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Abstract.—Modern infectious disease outbreak surveillance produces continuous streams of sequence data which require
phylogenetic analysis as data arrives. Current software packages for Bayesian phylogenetic inference are unable to quickly
incorporate new sequences as they become available, making them less useful for dynamically unfolding evolutionary
stories. This limitation can be addressed by applying a class of Bayesian statistical inference algorithms called sequential
Monte Carlo (SMC) to conduct online inference, wherein new data can be continuously incorporated to update the estimate of
the posterior probability distribution. In this article, we describe and evaluate several different online phylogenetic sequential
Monte Carlo (OPSMC) algorithms. We show that proposing new phylogenies with a density similar to the Bayesian prior
suffers from poor performance, and we develop “guided” proposals that better match the proposal density to the posterior.
Furthermore, we show that the simplest guided proposals can exhibit pathological behavior in some situations, leading to
poor results, and that the situation can be resolved by heating the proposal density. The results demonstrate that relative to the
widely used MCMC-based algorithm implemented in MrBayes, the total time required to compute a series of phylogenetic
posteriors as sequences arrive can be significantly reduced by the use of OPSMC, without incurring a significant loss in
accuracy. [Bayesian inference; online inference; phylogenetics; sequential Monte Carlo.]

Phylogenetic techniques are quickly becoming an
essential tool in the investigation and surveillance
of infectious disease outbreaks (Gardy et al. 2015;
Neher and Bedford 2015; Rusu et al. 2015). Meanwhile,
advances in DNA sequencing technology have made
the generation of complete genome data for isolates
of bacteria and viruses a routine practice in public
health laboratories. These genome data are collected
into public databases such as the FDA GenomeTrakr
(FDA 2016), which in 2016 accumulated new data at
an average rate of over 1000 pathogen genomes per
week. Sequencing technology itself continues to evolve,
with new devices based on nanopore detection capable
of generating a continuous stream of sequence data,
supporting interactive real-time analysis (Loose et al.
2016).

Ideally these new data streams would be matched
with appropriate sequence analysis tools, including
Bayesian phylogenetic inference. Bayesian inference
has particular value in epidemiological investigations
due to its ability to operate on models with a wide
range of unknown parameters, including divergence
times, lineage-specific mutation rates, population
demographics, and geography (Lemey et al. 2009;
Kühnert et al. 2014). However, all current methods for
Bayesian inference treat the data set as a static entity
that has been observed in its entirety at the time that
computation of the posterior probability distribution
begins. Updating a data set with new sequences, as
might be required when a new case of an infection is
presented and sequenced, necessitates that the entire
analysis be restarted.

Although Izquierdo-Carrasco et al. (2014) have
proposed a maximum likelihood approach to update
a phylogenetic tree with new sequences, no such tool
exists for Bayesian phylogenetic inference. Each run
using popular Bayesian phylogenetic inference tools like
MrBayes (Ronquist et al. 2012) or BEAST (Bouckaert et al.
2014) can take days or weeks of CPU time to approximate
a posterior distribution for realistic models and data sets.
The inability to quickly incorporate new data into an
existing analysis is a major impediment to the use of
Bayesian phylogenetics as a decision support tool for
infectious disease management and surveillance, where
interventions are most likely to be effective if made
within hours or days.

Recently, Dinh et al. (2016) described a theoretical
framework for updating a phylogenetic posterior
approximation, called Online Phylogenetic Sequential
Monte Carlo (OPSMC). An overview of OPSMC is
given in Figure 1. At each generation, a population
of particles representing a posterior sample of trees
on n−1 sequences is updated to give a sample from
the corresponding posterior on n sequences. Optionally,
one or more Metropolis–Hastings steps (not shown
in the figure) can be applied to increase the effective
sample size. Dinh et al. (2016) show consistency of
OPSMC in terms of weak convergence: as the number
of particles goes to infinity, the weighted average of
a test function over a collection of particles converges
to the integral of that test function with respect to the
posterior distribution. In addition, the effective sample
size (ESS) (defined below) is bounded below by a
constant multiple of the number of particles. However,
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FIGURE 1. An overview of the OPSMC algorithm as implemented in sts. Panel A) shows a population of particles going through an SMC
iteration. For each particle, a new sequence (taxon) �n is attached to the tree using proposal Qn(·), its weight is computed, and particles are
resampled using the weights. Panel B) depicts the three-step proposal applied by sts to a single particle.

even given these attractive theoretical properties, it was
not clear if OPSMC could be translated into a competitive
sampler. In addition, more research is needed on the
design of effective transition kernels for OPSMC, a
subject of some debate in related literature (Teh et al.
2008; Bouchard-Côté et al. 2012).

In this work, we implement OPSMC with a variety
of transition kernels and compare their ability to
efficiently update phylogenetic posteriors with new
data. In particular, we compare the efficiency of naïve
proposals to guided proposals showing that the extra
effort required to compute a guided proposal leads to
a significant overall improvement in sampler efficiency.
Finally, we discuss prospects for the incorporation of
OPSMC into widely used algorithms and software
packages for Bayesian phylogenetic inference. For this
article, we restrict ourselves to “pure” SMC without
Metropolis–Hastings steps. Our implementation is
available at https://github.com/OnlinePhylo/sts/.

Our results build upon several key pieces of previous
work on building trees using SMC via subtree merging.
Teh et al. (2008) were the first to describe the use of
Sequential Monte Carlo for Bayesian inference of tree-
structured models. Bouchard-Côté et al. (2012) adapted
that work to infer rooted, ultrametric phylogenetic trees.
Wang et al. (2015) showed that SMC could also be
applied to unrooted phylogenetic trees and provided
an implementation of the algorithm and performance
comparison with the widely used MrBayes software.
Because each of these methods proceeds by joining the
roots of subtrees merged by previous steps, they can
only add additional sequences at the root of the tree.

Thus each of those previous contributions is only
appropriate for the case where the data set is static and
completely known when inference begins.

In contrast, our work relaxes those assumptions to
evaluate algorithms for online inference. Dinh et al.
(2016) was the first to describe a theoretical framework
to extend phylogenetic SMC approaches to online
inference. In parallel work, Everitt et al. (2016) have
also described an online phylogenetic inference step as
part of a larger framework of SMC methods for spaces
of varying dimension (see also Everitt et al. 2017). We
will compare our work and that of these authors in the
Discussion.

MATERIAL AND METHODS

Definitions
In Bayesian inference, we are interested in estimating

the posterior distribution of a model conditioned on
data. In phylogenetics, the data are a set of nucleotide
or amino acid sequences ψ= (�1,�2,...,�N) collected
from N taxa, wherein the homologous nucleotides
among sequences have been identified and grouped as
sites (columns) in a sequence alignment (Felsenstein
2004). We assume that alignment sites are independent
and identically distributed (IID) and that mutation
events along each branch of a phylogenetic tree � occur
independently accordingly to a continuous time Markov
chain. In this article, we use the Jukes–Cantor (Jukes et al.
1969) substitution model with equal base frequencies
and equal transition rates.

https://github.com/OnlinePhylo/sts/
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The posterior probability of a phylogenetic tree
with topology � and branch lengths l= (l1,...,l2N−3)
conditioned on ψ follows from Bayes Theorem:

�(�,l |ψ)= P(ψ |�,l)�(�,l)
P(ψ)

,

where P(ψ |�,l) is the phylogenetic likelihood calculated
using the standard Felsenstein pruning algorithm
(Felsenstein 2004), and�(�,l) is the prior on the topology
and branch lengths of the phylogenetic tree. We define
�̂(�,l |ψ) as the unnormalized posterior density P(ψ |
�,l)�(�,l). For unrooted trees, branch length priors are
usually assumed to be IID with a simple distribution
such as truncated uniform or exponential. A prior
can also be specified on the unrooted topologies, a
common choice being the uniform distribution. The
marginal likelihood of the model P(ψ)=∑∫

P(ψ,�,l)
is analytically intractable. Therefore, the joint posterior
distribution is usually approximated using Monte Carlo
methods.

Sequential Monte Carlo
SMC algorithms are a class of sampling methods

that have been extensively investigated in the context
of sequential Bayesian inference. We consider that data
arrive sequentially�1,...,�N , and we wish to update the
approximation of a probability distribution.

The idea is to track, at each generation n, a collection
of Kn particles tn

1 ,...,t
n
Kn

associated with positive weights
wn

1 ,...,w
n
Kn

whose empirical distribution converges to
the target distribution �n (the target distribution is the
distribution of interest, in the present case a posterior
distribution on trees).

Given a collection of weighted particles from the
previous generation n the algorithm applies the three
steps: resampling, mutation, and reweighting.

The resampling step prunes particles associated with
low weights. This step is optional and is typically
triggered when the ESS (Beskos et al. 2014) of the particle
collection drops below a predetermined threshold. The
ESS for a collection of particles with normalized weight
wn

i for the ith particle at generation n is

ESSn =
⎛⎝ Kn∑

i=1

wn
i

⎞⎠2/ Kn∑
i=1

(wn
i )2 .

Resampling obtains Kn+1 particles, sn
1,...,s

n
Kn+1

,
via a multinomial distribution on the particles
tn
1 ,...,t

n
Kn

parameterized with the weights wn
1 ,...,w

n
Kn

.
Alternatively, more sophisticated resampling methods
such as stratified resampling (Kitagawa 1996) and
residual resampling can be used in order to reduce the
variance of the new particle population (Doucet et al.
2001; Del Moral et al. 2012).

The mutation step draws Kn+1 new particles from a
proposal distribution Qn(sn

i → tn+1
i ) for i=1,...,Kn+1.

The unnormalized weight w̃n+1
i of each particle tn+1

i
is updated:

w̃n+1
i = �̂n+1(tn+1

i )

�̂n(sn
i )Qn(sn

i → tn+1
i )

;

In the OPSMC context, we can approximate the
integral for any function � with respect to the posterior
distribution �n using normalized weights wn

i :

Kn∑
i=1

wn
i �(tn

i )≈ 1
Vn

∑
�

∫
[0,∞]2n−3

�(�,l)�n(�,l)dl,

where Vn is the number of different topologies.
The SMC sampler initializes each particle with equal

weights w0
i =1/K0 for all i=1,...,K0.

Online Phylogenetic Sequential Monte Carlo
Given an initial set of phylogenetic trees that represent

a sample from the posterior distribution, we set out
to update the posterior approximation represented by
these samples with new sequences using an OPSMC.

In the OPSMC context, each particle represents a
phylogenetic tree. These particles are initialized using
a sample of trees generated by a Bayesian method such
as the MCMC algorithm implemented in MrBayes.

While the state space of standard SMCs is of
fixed dimension, the model complexity and dimension
in the OPSMC setting increases as the number of
taxa increases. Indeed, the number of tree topologies
increases superexponentially with the number of taxa
for both rooted and unrooted trees (St. John 2016). In
addition to the discrete component of the tree space, the
addition of each taxon requires additional continuous
parameters. For rooted trees with a molecular clock, each
additional taxon introduces two new parameters (the
coalescence time and the identity of the branch where
the new lineage attaches) whereas three parameters are
introduced in the nonclock case: the attachment branch,
the attachment position on the attachment branch, and
the length of the pendant branch leading to the new
taxon. Unless stated otherwise, in the rest of the article
trees are assumed to be unrooted with no clock and
that the continuous-time Markov mutation process is
reversible. Nevertheless, it will be convenient for the
purposes of description that the trees have been given
an arbitrary root.

The OPSMC algorithm assumes that sequences arrive
sequentially one by one: even if several new sequences
have become available, every particle will incorporate
the same sequence at a given generation. This
simplification circumvents the overcounting problem
highlighted in Bouchard-Côté et al. (2012) and Wang
et al. (2015) who showed that uniform tree proposals
were biased toward balanced tree topologies. It should
be clear that, unlike previously described phylogenetic
SMCs, the OPSMC method does not require specifying
an extension over a forest of trees since each particle
represents a single tree.
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TABLE 1. A summary of the proposal distributions for the three
steps: first, sampling an attachment edge, second, sampling a position at
which to attach the new pendant branch, and third, sampling a pendant
branch length

Step 1 Step 2 Step 3

Uniform [Ũ] X ∼U (0,|e|) [U] Y ∼Exp(�=10) [P]
Likelihood [̃L]/[L] X ∼N (xMLE, |e|/4), 0≤

X ≤|e| [N]
Y ∼Exp(�=1/yMLE) [M]

Parsimony [̃P]/[P] X ∼N
(xMLE, I(xMLE)−1/2),
0≤X ≤|e| [A]

Y ∼ lcfit [F]

Notes: The one-letter code of each sampling strategy is between square
brackets. In Step 1, the one-letter code is decorated with a tilde for
nonheated proposal.

Each of the proposals follows a three step process:

1. Choose an attachment branch e from 2n−3
branches.

2. Choose location x along e to attach the new taxon.
We refer to x as the distal length: distance from the
attachment location to the end of the edge that is
farthest away from the root of the tree. In these
proposals, the length of the attachment branch
does not change.

3. Propose a new pendant branch length y leading to
the new taxon.

One can mix and match choices for each of these steps
from the following strategies.

We encode each step with a single letter to distinguish
among the possible methods used at that step (Table 1).
We will use the resulting three-letter code to describe
a complete proposal strategy: for example the LAF
proposal uses the L method for the first step, A for the
second step, and F for the third step. Some of the methods
are decorated with a tilde in order to distinguish heated
from unheated proposals (the exact meaning of a heated
proposal will be clarified below).

In the remainder of this section, we describe different
proposals for each of the three steps and for each step
two broad classes of methods are described. The simplest
methods are called unguided proposals. Although
unguided proposals are fast and simple to implement
they tend to generate a very large number of particles
with low likelihoods. This causes much CPU time to be
expended on calculating likelihoods and SMC weights
for particles that ultimately drop out of the posterior
approximation during the weighted resampling step.
Guided proposals refer to more complex methods that
use the data to get more accurate proposals.

Step 1: attachment branch choice.— Uniform (Ũ)
proposals: The unguided uniform proposals are
the simplest proposal scheme investigated in
this article, and they bear similarities to the
“PriorPrior” proposal described in Teh et al. (2008).
In our implementation of uniform proposals, the

attachment branch is chosen uniformly among all
branches. Alternatively, the branch can be selected
with weight proportional to its length.

Likelihood (̃L) proposals: For each branch
in the current tree, an attachment weight
for the new taxon is calculated as described
below. The attachment branch is then drawn
randomly according to a multinomial distribution
parameterized with the attachment branch
weights.

Calculating the maximum likelihood attachment
configuration for each branch is computationally
expensive, so we instead resort to a heuristic
approach inspired by a similar strategy used
in pplacer (Matsen et al. 2010). The new taxon
is attached in the middle of each branch
and likelihoods are calculated using a set of
predetermined branch lengths. By default OPSMC
calculates the tree likelihood with pendant branch
length equal to 0 and separately with the pendant
branch length set to the median branch length from
the first tree in the initial posterior sample of trees
we want to update with the new taxa.

This allows discarding branches that are unlikely
candidates (i.e. low probability) for attaching the
new taxon. The resulting attachment location is
selected from a multinomial distribution with
weights equal to the highest likelihood among
the set of pendant branch lengths tested for each
branch.

This heuristic could be refined at the cost
of additional compute time. For example the
likelihood profile of a fixed number of edges
with the highest attachment probability can be
improved by testing more attachment locations
and additional potential pendant branch lengths
(e.g., {0, median/2, median} instead of {0,
median}). Alternatively, the posterior probability
of attachment on each branch could be calculated
directly (Matsen et al. 2010); however, this may be
too time consuming to be a practical improvement.

Parsimony (̃P) proposal: Alternatively,
multinomial weights can be derived using
parsimony scores, which are simply calculated
using the first pass of the Fitch (1971) algorithm.
The unnormalized attachment weight g̃i for the
ith branch is calculated with the heuristic

g̃i =exp(min(S)−si),

where S= (si,...,s2n−3) is a vector containing the
parsimony score of each attachment branch.

Heated parsimony (P) and likelihood (L)
proposals: Through our simulations we noted
that when simply normalizing the parsimony
scores or likelihoods to a sampling distribution,
the probability of the highest scoring branch is
often several log units higher than the attachment
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probabilities of the other branches. Therefore, the
proposal often chooses the same branch with high
probability. Unfortunately, for some sequences
and tree configurations this attachment branch
proposal algorithm can, with high probability,
propose tree topologies that have low posterior
support. That is, the attachment branch proposal
distribution and posterior distribution can be
poorly matched for some trees and sequences.
To mitigate the impact of poorly matching
proposal and posterior distributions, we explored
a “heated” proposal distribution created by raising
the attachment probabilities to the power �=
0.05. This approach is inspired by the Metropolis-
coupled MCMC method (Geyer 1991) in which
the posterior distribution of a hot chain is
exponentiated with a number less than one,
hence flattening out the posterior distribution.
The one-letter code of nonheated proposals is
decorated with a tilde. For example, L̃ refers to
the nonheated likelihood-based proposal, and L
denotes the corresponding heated proposal. In
our implementation, � was chosen by evaluating
a range of possible values on an independent
simulated test data set and is fixed throughout the
simulations presented in the result section. Tuning
the�parameter might improve the efficiency of the
sampler. We have not explored this possibility.

Step 2: distal length choice.— Uniform (U) proposal:
The location on the attachment branch e to attach
the pendant branch is drawn from a uniform
distribution, X ∼U(0,|e|), where |e| is the length of
branch e.
Maximum likelihood normal (N) proposal: In this
proposal scheme, the attachment location along
branch a of the new branch and the pendant branch
length are coestimated using maximum likelihood.
The distal length x is then drawn from a truncated
normal distribution with location parameter �
equal to the maximum likelihood estimate (MLE)
of the distal branch length. The distribution is
truncated below 0 and above the length of the
attachment branch. The scale parameter 	 is
arbitrarily chosen to be 	=|e|/4. The distal length
is set to 0 for |e|<1×10−8.
Maximum likelihood asymptotic (A) proposal:
This method proceeds in the same manner as
N, except that the standard deviation in the
proposal distribution is found using the posterior
distribution around its maximum. Specifically, we
use a quadratic approximation to the log likelihood
distribution L centered on the MLE of x. That is,

X ∼N (xMLE,[I(xMLE)]−1/2),

where I(xMLE) is the observed information

I(xMLE)=− d2

dx2 L(xMLE |ψ).

The MLE is obtained using the Brent method
(Brent 1973), a standard univariate optimization
technique, and the observed information is
calculated using the analytic second derivative of
the log-likelihood with respect to the branch length
x.

Step 3: branch length choice.— Prior (P) proposal:
The pendant branch length is simply drawn from
the prior (e.g., Y ∼Exp(10)).

Maximum likelihood (M) proposal: The first
guided method to draw the pendant branch length
is similar in spirit to Step 2: the branch length
is drawn from an exponential distribution with
mean equal to the MLE of the pendant branch as
calculated in the previous step.

lcfit (F) proposal: The second method makes
use of a surrogate log-likelihood function
to approximate the marginal posterior
distribution of the pendant branch. This
four-parameter surrogate function, called lcfit,
is specialized to the task of approximating
single-branch phylogenetic likelihood functions
(https://github.com/matsengrp/lcfit; Claywell
et al. 2017). For completeness we outline the
method here.

Let f be the lcfit function, which is defined by four
non-negative parameters, and evaluated at branch
lengths t:

f (c,m,r,b;t)

=clog[(1+e−r(t+b))/2]+mlog[(1−e−r(t+b))/2].
Ignoring the parameter b, this is the log-likelihood
function of the binary substitution model on a
two-taxon sequence alignment with c constant
sites, m mutated sites, and substitution rate r. The
parameter b effectively allows truncation of the left-
hand side of the curve, which enables modeling of
likelihood curves with nonzero likelihood at t=0.

One can fit the likelihood curve efficiently with access
to the maximum likelihood branch length, an estimate
of the second derivative at this location, and several
other sampled points. By setting the surrogate second
derivative equal to the estimated second derivative at
the maximum likelihood branch length, one reduces
the fitting problem to a 2D fit which can be performed
using least squares (Claywell et al. 2017). Once the
parameters of the lcfit surrogate are fit, one can use
rejection sampling to obtain samples from the surrogate
posterior formed by the product of the surrogate lcfit
likelihood and the branch length prior.

Simulations
We generated five replicates of 10, 50, and 100 taxon

trees under the birth-death process (�=6, �=2) using

https://github.com/matsengrp/lcfit
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the R package TreeSim (Stadler 2017). Data sets will be
labeled DxTy where the x is the replicate index and the y
corresponds to the number of taxa (e.g., data set D1T10
is the first of five data sets containing 10 taxa). For each
tree a nucleotide alignment with 1000 sites was simulated
using the Jukes–Cantor substitution model (JC69) using
bppseqgen from the Bio++ package (Guéguen et al.
2013). The posterior distribution of each phylogeny was
approximated in two independent runs using MrBayes
with three chains (i.e., two heated chains) for 300,000
iterations, ensuring an average standard deviation of
split frequencies (ASDSF) below 0.01. A uniform prior
on the topology and an exponential prior with mean 0.1
on branch lengths were specified. The chain was thinned
down to 1000 samples, of which the first 250 iterations
were discarded.

For each data set, 1, 3, or 5 sequences were
removed and the posterior distribution of each tree
was approximated again using MrBayes, as described
above.

The resulting posteriors were used as a starting point
for inference with the sts software (described below).
The, 1, 3, or 5 removed sequences were sequentially
added to MrBayes posterior samples using sts to
approximate the full posterior. sts used the same priors
as in the MrBayes analysis. We tested various numbers of
particles in our SMC runs, each of which was a multiple
of the number of trees in the original sample (in this
case, 750). Define the particle factor to be the number of
particles in the SMC divided by the number of trees in
the original sample. If we use a particle factor of two and
the MrBayes tree file contains 100 trees, then the total
number of particles throughout the analysis will be 200.
In other words, sts will generate two particles for each
tree in the Mrbayes tree file.

RESULTS

We implemented a prototype of OPSMC in an open
source software package called sts. sts implements
several different transition kernels for updating a
phylogenetic posterior with new sequences. These
transition kernels are described in detail in the Methods
section and include a uniform proposal and more
sophisticated proposals that were developed with the
aim of sampling updated trees more efficiently. As a
prototype developed to test transition kernels rather than
for practical use, the current sts software implements
only the JC69 model and uses the stratified resampling
technique (Kitagawa 1996) as implemented in SMCTC
(Johansen 2009). The current sts implementation can
update an existing posterior distribution produced by
MrBayes with new sequences. sts is available from
http://github.com/OnlinePhylo/sts.

We evaluated the sequence addition proposals on data
sets consisting of 10, 50, and 100 taxa using a variety
of proposal step combinations for the transition kernel.
These proposal combinations are indicated using a three
letter code as described above. For example, in the

10 taxa 50 taxa 100 taxa

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
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FIGURE 2. Mean ESS as a function of the particle factor across every
data set.

following results “ŨUP” denotes a nonheated transition
kernel constructed by proposing a branch uniformly
at random (Step 1 Ũ), then proposing an attachment
location uniformly along this branch (Step 2 U), and
finally drawing a pendant branch length from the prior
(Step 3 P).

In order to understand whether OPSMC is providing
an accurate posterior approximation, we compare the
OPSMC results after the addition of 1, 2, and 5 sequences
to what was obtained by running MrBayes on the same
data sets. In what follows, we present the results based
on data sets D1T50 and D1T100 in detail. Analysis of
the other data sets showed similar results, and these are
provided as supplementary material available on Dryad
at http://dx.doi.org/10.5061/dryad.n7n85.

ESS from OPSMC
In the following sections, we report the final ESS

of the particle population in the last iteration before
resampling. The guided proposals showed clearly
superior ESS compared to the uniform proposal with
any particle factor (Fig. 2). The ESS produced by guided
proposals also shows a strong linear relationship with
the number of particles. This relationship was predicted
by Dinh et al. (2016), where the ESS of the sampler was
bounded below by a constant multiple of the number of
particles. These linear regressions have different slopes,
suggesting that as the user targets higher ESSs the
differences between proposals become more important.
In Figure 2, we find that proposals using likelihood to
select an attachment branch (Step 1 L) have higher ESS
than parsimony, while use of lcfit to propose pendant
branch lengths (Step 3 F) yields a large advantage in ESS.

As discussed further below, we unfortunately cannot
always equate high ESS with good quality posterior
samples since ESS alone does not guarantee the OPSMC
is sampling a high-probability region. Therefore, we
performed a detailed comparison with the MrBayes
posteriors.

http://github.com/OnlinePhylo/sts
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
http://dx.doi.org/10.5061/dryad.n7n85


[18:26 14/4/2018 Sysbio-OP-SYSB170092.tex] Page: 496 490–503

496 SYSTEMATIC BIOLOGY VOL. 67

LAF PAF
t1

t1
−

t2
t1

−
t 2

−
t3

−
t4

−
t5

MrBayes
sts/1 sts/5

sts/10
sts/50

sts/100

MrBayes
sts/1 sts/5

sts/10
sts/50

sts/100

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

Program/particle factor

A
bs

ol
ut

e 
di

ffe
re

nc
es

 b
et

w
ee

n 
sp

lit
 p

os
te

rio
rs

FIGURE 3. Absolute value of the difference between the split frequencies of sts and MrBayes. These results are for data set D1T50. Labels on
the right of the y-axis indicate which taxa were removed.

Comparison of Posteriors from SMC and MrBayes MCMC
We investigated the difference of split frequencies

between the samples generated by sts and MrBayes.
Split frequencies for each tree were calculated using
scripts from Bali-Phy (Suchard and Redelings 2006).
As a reference, we calculated the absolute differences
between split posteriors generated by two independent
chains in MrBayes. Similarly, we calculated the absolute
difference between split frequencies between trees
generated from one of the two MrBayes runs and the
tree sample generated by sts. Figures 3 and 4 shows
the absolute difference between split frequencies using
the LAF and PAF on several data sets. Under the
assumption that the MCMC implemented in MrBayes
has been run long enough to accurately approximate
the true posterior, the ability of each OPSMC proposal
scheme to approximate the true posterior distribution

can be assessed by comparing the distribution of
their split frequencies to that produced by MrBayes.
The split distribution for every analysis (Table 2
and Supplementary Figs. S11–S25 available on Dryad)
confirms the superiority of LAF and PAF over less
sophisticated proposals. We also measured the distance
between the maximum likelihood tree inferred with
PhyML (Guindon et al. 2010) and each tree in the
MrBayes posterior samples and the OPSMC posterior
samples using the weighted Robinson–Foulds (L1-norm)
distance (Robinson and Foulds 1981) calculated with the
DendroPy library (Sukumaran and Holder 2010). The
results also suggest that guided proposals, especially
PAF and LAF, yield superior posterior approximations to
those produced by ŨUP (Supplementary Figs. S26–S40
available on Dryad).

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
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FIGURE 4. Absolute value of the difference between the split frequencies of sts and MrBayes. These results are for data set D1T100. Labels
on the right of the y-axis indicate which taxa were removed.

Measuring Convergence with the Average Standard
Deviation of Split Frequencies (ASDSF)

The average standard deviation of split frequencies
(ASDSF) (Lakner et al. 2008; Ronquist et al. 2012)
is a widely employed statistic used to assess the
convergence of independent MCMC analyses. The
ASDSF approaches zero when the set of topologies
contained in the posterior approximations of different
Monte Carlo sampling runs have converged. We
used this metric to determine whether the posterior
approximation produced by sequential taxon addition in
sts is similar to that which would have been produced
by simply running MrBayes on the complete data set.
We calculated the ASDSF between the updated posterior
distribution generated by sts and an independent
MrBayes analysis on the full data set. It is common

practice to use ASDSF as a convergence criterion,
stopping Bayesian MCMC once the ASDSF is less than
0.01 (Lakner et al. 2008).

We find that that guided proposals can yield
an ASDSF less than 0.01, even with relatively
small particle factors (Fig. 5 and Supplementary
Figs. S7–S9 available on Dryad). In contrast, unguided
proposals such as ŨUP consistently yielded posterior
approximations with an ASDSF that was an order
of magnitude higher (worse), even when large
particle systems were employed (particle factor 100,
with 75,000 particles). Also, the simple likelihood-
based guided proposals (Step 1 L̃) fail to yield
posterior approximations that meet the convergence
criterion, whereas their heated relatives perform much
better.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
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TABLE 2. Summary statistics of the absolute value of the difference
between the split frequencies of sts and MrBayes These results are for
data set D1T10 with particle factors equal to 1 and 100

Particle factor 1 Particle factor 100

Proposal Mean Standard deviation Mean Standard deviation

ŨUP 0.12184 0.18994 0.029868 0.05839
L̃NM 0.04356 0.09056 0.014681 0.03399
L̃AF 0.01590 0.03600 0.014010 0.03067
LAF 0.01185 0.02275 0.009447 0.01598
PAF 0.01376 0.02432 0.009228 0.01551

Notes: These results are for data set D1T10 with particle factors equal
to 1 and 100.
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FIGURE 5. Average standard deviation of split frequencies (ASDSF)
between sts and MrBayes posterior samples. These results are for the
three data sets D1T10, D1T50, D1T100, and include several particle
factors. The first row shows the results for every proposal while the
second row only shows the LAF and PAF results. The horizontal line
represents the ASDSF calculated using two chains in MrBayes. The
horizontal dashed line marks 0.01, a common convergence criterion.

We also investigated OPSMC’s ability to build
trees without a starting set of trees using sts with
the LAF proposal. Most of the tree samples for
data sets containing 10 taxa appeared to be good
posterior approximations, as suggested by the ASDSF
(Supplementary Fig. S10 available on Dryad). In contrast,
the posterior distributions of larger data sets were
poorly approximated, with only a few replicates yielding
ASDSFs below 0.01.

Compute Time of OPSMC Proposal Schemes
In previous studies of phylogenetic SMC (Bouchard-

Côté et al. 2012; Wang et al. 2015), the number of peeling
recurrences were used as a proxy to compare the running
time of different proposals. Since some nonlikelihood
aspects of our implementation (such as calculation
of the parsimony score in the PAF proposal) incur a
non-negligible compute load, we directly investigated
the wall clock time for each proposal instead.

As expected, we find that uniform proposals are at
least an order of magnitude faster per proposal operation
than the guided proposals (Supplementary Figs. S4–S6

available on Dryad). The timing results also suggest that
in the current implementation, the lcfit approximation
(Step 3 F) incurs a significant cost in compute time
relative to the other approaches.

However, when measured in terms of compute time
required per unit of ESS in the resulting sample, we
find that the guided proposals outperform ŨUP by a
large margin (Fig. 6). We note that in SMC, a high ESS
is necessary (but not sufficient) for an accurate posterior
approximation. Interestingly, the results show that the
extra compute time used by the normal approximation
in Step 2 and lcfit in Step 3 may be justified since the
L̃AF proposal has on average superior ESS per unit time
relative to L̃NM. For some replicates (e.g., D5T10) the
runtime-to-ESS ratio is much higher for the L̃NM and
L̃AF proposals than for the heated proposals. The ESSs
of those runs are extremely low (Supplementary Fig. S2
available on Dryad), highlighting that some data sets
are more difficult to analyze (see also Supplementary
Figs. S1–S3 available on Dryad).

Next, we evaluated compute time in a situation that
commonly arises in genomic epidemiology, where an
updated phylogenetic posterior is desired every time
a new sequence becomes available. We thus simulated
the sequential arrival of five taxa, comparing the
time required for sts to update posteriors against the
approach of sampling each of the five posteriors from
scratch with MCMC. These new sequences are added
to an existing data set containing 45 or 95 sequences. In
an offline setting, this is equivalent to running MrBayes
once each on alignments containing 46 to 50 or 96 to
100 sequences. We compared the total amount of time
for the five MrBayes runs to a single run of sts with the
same five sequences. For each method, we report the
minimum particle factor required to compute a posterior
approximation that meets the widely used Monte Carlo
convergence criterion of an ASDSF lower than 0.01
(Fig. 7). For example, using LAF on data set D1T10, the
ASDSFs obtained with particle factors 1, 5, 10, 50, and
100 were 0.011, 0.009, 0.007, 0.006, and 0.006 respectively.
We therefore report the running time associated with
particle factor 5 since it is the lowest particle factor with
ASDSF below 0.01. The plot shows the results based on
ten data sets (D1T50-D5T50 and D1T100-D5T100) that we
described above and for each replicate the five sequences
were sequentially added in three different orders across
three runs. Runs from sts that do not reach an ASDSF
below 0.01 are not included in the plots, therefore each
panel contains at most 15 points for sts. We find that sts
is faster than MrBayes and that PAF and LAF required a
particle factor of only one in 11 and 14 cases, respectively,
for data sets containing 50 sequences. LAF performed
marginally better than PAF for the larger 100 taxon data
set, wherein the LAF proposal reached the target ASDSF
12 times while PAF reached it 11 times (Supplementary
Table S1 available on Dryad). In contrast, ŨUP was not
able to sample trees that would meet the convergence
criterion.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
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FIGURE 6. Running time in minutes per ESS unit for each proposal method. These results are for every data set and include all five particle
factors. Numerical labels on top of each subplot give the number of taxa in each data set.

The other nonheated methods provide intermediate
results. We note that opportunities exist for further
reduction of compute time required for sts (see
Discussion), and that more significant efforts have been
made to optimize MrBayes 3.2 (Ronquist et al. 2012), so
the results here could be interpreted as a rough lower
bound for the speed advantage that OPSMC may have
over sequential runs of MCMC.

DISCUSSION

Here, we have implemented the OPSMC framework
described by Dinh et al. (2016) and evaluated how several
alternative proposal schemes behave on synthetic data
sets.

Related Work
Everitt et al. (2016) have also developed theory and

an implementation for SMC on phylogenies. In their
case, they are focused on inferring ultrametric trees in
a coalescent framework, whereas OPSMC as described
here is for unrooted trees. Their clever attachment
proposal is described in terms of lineage (path from
root to leaf) and branching time. They use proposals
choosing lineage based on differences from the leaf to
be attached and the existing leaves using a distribution
based on Ewens’ sampling formula (Ewens 1972), and
a branching time which also uses pairwise differences.
They also make an interesting suggestion to ease the
transition between the different posterior distributions
by using “intermediate distributions.” However, they do
not compare their output to samples from an existing

MCMC phylogenetics package, and they have not yet
provided an open source implementation that would
allow others to do so.

Guided Proposals Work
In contrast with previous suggestions (Bouchard-Côté

et al. 2012), we show that guided proposal schemes can
greatly improve both the computational efficiency and
the accuracy of a phylogenetic posterior approximation
over simple uniform proposal schemes. When quality
of posterior approximation is measured by either the
split frequencies (Figs. 3 and 4) or ASDSF (Fig. 5), the
LAF and PAF proposals clearly outperform the other
schemes. Both LAF and PAF are able to achieve ASDSF
below the 0.01 threshold that is typically used as an
indicator of MCMC convergence, and can do so even
with relatively small particle system sizes. This finding
is especially important for the future application of SMC
to phylogenetics, suggesting that proposal efficiency
matters much more for SMC than MCMC.

High ESS Does Not Imply Accurate Posterior Approximation

On the other hand the L̃AF proposal provides
the highest ESSs among any of the various proposal
schemes, yet fails to achieve a low ASDSF, suggesting
a poor posterior approximation. Detailed inspection of
the behavior of L̃AF reveals that, without heating the
likelihoods, the highest scoring attachment branch can
be several log units above the others (including the
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FIGURE 7. Running time in minutes (on a log scale) to sequentially add five new sequences to a data set of 45 or 95 sequences with MrBayes
and sts. Here sts is run with particle factors ranging from 1 to 100 and the lowest time reported that achieved an ASDSF less than 0.010. Runs
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were added in three different orders, resulting in at most 15 data points. For example, the LAF plots contain 14 and 12 data points for data sets
consisting of 50 and 100 sequences, respectively (see Supplementary Table S1 available on Dryad for a full description of the other proposals).

correct branch), resulting in a multinomial weight close
to 1 while the others are close to zero. The bias leads
L̃AF to always propose the same attachment branch
even when a large particle system is employed, causing
it to sample a narrow region of the tree space. The
subsequent Steps 2 and 3 proposals yield a large number
of configurations with similar weights, resulting in a
high ESS.

Opportunities for Computational Optimization
Path degeneracy is a well-known drawback of SMC

algorithms, characterized by a large number of identical
particles after the resampling step. However, path
degeneracy offers an opportunity for computational
optimization of guided proposals. The Step 1 proposal
distributions for identical particles can be computed
once and then reused. Similarly, Step 2 involves
repeatedly calculating MLEs of the distal and pendant
branch lengths, which are identical for identical trees.
For the cost of a modest amount of bookkeeping, those
estimates can be computed just once for each tree in
the particle system, rather than once for each particle,
yielding a significant speedup.

Limitations
Limitations: OPSMC proposals.—A common feature of the
proposals we evaluated are that they consist of three
steps: (i) selection of an attachment branch, (ii) selection
of an attachment point on the attachment branch, and
(iii) selection of a pendant branch length. However,
the three step structure imposes some potentially

undesirable restrictions on the resulting trees. One such
restriction is that the length of the attachment branch
selected in Step 1 is fixed, and is not adjusted in Steps
2 or 3. Another potential issue is that the length of two
adjacent branches in a phylogenetic tree can be strongly
correlated. The current three step proposal scheme does
not account for this correlation structure. The efficiency
of the sampler could in principle be increased by
combining the proposals in Steps 2 and 3 to account for
the dependency in lengths of the three branches incident
to the attachment point. The branch lengths could be
modeled as a multivariate truncated normal distribution
where the covariance matrix captures correlations across
branches. Alternatively, an extension of the surrogate
function described in the lcfit algorithm to multiple
branches could improve the proposal.

Limitations: computational complexity.—The computa-
tional complexity of choosing the attachment branch (i.e.
Step 1) grows linearly with the number of taxa in the
tree. Profiling of our implementation indicates that at
the data set sizes we evaluated, Step 1 consumes less
than 5% of total compute time. Nevertheless, scaling our
approach to thousands of sequences or beyond is likely to
require new heuristics or other techniques to reduce the
time complexity of branch selection in Step 1. This is in
contrast with drawing branch lengths in the other steps,
which has a constant complexity with respect to the
number of taxa. As in other standard SMCs, the memory
requirement of sts scales linearly with the number of
particles. The development of memory-efficient (Jun and
Bouchard-Côté 2014) and highly parallel (Paige et al.
2014) variants would be an essential step for scaling to
large data sets.

https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syx090#supplementary-data
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Limitations: evolutionary models.—The present work has
focused on updating the tree topology and branch
lengths in the very simple JC69 model of sequence
evolution. In practice, richer phylogenetic models will
almost always be preferred as they can provide a better
fit to the sequence data, for example by modeling
unequal rates of nucleotide substitution or clade-
specific evolutionary rates. These additional model
parameters are often continuous real-valued parameters.
One way to sample these parameters was described
and implemented by Bouchard and colleagues (Wang
et al. 2015) who developed a method based on particle
MCMC (Andrieu et al. 2010). Particle MCMC uses SMC
on the tree topology and branch lengths to approximate
the marginal likelihood of the remaining continuous
parameters, which are sampled using MCMC moves. A
similar particle MCMC approach, or another means to
sample the evolutionary model parameters has yet to be
developed in the context of online phylogenetic SMC.

Limitations: path degeneracy.—OPSMC, like all SMC
algorithms, is prone to path degeneracy, especially when
the sampler iterates through generations with low ESS.
As previously suggested (Bouchard-Côté et al. 2012;
Dinh et al. 2016), the use of MCMC moves between
generations of an SMC can help alleviate the path
degeneracy problem. Although some simple MCMC
moves have been implemented in sts, preliminary
results suggest that such a large number of these simple
moves would be required to address the path degeneracy
problem that a better result can be achieved by simply
using a larger particle system. Dinh et al. (2016) suggest
a valid sampler could be constructed using any mix of
MCMC and SMC moves, ranging from entirely SMC
to almost entirely MCMC, but a thorough investigation
of the optimal blend, incorporating known advanced
MCMC proposals (Ronquist et al. 2012), is yet to be done.

Limitations: constraints on the properties of new sequences.—
In order to guarantee the quality of the OPSMC posterior
approximation, the sequences to be added must satisfy
certain properties described in the theoretical work of
Dinh et al. (2016). In particular, the sequences to be
added must introduce new branches with lengths that
are similar to the average branch length of existing
sequences. Addition of one or a series of outgroup
taxa which introduce many long branches would not
satisfy these criteria. Addition of such sequences has the
potential to shift the posterior on clades present in earlier
iterations of the SMC, leading to degeneracy, low ESS,
and a poor approximation to the true posterior.

Limitations: convergence diagnostics.—In the current work
we have evaluated the accuracy of the OPSMC’s
posterior approximation by comparing the sample
to a collection of MCMC samples derived from
MrBayes. This approach is inviable in practice, since
an independent posterior approximation derived from
MCMC will not generally be available. Further work is

needed to develop and evaluate comparable approaches
for convergence diagnostics to be used with OPSMC.

CONCLUSION

Phylogenetic inference is quickly becoming
an essential tool in modern infectious disease
epidemiology. When sequence data arrives
continuously, as in the case of an outbreak, it would
be preferable to simply update a previous analysis
rather than recomputing results for all sequences. Here,
we show that online Bayesian phylogenetics using
Sequential Monte Carlo can be a practical means of
updating an existing posterior. Our findings suggest
that the choice of proposal distribution is especially
important for successful inference with OPSMC, and to
this end we have described several transition kernels
and evaluated their strengths and weaknesses. We have
also found that simple likelihood-based proposals can
strongly bias the proposal distribution away from the
posterior and have shown that smoothing of these
proposals can yield a posterior approximation that
meets the de facto standard criteria for topological
convergence in phylogenetic MCMC. The current sts
implementation is limited to the simplest evolutionary
models, and although our initial findings are promising,
significant future work will be required to integrate
the approach into the familiar software packages that
implement the more complex evolutionary models in
common use today.

In the last two decades, MCMC has become the
de facto standard method to approximate posterior
distributions in phylogenetics. Although OPSMC has
the attractive advantage over MCMC that it becomes
possible to efficiently update a posterior distribution
with new data, several challenges remain to be solved
in order to realize this promise. At a minimum, work
must be done to develop methods that jointly sample
evolutionary model parameters and tree topologies in
the OPSMC framework and to develop and evaluate
appropriate methods to estimate the quality of posterior
approximations computed via OPSMC. Combination
of MCMC and SMC could in principle yield superior
results to application of either approach in isolation, but
the efficacy of such strategies remain largely unexplored.
Research into OPSMC is still in its infancy and although
we have demonstrated a proof of concept in the sts
software, much work remains to be done before these
approaches can be routinely applied in phylogenetics.
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