614 × 410 pixels.
The nonuniform distribution of the retinal receptors is
not modeled. In the brain, the nonuniform distribution
creates a complex-logarithmic mapping from the retinal
receptors to the neurons of V1 [47, 48]. However, we are
only concerned with the behavior of laterally connected
neurons. The distribution is not relevant in this context.
Thus, we simulate the receptive field as shown in Figure 7.
Each neuron is laterally connected to its 6 nearest neighbors.
The position where the neuron receives its input from is
determined randomly by first mapping the position of the
neuron to the virtual retina and then varying the position
slightly (by one pixel to the left or right or up or down). The
input we use is equal to the lightness of the pixel at that point
of the retina. We do not simulate the spiking behavior of the
retina as the first processing stage of the simulated sheet of
neuron performs a temporal averaging anyway. The input
may as well be simulated as a spiking input.

Each neuron is described by a set of state variables
(shown in Table 1). The output o of a neuron is assumed
to have the operating range of [0, 1] and the activation
a of a neuron is assumed to have the operating range of
[−1, 1]. The algorithm describing how these state variables
change over time is shown in Algorithm 1. In our simulation
on a sequential computer, all of the neurons are updated
sequentially. Note that the neurons are randomly distributed.
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Table 1: State variables of neuron i.

Variable Physical correlate Description

oi Vs Output voltage sent along axon

ai Vi Activation of neuron

ti Vthreshold Firing threshold voltage

ãi Ve,i Temporal average of outgoing spikes

ai Vc,i Spatial average of temporal average

Figure 7: A set of neurons receives visual input from a virtual
retina. Each neuron (sphere) has its own receptive field (transparent
cone) and is resistively coupled to other neighboring neurons
(connections between spheres). Only 7 neurons of a much larger
set are shown. Axons are not shown.

Hence, the update is analogous to a random update on a grid
array of neurons. The entire system takes approximately 1250
iterations before convergence to normal operating range
using the parameters given in Figure 2.

Figure 8 shows how our sheet of neurons responds to
different visual input stimuli. The input stimuli are shown
in the background. Each node represents a neuron. The gap
junctions open if the temporal average output is above the
spatial average of the output of all neurons. Gap junctions
are shown as connections between nodes. Only open gap
junctions are shown in Figures 8(a)–8(i). The color of the
neuron is drawn proportional to the temporal average of the
neuron’s output. The gap junctions of each interconnected
sub-network is drawn with a different color. The color is
randomly assigned but stays with a connected sub-network.
The figure which has been separated from the ground can be
clearly distinguished.

Since open gap junctions connect adjacent neurons
resistively, these subnetworks synchronize their firing rates
in the same way that electrical circuits synchronize which
are coupled resistively. It is almost certain that biological
neurons are not all identical. They could even fire in a chaotic
way. From the literature on electrical circuits, it is well known
that chaotic circuits can be synchronized if a signal is sent
from one circuit to the next [49, 50]. Also, identical non-
linear electrical circuits have been shown to synchronize

via bidirectional and unidirectional resistors [51]. Zhao and
Breve [52] have shown that chaotic oscillators, in particular
Wilson-Cowan neural oscillators [53], can be used for
scene segmentation. In Zhao and Breve’s setup, neurons
responding to the same object synchronize whereas neurons
representing other objects are in another chaotic orbit, that
is, their response is not regular. In contrast to their work,
we do not work with chaotic oscillators. Zhao and Breve
only used static input. They did not experiment with moving
stimuli where neurons have to continuously synchronize
to the same object. Eckhorn et al. [54] also established
synchrony in a moving input but worked with two one-
dimensional layers of neurons. Their approach uses long-
range lateral connections between neurons.

Figure 9 shows that our method is able to follow the
object over successive images of a moving stimulus. Even
though a different set of neurons responds to this stimulus,
it is still the same sub-network which is indicated by the
color of the sub-network. The firing frequency will allow
to identify this extracted stimulus as being the same object.
With this information, the next stage of neurons is then able
to compute the center of mass of this particular information,
for example, using a hierarchy of neural layers as shown in
Figure 10. This information in turn can then be used for tasks
such as visual servoing [55, 56].

Rodemann [57] has shown that such gamma oscillations
can be used as a temporal reference signal and also as a
global processing switch. When gamma oscillations are used
as a reference signal, neural processing can be changed from
a rate encoding to a latency encoding allowing for faster
information processing. With latency encoding, only the first
spike and its exact timing within the cycle are relevant.

We now further investigate the synchronizing behavior of
our neural sheet of neurons using synthetic input. Figure 11
shows how a set of neurons synchronize for an arbitrary
random input and γ = 0.001. For this experiment, we
deliberately open the gap junctions of all neurons which
lie inside a circular area from the center of the sheet of
neurons. In other words, all neurons inside the center area
are resistively coupled to neighboring neurons whereas the
remaining neurons are not resistively coupled to neighboring
neurons. The input stimulus is defined as follows. At each
time step, each input pixel is completely chosen at random
from the range [0, 1]. Thus, the input stimulus is just a
sequence of random images without any kind of structure.
The layer of neurons overlayed on a single input image is
shown in Figure 11(a).

From the layer of neurons, three arbitrary neurons are
selected from the center area and three arbitrary neurons are
selected from the remaining neurons. The selected neurons
are highlighted in Figure 11(a). Figures 11(b)–11(d) show
the output of the three neurons from the center area. Figures
11(e)–11(g) show the output of the three neurons from the
outside area. All neurons which are located inside the center
area of the visual layer fire in synchrony. These neurons
synchronize because they have their gap junctions open. The
neurons which are located in the area outside of the circular
area fire out of sync. The incoming random stimulus is
summed up until the firing threshold is reached. For some
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(1) oi := (1− αo)oi // output decay
(2) ai := (1− αa)ai // activation decay
(3) ai := ai + αa

∑
j wi jo j // sum over all inputs

(4) // average activation across open gap
(5) // junctions (reconfigurable resistive grid)
(6) ai := avg({ai} ∪ {aj | Neuron j is connected to
(7) non-refracting neuron i via open gap junction;
(8) aj is then set to average ai})
(9) ai := max[−1, ai] // limit activation
(10) // reduce threshold based on size of sub-network
(11) ti := max[0, 1− γ ·Ns]
(12) if (ai > ti) {// neuron fires if above firing threshold
(13) ai = 0 // activation is reduced to 0
(14) oi = 1−Nnε // output rises to 1
(15) // some activation is distributed to conn. neurons
(16) if ( j is connected to i via open gap junction)
(17) aj := aj + ε
(18) }
(19) // temporal averaging of own output
(20) ãi = (1− αt)ãi + αtoi
(21) // spatial averaging of temporal average
(22) a′i = 1/(1 + Nn)(ai +

∑
j a j)

(23) ai = (1− αs)a′i + αsãi
(24) // check if temporal average is above sync-threshold
(25) if (ãi > ai)
(26) open gap junctions
(27) else
(28) close gap junctions

Algorithm 1: Algorithm which updates the state variables of neuron i from one time step to the next.

neurons, the threshold will be reached soon whereas for
others the firing threshold will be reached later. In the center
area, the neurons are resistively coupled. Thus, the activation
of all resistively coupled neurons will equalize to the same
level (due to Algorithm 1(6)–( 8)).

Note that our model is in line with experimental results
obtained by Lamme and Spekreijse [58]. They investigated
whether neurons in V1 fire in synchrony depending on the
position of their receptive field relative to the stimulus. They
found that neurons tend to fire in synchrony if both of
their receptive fields are located on either the object or on
the background but not if one of the neuron’s receptive
field is located above the object and the other one over the
background. Lamme and Spekreijse attribute this behavior
to horizontal connections within V1. Apparently, whether or
not the neurons of V1 synchronize depends on the type of
stimulus used (and probably also on which neurons of V1
are checked for synchronous firing). There appears to be no
synchronous firing behavior for a motion induced stimulus.
This points to the use of higher visual areas, for example, V5
for figure/ground segmentation with respect to motion.

We will now illustrate the effect of line (11) of the update
algorithm (Algorithm 1) on the processing performed by the
neurons. The firing threshold is reduced depending on the
size of the sub-network, because of γ = 0.001. If many
neurons are resistively coupled through open gap junctions,
then their firing threshold will be lowered leading to a

Table 2: Parameters used for the simulation.

Parameter Description Value

αo Decay of the output spiking voltage 0.5

αa Decay of the neuron’s activation potential 0.01

αt Temporal averaging factor 0.01

αs Spatial averaging factor 0.0001

ε Activation leakage to adjacent neuron
upon firing

0.001

γ
Factor influencing reduction of firing
threshold

0.0

wij Weight between neurons i and j 1

oj Output of retinal neuron L(x, y)

higher firing frequency. If just a few neurons are resistively
coupled, then they will fire with a slower frequency. This
effect is illustrated when comparing between Figures 11 and
12. For the small circular area shown in Figure 11, the firing
frequency of neurons (b)–(d) is lower compared to the firing
frequency of neurons (b)–(d) for the larger area shown in
Figure 12.

Table 2 shows the parameters which we have used for
these experiments. The parameters αo and αa describing
the decay of the output spiking voltage Vs and the decay
of the neuron’s activation potential Vi of course depend
on the time scale of the simulation. Similarly, the factor
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8: Figure/ground separation using our model. A sheet of neurons (nodes) receives input from a virtual retina (image in background).
Gap junctions (connections between nodes) open if the temporal output of a neuron is above the spatial average.

αt for the temporal averaging of the neuron’s output also
depends on the time scale of the simulation. The parameter
αs which determines the extent of the spatial averaging
should be reasonably small. This parameter depends on the
total number of neurons N simulated in the sheet of neurons.
The more neurons there are, the smaller this parameter
has to be in order to compute an almost global average
of the temporal average. The parameter ε determines how
much from the built-up voltage carries over to adjacent
neurons. This parameter is most likely very small as most of
the current leaves the neuron through the axon. However,

part of this current also reaches neighboring neurons. If
those neurons have almost reached their threshold then
this current will make sure that these neurons also fire at
approximately the same time.

The factor γ which is used to reduce the firing threshold
of a neuron is of course based on the maximum number of
neurons which can belong to a connected set of neurons.
Let there be N neurons in the simulated sheet, then this
parameter should be smaller than 2/N . The maximum size
of a sub-network is N/2. For such a maximum size sub-
network, the firing threshold would be reduced to 0 if
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(a) (b) (c)

(d) (e) (f)

Figure 9: Figure/ground separation over several images from a larger image sequence. Every 100th image is shown. Even though a different
set of neurons responds to the visual input, it is still the same connected sub-network as indicated by the color of the sub-network.

γ = 2/N , that is, all neurons of the sub-network would fire
all of the time. On the other hand, if γ is too small, then
the reduction of the firing threshold would hardly make a
difference, and, hence, it would not be possible to distinguish
between smaller or larger stimuli by higher neural areas. Our
virtual retina, that is, the input images that we used, had size
614×410 pixels. The weights wij are set to unity. Each neuron
receives its stimulus from the artificial retina as described
before with a slight random offset. Due to the unit weights
and this offset, the input is a downsampled version of the
original retina. The resulting synchronous firing frequency
of course depends on the choice of the given parameters and
the simulation time constant. By varying the time constant
of the simulation step, the firing frequency can be brought
into agreement with a given firing frequency. Also, note that
the so-called gamma synchrony does not correspond to a
single frequency but to a range of frequencies. Our model
also shows this behavior in that several different frequencies
can be obtained as output.

6. Processing of Arbitrary Features in the Cortex

For our simulations we have used a retinotopic mapping
between the neurons processing the visual input and the
virtual retina. It is well known that the primary visual
cortex is highly structured [59]. It is of course clear that

the operation which we just described also works with
nonretinotopic maps. The only requirement for the method
described to work is that we interconnect neurons of related
function resistively such that the spatial average can be
computed and in turn the sync-threshold can be set.

Even though we have shown how our model processes
a very simple visual input (the lightness of the stimulus), the
method is able to classify any arbitrary feature vector. If visual
stimuli are processed, the component features could as well
be color, texture, motion, or depth (derived from disparity)
as shown in Figure 13.

Suppose that one wants to segment a moving stimuli
from a background motion. Let us assume that the moving
object creates a different motion vector compared to the
background. Then it would be sufficient to extract this
object by substituting the lightness input (13) with a motion
detector.

Suppose that two different stimuli are presented to our
layer of neurons, for example, two objects which move
through space. Then the lightness input would be substituted
by a motion detector and a texture detector tuned to the
object. Neurons corresponding to the object covering a
larger retinal area would fire with a higher firing frequency.
Neurons which correspond to the smaller object would have
a lower firing frequency. Using a hierarchy of frequency
detecting neurons [60], we could locate the position of the
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Figure 10: Hierarchy of neuron layers processing visual informa-
tion at different scale levels.

object relative to the visual field. This information could then
be used for actions such as grasping behavior through visual
servo control [55, 56].

7. Discussion

Kouider [61] reviews current neurobiological theories for
consciousness. Unfortunately, these theories are not con-
structive in a way that would allow engineers to build a
conscious machine or artifact. We review a few of these
theories and show how they relate to our model.

Tononi and Edelman [62] put forward the dynamic
core hypothesis in which information is transmitted through
recurrent reentry connections along an ascending thalamo-
cortical axis of arousal. Local groups of neurons perform
specialized and discriminatory functions regulating reentry
and feedback. Particular core feedback loops are presumed to
correspond with particular conscious mental states. Cortical
feedback between different visual areas is important for
figure/ground separation [63], and, according to Grossberg
[64], visual form perception.

But the dynamic core cannot account for gamma syn-
chrony EEG, the best marker of consciousness, nor deal with
non-arousal-based consciousness, that is, internally gener-
ated states like daydreaming, mind-wandering, memory, and
meditation, mediated through “default-mode” networks [5].
Thalamic core activity could be essentially nonconscious,
unless enveloped within a synchronized zone, conferring (by
an as-yet-unknown mechanism) conscious awareness of its
content [15].

In the present paper we consider just local zones of gap
junction-mediated synchrony, able to move through neu-
ronal network lateral connections. Such local zones could, for
example, regulate reentry and feedback in the dynamic core.

We did not consider long-range gap junction connections
which may occur via interneurons, glia and axonal gap
junctions, coalescing mobile zones into synchronized global
webs.

According to Tononi’s Information Integration Theory
[65] consciousness depends exclusively on the ability to
integrate information, to reduce uncertainty. The quality of
consciousness is determined by complexity of relationships
among informational elements. His theory also suggests
an ability to measure and correlate consciousness with the
brain’s electrical complexity. In integrate-and-fire neurons,
integration occurs exclusively in dendrites and cell body,
axon firing being the output signal. But Tononi integra-
tion occurs in intracortical pathways over large regions
of cortex and thus linear series of individual integrate-
and-fire neurons. In our model, integration-performing
dendrites and cell bodies are synchronized and unified by
gap junctions into lateral webs, enabling, we propose, faster
and more efficient “collective integration” by massive parallel
processing of synaptic inputs from among many thousands
of neurons, with more finely tuned and coordinated firing
outputs.

Dehaene and Naccache [66] have developed the global
neuronal workspace theory. It assumes that different modu-
lar areas, including prefrontal and anterior cortex, are con-
nected through long-range axons into a “global workspace,”
within which consciousness can occur in a further subset of
neuronal activities. Our mobile zone of synchrony defined
by lateral gap junction could easily move through the global
workspace, conferring consciousness wherever it goes.

Lamme [67] has put forward the Local Recurrence
Theory, a hierarchy of three types of neural processes, (1) a
feed-forward sweep, (2) localized recurrent processing, and
(3) widespread recurrent processing with global interactions.
All seem conducive to gap-junction-mediated mobile zones
and more extended global webs.

The Microconsciousness Theory of Zeki [68] suggests
that particular qualities of a perception become conscious
in separated brain areas, with multiple microconsciousnesses
distributed across processing sites. Attributes such as color,
form, and motion each arise in one particular microcon-
sciousness region, but are somehow bound together to give
rise to a unified conscious percept. Our model of a mobile
zone of synchrony is a direct correlate of microconsciousness.
Zeki does not explain how the microconsciousnesses are
bound together. They may need long-range gap junc-
tions (interneurons, glia, axons) and brain-wide mobile
zones/global webs for binding.

Binding is an essential question. How does the brain
integrate sensory inputs, binding together individual features
from different cortical areas into unified, conscious percepts?
If individual neurons were tuned to specific stimuli, many
highly specialized cells would be required which would only
fire rarely, since relevant stimuli only appear on occasion. As
a solution to this problem, von der Malsburg [69] proposed
the “correlation theory,” in which synchronous electrical
activity among disparate cell groups binds them together
and integrates their component features into a unified
conscious perception. According to this theory, relations
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Figure 11: (a) Random input stimulus and small circular set of neurons with open gap junctions. (b)–(d) firing behavior of three neurons
from inside the circular area. (e)–(f) Firing behavior of three neurons outside of the circular area.
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Figure 12: (a) Random input stimulus and large circular set of neurons with open gap junctions. (b)–(d) Firing behavior of three neurons
from inside the circular area. (e)–(f) firing behavior of three neurons outside of the circular area.

between active cells leading to synchrony are established by
synaptic modulation and feedback loops. Wang et al. [70]
showed how a feedback loop between groups of excitatory
and inhibitory neurons can be used for pattern segmentation
in associative memory. Gerstner et al. [17] and Ritz et al.
[71] showed how such feedback loops can establish collective
oscillations. Using this architecture, von der Malsburg and

Buhmann [72] presented a computational model of a cortical
circuit consisting of an array of synchronized units that act as
feature detectors.

Synchrony in the gamma EEG range of 30 to 90 Hz,
correlating with conscious perceptions and actions, was
discovered and established in the 1980s for example, Singer
[73] gives an extensive overview on brain gamma synchrony
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Figure 13: Our model is also able to work with more complex feature vectors. Instead of using only the lightness of the visual stimuli, one
could also use color, texture, motion, or disparity. Also, the input does not have to be visual input. It could be any kind of input, for example,
auditory input.

correlating with perception and motor control. Palva et
al. [74] showed robust cross-frequency (alpha, beta and
gamma oscillations) phase synchrony exists in human cortex,
with synchrony enhanced during cognitive tasks such as
arithmetic.

However several influential papers discounted synchrony
as a solution to binding or consciousness, based on a misun-
derstanding. Von der Malsburg had implied axonal firings,
or spikes, as the synchronized activity, and neuroscientists
and cognitive scientists routinely view firings or spikes as
the currency of cognition in the brain. However gamma
synchrony EEG correlating with consciousness measures
local field potentials, closely related to dendritic and cell body
membrane potentials rather than axonal firings.

In a famous 1990 paper, Crick and Koch [75] argued
that consciousness depends on neurons that bind together
by synchronizing their spikes in 40 Hz oscillations. However
5 years later, as evidence for synchronized spikes failed to
materialize (and despite continuing evidence for gamma
synchrony EEG, that is, dendritic synchrony as a neural
correlate of consciousness) Crick and Koch [46] recanted
their support for synchrony as an essential aspect of brain
activity related to consciousness. Shadlen and Movshon [76]
concluded there is insufficient evidence for the temporal
binding hypothesis based on synchronized axonal firings.
Forced to choose between dendritic synchrony (for which
evidence existed) and axonal firings as the correlate of
consciousness, authorities chose axonal firings, presumably
because of their direct applicability to neuronal network
computation.

But integration, which Tononi tells us is the key function
relating to consciousness, occurs in post-synaptic dendrites
and cell bodies. Gamma synchrony EEG originates in post-
synaptic dendrites and cell bodies. Gap junction-connected
mobile zones of dendritic synchrony performing collective
integration are prime candidates for the neural correlate of
consciousness.

Crick and Koch [75] and Shadlen and Movshon [76]
both also questioned whether synchronized oscillations

could solve the figure/ground problem. In this paper we
present an algorithmic solution to the figure/ground prob-
lem based on dendritic synchrony. Specifically, we demon-
strate a spatiotemporal envelope of sideways synchrony mov-
ing through a single-layer artificial neural network viewing
and perceiving a visual scene. Topology of the envelope and
activity within it convey information, not the synchrony
per se. Neurons of related function, connected through gap
junctions, synchronize and coherently respond to an input
stimulus. This is in line with evidence summarized by Singer
and Gray [29], that is, that correlations tend to occur
between cells with similarities in orientation preferences,
ocular dominances, and color selectivities.

Singer and Gray, as well as Crick and Koch, Shadlen and
Movshon, Tononi, Edelman, and Lamme based their models
on axonal-dendritic synapses, with synchrony and long-
range correlations due to axonal firing/synaptic feedback
loops along sensory arousal pathways. Generally, they all
accommodate nonconscious cognitive processes and behav-
iors, but fail to offer a distinction for consciousness.

The importance of gap junctions in the brain, and in
particular in relation to gamma synchrony, was not then
appreciated. Our model of a gap-junction-mediated mobile
sub-network, zone, or envelope of dendritic synchrony mov-
ing through input/integration layers of neuronal synaptic
networks is compatible with, and supplementary to all
these models, capable of adding to them a distinguishing
mechanism for consciousness.

8. Conclusion

Cognitive brain functions are understood as computation
in synaptic networks of integrate-and-fire neurons. Each
neuron has multiple dendrites and a cell body which
integrate synaptic inputs to a threshold triggering axonal
firings or spikes. With feedback and synaptic modifications,
networks of such neurons learn, adapt, and compute, able to
account for cognitive functions. Axonal firings or spikes and
chemical synaptic transmissions are considered the primary
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currency of cognitive information processing in the brain’s
neuronal networks. But a basis for consciousness in the brain
remains elusive, as does executive agency in artificial systems
based on neuronal networks.

At the same time, another type of synaptic network
occurs among brain neurons. Gap junctions (electrical
synapses) fuse adjacent cells, synchronize their membranes
and connect their cytoplasms, essentially forming subnet-
works which are one complex cell, syncytium, “hyper-
neuron,” or dendritic web. Gap junction-connected subnet-
works among cortical interneurons mediate gamma syn-
chrony EEG, the best measurable correlate of consciousness.
Gap-junctions between dendrites form lateral, or sideways
envelopes, or layers in neuronal networks. As gap junctions
open and close, zones or webs of gap junction-connected
neurons and glia can literally move around the brain, as
an envelope of synchronized collective integration, perhaps
able to confer conscious awareness upon its contents [15]. If
consciousness moves as a self-organizing system through the
brain’s neuronal networks, perhaps a comparable function
could be engineered into artificial systems. In this paper we
applied the concept to an artificial neural network.

We extend the standard integrate-and-fire neuronal
model in an artificial system to include “sideways synchrony”
induced by lateral connections in input/integration layers.
In distinguishing “figure” from “ground” in visual signals,
neurons extract essential features from an input stimulus. In
our computational model, we introduce lateral processing
through gap junctions which couple neurons of similar
function. Each neuron temporally integrates its own inputs
to a threshold which, when met, results in its own output
spike. The generated output spikes are used as a feedback
signal for the same neuron. This feedback signal is then
averaged over gap-junction-connected neighboring neurons,
regardless of whether the gap junctions are open or closed.
Neurons with a firing frequency above the spatial average
open their gap junctions with neighboring neurons, causing
these coupled neurons to synchronize, providing coherent
processing from one time step to the next. Opening and
closing of gap junctions enable the sub-network of gap-
junction-connected cells to literally move through the larger
network.

Due to coherent processing and collective integration,
the sub-network of synchronized neurons may be more
efficient. In the brain, according to our view, gap-junction-
defined synchronized zones correlate with conscious per-
ception and control, converting nonconscious cognition to
consciousness. In artificial systems, a synchronized zone
can act as a mobile executive, a causal agent. This study
demonstrates the potential utility of a mobile synchronized
zone in feature detection and visual perception. Our mobile
zone of synchrony is a candidate for (1) the neural correlate
of consciousness in the brain and (2) an executive causal
agent in artificial systems.
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