
INTRODUCTION

Diffusion-weighted imaging (DWI) visualizes the random 
microscopic mobility of water (Brownian motion) and thereby 
provides a tissue contrast that is different from that made with 
conventional T1-weighted (T1WI) and T2-weighted imaging 
(T2WI) [1-4]. DWI reflects changes in proton mobility caused 
by the alteration of tissue cellularity and the integrity of the 
cellular membrane, tortuosity of extracellular space, and vis-
cosity of fluids due to pathologic processes [4-6]. Altering 
the gradient amplitude, duration, and time interval (b-value, 
measured in seconds per square millimeter) between paired 
diffusion gradients alters the sensitivity to the degree of water 
motion [7,8]. A higher b-value (b=e.g., 800 or 1,000 sec/mm2) 
has been recommended for the female pelvic region because 
it results in more diffusion weighting with better background 

suppression [1,4,8]. By performing DWI using different b-
values, quantitative analysis, namely, the calculation of appar-
ent diffusion coefficient (ADC) values, is possible and the ADC 
values can be displayed as a parametric map (ADC map) [8]. 
Restricted water diffusion demonstrates high signal intensity 
on DWI and lower ADC values on ADC map [1,7,8].

DWI was at first used in central nervous system imaging, 
especially in cases of acute ischemic stroke which causes a de-
crease of water diffusion compared with that of normal tissue 
[3]. DWI has been shown to be capable of detecting early or 
subtle changes within the brain before any visible abnormality 
appears on conventional imaging [8]. DWI has been prone to 
severe motion sensitivity due to the long scan times, because 
this will limit the effects of patient motion artifacts [9]. How-
ever, recent developments in fast magnetic resonance image 
(MRI) techniques have helped to overcome the difficulties, 
respiratory and bowel peristaltic motion, of abdominal and 
pelvic DWI and have increased the role and potential of MRI in 
evaluating the abdomen and pelvis [1]. Although performing 
DWI in the body is challenging because the inhomogeneity of 
the magnetic field over a large imaging area and susceptibility 
to motion artifacts related to respiratory and bowel peristaltic 
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Diffusion-weighted imaging (DWI) reflects changes in proton mobility caused by pathological alterations of tissue cellularity, 
cellular membrane integrity, extracellular space perfusion, and fluid viscosity. Functional imaging is becoming increasingly 
important in the evaluation of cancer patients because of the limitations of morphologic imaging. DWI is being applied to the 
detection and characterization of tumors and the evaluation of treatment response in patients with cancer. The advantages of 
DWI include its cost-effectiveness and brevity of execution, its complete noninvasiveness, its lack of ionizing radiation, and the 
fact that it does not require injection of contrast material, thus enabling its use in patients with renal dysfunction. In this article, 
we describe the clinical application of DWI to gynecological disorders and its diagnostic efficacy therein.
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motion arising from different organs conspire to degrade im-
age quality [9,10]. 

In general, malignant tumors have a higher cellularity than 
benign tumors; therefore, DWI can assist in differentiating 
malignant from benign tumors [11]. DWI is presently used 
for tumor detection, tumor characterization, and the evalua-
tion of treatment response in patients with cancer [8]. Recent 
studies have described the usefulness of DWI for detecting 
malignant tumors of the liver, renal, prostate, colorectal, and 
pancreas [12-39]. Moreover, a quantitative analysis of ADC val-
ues can be used to characterize tumors and assess responses 
to treatment [40-45]. Other advantages of DWI include its 
cost-effectiveness and brevity of execution, its complete non-
invasiveness, its lack of ionizing radiation, and the fact that no 
injection of contrast material is required [2,46-48].

In this article, we describe the clinical application of DWI in 
gynecological disorders and its diagnostic role therein. We 
used a DWI with a high b-value of 0 and 1,000 sec/mm2 and a 
reversed black-and-white gray scale.

DWI OF NORMAL FEMALE REPRODUCTIVE ORGANS

Normal structures, such as the premenopausal uterine endo
metrium and ovarian mesenchyme, excluding ovarian follicu-
lar cysts, show high signal intensity on DWI [49,50]. Interestingly, 
Kido et al. [51] observed cyclical changes in ADC values in the 
normal uterus during different menstrual phases in healthy 
reproductive age females. For the myometrium and endome-
trium, the mean ADC values tended to be lower in the men-
strual phase than in other phases. The utility of DWI for detect-
ing ectopically located abnormal gonads has been reported 
[4]. Normal or reactive lymph nodes and bowel mucosa are 
also hyperintense on DWI of the female pelvic cavity [7].

TUMOR DETECTION

On DWI, background tissues are relatively suppressed, 
whereas most forms of tumors show restricted water diffu-
sion, which results in moderate to marked tumor conspicuity 
[1]. DWI may depict small-volume tumors which are not easily 
detectable by conventional imaging modalities [1]. Restricted 
water diffusion is generally considered associated with ma-
lignant tumors as a result of high cellularity [11]. Clinicians in-
terpreting DWI in the abdominal and pelvic regions, however, 
should keep in mind that the likelihood that a lesion with 
restricted water diffusion is a benign disease was as high as 
22% and that lesion with restricted water diffusion are much 

more likely to be malignant in patients with known malignant 
disease [52].

Namimoto et al. [47] showed a decision-making diagram in 
the MRI diagnosis of gynecological disorders with the addi-
tion of DWI and ADC values. ADC values may make it possible 
to differentiate between normal and cancerous tissues in the 
uterine cervix and endometrium, with cut-off ADC values 
of 1.4×10-3 mm2/sec and 1.15×10-3 mm2/sec, respectively. 
Among cystic ovarian lesions, most benign endometrial cysts 
and mature cystic teratomas had lower ADC values than ma-
lignant neoplasms, with cut-off ADC values of 2.0×10-3 mm2/
sec. Detection oh high signal intensity on DWI may be useful 
for evaluation of peritoneal dissemination.

The ADC values may vary on acquisition parameters associ-
ated with b-values, magnetic field strength (3.0 T vs. 1.5 T), 
and breath-holding technique [53]. Thus absolute quantifica-
tion is hampered by the fact that ADC values are influenced 
by all of these technical factors. 

Due to the relatively poor spatial resolution of DWI, it is diffi-
cult to define the anatomic location of the abnormal signal on 
DWI, especially in small lesions, such as peritoneal implants or 
small recurrence or lymph node metastasis. One can resolve 
this problem by using recently developed fusion software that 
can automatically overlay the DWI onto conventional MRI. 
Even without the fusion software, one can correlate the loca-
tion of signal on the DWI with conventional MRI [4].

1. Gynecological malignant tumors
Cervical cancer has demonstrated significantly lower ADC 

values than normal cervical tissues [1,6,46,47,54]. Moreover, 
according to Liu et al. [55], squamous cell carcinoma of the 
uterine cervix tends to demonstrate lower ADC values than 
adenocarcinoma, providing a means to predict the histologic 
type of uterine cervical cancer to some extent. Similar findings 
to cervical cancers have been noted in endometrial cancers 
(Fig. 1), with a tendency toward lower ADC values in higher-
grade lesions [1,3,6,47,49].

2. Peritoneal dissemination
The peritoneal cavity is a common site of metastatic spread 

for gynecological malignant tumors, especially ovarian can-
cer [2,56-58]. On DWI, ascites and most bowel contents have 
suppressed signal intensity, while peritoneal dissemination 
involving the bowel shows high signal intensity [57]. Thus 
increasing the conspicuity of the dissemination site, DWI has 
a high accuracy at detecting peritoneal dissemination [56,57]. 
Sensitivity and specificity of depicting peritoneal dissemina-
tion with the combination of DWI and conventional MRI, DWI 
alone, and conventional MRI alone were reported as 84% and 
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91%, 71% and 90%, 52% and 92%, respectively [56].

3. Recurrent disease
As with the case of peritoneal dissemination, DWI may be also 

useful in depicting small recurrent disease, such as in the vagi-
nal cuff site (Fig. 2). Small recurrent disease, covered by the se-
rosal surface of intestinal loops and solid viscera are difficult to 
detect with computed tomography (CT) or conventional MRI, 
because they are masked by the similarity of their attenuation 
or signal intensity to that of adjacent structures [50].

4. Lymph node staging
Evaluation of pelvic lymph node status is important in devis-

ing a treatment plan in gynecologic malignant tumors. The 
differentiation between benign and malignant nodes in the 
pelvic cavity remains challenging for imaging, because the 
morphological criteria including size, shape or presence of 
necrosis, has so far not been absolutely reliable with enlarged 
reactive lymph nodes and malignant non-enlarged lymph 
nodes [59-62]. 

Diagnoses of lymph node pathology by conventional MRI 
and CT are based on roughly defined size and morphologic 

criteria. The sensitivities for conventional MRI or CT in detect-
ing lymph node metastases in gynecologic malignant tumors 
range from 43% to 73% [63,64]. Some reports have demon-
strated the usefulness of DWI and ADC values in the detection 
of metastatic lymph nodes in gynecological malignant tumors 
[61,65,66].

Lin et al. [65] evaluated for detection of pelvic lymph node 
metastasis in patients with cervical and endometrial cancers 
on DWI. The combination of size and relative ADC values was 
useful compared with conventional MRI in detecting pelvic 
lymph node metastasis in patients with cervical and endome-
trial cancers, and the sensitivity and specificity were 83 and 
25% with cervical cancer, 99 and 98% with endometrial cancer, 
respectively [65]. Kim et al. [61] reported the ADC values were 
significantly lower in the metastatic lymph nodes than in the 
nonmetastatic lymph nodes of cervical cancer patients, and 
the area-under-the-curve of ADC values for differentiating 
metastatic from nonmetastatic lymph nodes was 0.902×10-3 
mm2/sec. With this threshold, the sensitivity and specificity of 
ADC values for differentiating metastatic from nonmetastatic 
lymph nodes were 87% and 80%, respectively. Measurement 
of ADC values may be useful, especially for detection of small 

Fig. 1. Stage IC endometrioid adenocarcinoma grade 1 (G1) of the endometrium in a 30-year-old woman. The tumor (arrowheads) shows 
slightly high signal intensity on sagittal and axial T2-weighted imaging (A, B) and high signal intensity on axial diffusion-weighted imaging (C). 
Axial apparent diffusion coefficient (ADC) map (D) demonstrated low ADC values (0.75×10-3 mm2/sec). Arrow, right hydrosalpinx.

Fig. 2. Postoperative vaginal cuff recurrence of stage IVB endometrial carcinoma in a 66-year-old woman. Axial T2-weighted imaging shows 
a slightly high-signal lesion (arrowhead) on the right side of vaginal cuff (A). Axial diffusion-weighted imaging clearly depicts the lesion (B) 
and the apparent diffusion coefficient (ADC) map (not shown) demonstrated low ADC values (0.91×10-3 mm2/sec). The lesion is difficult to 
distinguish on contrast-enhanced-computed tomography (C).
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metastatic lymph nodes compared with the limited sensitivity 
of CT and conventional MRI [59,61]. DWI shows relatively poor 
anatomical detail, fusion of DWI with T2WI improves identifi
cation of pelvic lymph nodes and their metastases [7,59,60,67]. 
On the contrary, some reports showed that the role of DWI 
and ADC values in distinguishing benign and malignant lymph 
nodes is limited [7,50,59,68], because cellular tissues such as 
lymph nodes have high signal intensity on DWI regardless 
of their biologic behavior [60,69]. There is still considerable 
overlap, however, in ADC values, and lymph node evaluation 
in clinical practice has to continue to rely on conventional fea-
tures such as shape, size, and growth patterns [52].

LESION CHARACTERIZATION

Differences in tumor cellularity may reflect their histologic 
composition and biologic aggressiveness [8]. Additional infor-
mation obtained from a quantitative analysis of ADC values 
can be used to characterize tumors [6]. However, there are 
some difficulties due to the considerable overlap in ADC val-
ues of benign and malignant tumors [8]. Even in malignant 
tumor necrosis, edema or cystic components show increased 
water diffusion due to the decrease in tumor cellularity. There-
fore, interpretation of DWI requires consideration of the pa-

tient’s clinical presentation and history, as well as a morpho-
logical assessment by conventional MRI [1].

1. Uterine myometrial lesion
As pathological evaluation of uterine myometrial lesions is 

difficult, imaging diagnosis is important. However, since uter-
ine sarcomas are occasionally associated with various types of 
degeneration or cellular histologic subtypes, strict differentia-
tion of benign and malignant myometrial tumors on the basis 
of MRI findings may be difficult [47,70]. Tamai et al. [71] re-
ported that DWI may be an additional tool for distinguishing 
uterine sarcomas from benign leiomyomas (Fig. 3); however, 
the ADC values overlap with those of ordinary leiomyomas 
and cellular leiomyomas.

2. Tumors in the uterine endometrial cavity 
ADC values provide useful information in differentiating 

malignant (endometrial carcinoma and carcinosarcoma) from 
benign (submucosal leiomyoma and endometrial polyp) en-
dometrial cavity lesions [71].

3. Adnexal lesions
An ovarian mass with a solid component was classically 

predictive of a malignant tumor [72]. However, many benign 
ovarian masses can display a solid component including fibro-

Fig. 3. Uterine leiomyosarcoma and leiomyoma in a 72-year-old woman. Sagittal T2-weighted imaging shows an enlarged uterus with two 
solid lesions (arrowheads) (A). The upper lesion (arrowheads) shows low signal intensity on axial diffusion-weighted imaging (DWI) (B) and the 
apparent diffusion coefficient (ADC) map (C) demonstrated high ADC values (2.13×10-3 mm2/sec). The lower lesion (arrowheads) shows high 
signal intensity on axial DWI (D) and the ADC map (E) demonstrated low ADC values (0.67×10-3 mm2/sec). Pathological examination revealed 
leiomyoma in the upper lesion and leiomyosarcoma in the lower lesion.
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mas, cystadenofibromas, Brenner tumors, sclerosing stromal 
tumors, and theca cell tumors. The addition of DWI improved 
the MR characterization of complex adnexal masses compared 
with conventional MRI alone; indeed, DWI has recently been 
shown to be effective in the differentiation of benign from 
malignant adnexal masses [73,74]. Therefore, a solid compo-
nent in an adnexal mass with a high signal intensity on DWI 
is predictive of malignant tumors (Fig. 4) [4,74,75]. According 
to Takeuchi et al. [75], the mean ADC values between the be-
nign and malignant ovarian tumors differed significantly. Us-
ing a cutoff ADC value of 1.15 ×10-3 mm2/sec, differentiating 
benign from malignant/borderline malignant lesions had a 
sensitivity of 74%, specificity of 80%, positive predictive value 
(PPV) of 94%, and negative predictive value (NPV) of 44%. Us-
ing a cutoff ADC value of 1.0 ×10-3 mm2/sec, differentiating 
benign from malignant/borderline malignant lesions had a 
sensitivity of 46%, specificity of 100%, PPV of 100%, and NPV of 
32%. However, there were some overlaps between the mean 
ADC values of the malignant and benign ovarian lesions. They 

considered that their results may reflect the increased mean 
ADC values in some malignant lesions owing to the existence 
of small necrotic or cystic areas in solid tumoral components, 
or fluid collection intervening papillary projections, and the 
decreased mean ADC values in some benign lesions owing to 
relative hypercellularity in functioning ovarian tumors such as 
thecomas, or restriction of the water diffusion by dense stro-
mal proliferation in fibroma without edematous changes [75]. 
In addition, a study by Thomassin-Naggara et al. [74] showed 
that a solid component that exhibits low signal intensity on 
both T2WI and DWI was always benign (Fig. 5). Some reports 
showed that ADC values may provide limited information in 
the differential diagnosis of a cystic ovarian tumor [76,77]. 
Due to the morphological and histological variety of ovarian 
tumors, DWI may have a role in the preoperative evaluation 
of ovarian tumors. This is also useful to determine operative 
strategy, including the planning of the operation method, 
expectant management, or possibility and the feasibility of 
laparoscopy and conservative surgery [74]. However, accord-

Fig. 4. Stage IV serous papillary adenocarcinoma of right ovary in a 60-year-old-woman. MR images show huge lobulated, solid lesion 
(arrowheads) dorsal to the uterus. The lesion shows slightly low signal intensity on axial T2-weighted imaging (A) and very high signal intensity 
on axial (original) diffusion-weighted imaging (B). Apparent diffusion coefficient map (not shown) demonstrated low ADC values (0.75×10-3 
mm2/sec).

Fig. 5. Right ovarian fibroma in a 37-year-old woman. MR images show lobulated, solid lesion (arrowhead) in the right adnexal region. The 
lesion shows low signal on axial T2-weighted imaging (A) and diffusion-weighted imaging (B). Apparent diffusion coefficient map (C) shows 
low values (0.96×10-3 mm2/sec), which is representing T2 blackout effect. U, uterus; arrow, right paraovarian cyst.
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ing to Namimoto et al. [47], ADC values varied widely among 
malignant ovarian tumors, a phenomenon attributable to 
their morphological and histological variety. 

MONITORING TREATMENT RESPONSE

DWI shows promise as a biomarker for tumor treatment re-
sponses [1,2,7,47,78-80]. Increases in ADC values would reflect 
an increase in the mobility of water, either through the loss 
of membrane integrity or a change in the relative volume of 
extracellular space with a corresponding decrease in cellular 
size or number, as seen with necrosis or apoptosis due to tu-
mor treatment (Fig. 6) [78,81]. In short, this approach is based 
on early cellular changes in the tumor on initiation of effec-
tive chemotherapy or radiation therapy [52]. Furthermore, 
treatment effects can be observed within the first 24 hours 
after initiating treatment due to cell swelling, which results 
in a transient decrease in ADC values [8]. In tumor treatment, 
the change in ADC values accurately reflected a change in 

cellularity and could be measured earlier than changes in 
tumor volume, and ADC values have been used to character-
ize tumors and quantify treatment-induced changes, which 
may occur earlier than conventional morphologic alterations 
[78,80,82-86]. A recent study evaluated ADC histograms in 
the prediction of chemotherapy response in patients with 
metastatic ovarian or primary peritoneal cancer [80]. The 
study indicated that an early increase of ADC values and later 
decrease of histogram skew and kurtosis can detect chemo-
therapy response assessed with integrated morphologic (size 
reduction) and biochemical (serum CA-125 level) criteria. Sev-
eral studies have shown that cellular tumors with low baseline 
pretreatment ADC values responded better to chemotherapy 
or radiation treatment than tumors with high pretreatment 
ADC values [87-89]. One possible explanation is that necrotic 
tumors, which exhibit higher ADC values, are frequently hy-
poxic, acidotic, and poorly perfused, leading to diminished 
sensitivity to chemotherapy and radiation therapy [8].

Fig. 6. Stage IIA squamous cell carcinoma of the cervix in a 54-year-old woman. Posterior lip of the cervix (arrowheads) shows high signal 
intensity on sagittal and axial T2-weighted imaging (T2WI) (A, B) and axial diffusion-weighted imaging (DWI) (C). The apparent diffusion 
coefficient (ADC) map (not shown) demonstrated low ADC values (0.72×10-3 mm2/sec). The lesion (arrowheads) was reduced and difficult to 
identify after radiation therapy on sagittal and axial T2WI (D, E) and signal intensity was decreased on axial DWI (F). ADC values increased to 1.34
×10-3 mm2/sec (not shown).
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WHOLE-BODY DWI

Whole-body DWI was first reported in 2004 by Takahara et 
al. [69], and constituted a unique concept, called “diffusion-
weighted whole-body imaging with background body signal 
suppression” (DWIBS) [90]. Potential clinical applications of 
whole-body DWI include cancer staging because both the 
primary tumor and distant metastases demonstrate restricted 
water diffusion [1,90]. Accordingly, whole-body DWI has the 
potential for use in tumor staging, detecting responses to can-
cer therapy, and detecting tumor persistence or recurrence 
[90]. Three-dimensional (3D) display of DWI with a reversed 
black-and-white gray scale can produce positron emission to-
mography (PET)-like images (Fig. 7) [4,91].

Komori et al. [92] reported that a larger number of malignant 
tumors were detected visually with whole-body DWI than 
with PET/CT. However, according to Satoh et al. [93], PET/CT 
proved to be more reliable than DWI and contrast-enhanced 
CT (CE-CT) in the detection of peritoneal dissemination. The 
sensitivity of PET/CT, DWI, and CE-CT were 94%, 85%, and 83% 
and the specificity were 94%, 89%, and 87%, respectively [93]. 
Nevertheless, DWI may still be of value because it showed sat-
isfactory sensitivity for lesions and can be used as a screening 
tool because of its excellent lesion specificity [93]. The advan-
tages of DWI compared with PET/CT include its noninvasive-
ness and relatively low cost [93]. However, whole-body DWI 
does have several limitations [90]. First, whole-body DWI does 

not exclusively visualize malignant tumors, as benign patholo-
gies with restricted water diffusion such as abscesses also 
exhibit high signal intensity on whole-body DWI [90]. Second, 
whole-body DWI also visualizes numerous normal structures; 
namely, the brain, salivary glands, tonsils, spleen, gallblad-
der, small intestine/small intestinal contents, colon, adrenal 
glands, prostate, testes, penis, spinal cord, peripheral nerves, 
lymph nodes, bone marrow, endometrium and ovaries may all 
exhibit high signal intensity [90]. Another limitation is the lack 
of sufficient anatomical information [90]. According to Low [1], 
whole-body DWI seems unlikely to entirely replace PET/CT, 
because whole-body DWI does not provide true metabolic in-
formation. Low [1] advocated that initial evaluation with PET/
CT might be used to identify sites of primary and metastatic 
tumor, and follow-up whole-body DWI could be performed to 
monitor the tumor response to therapy.

PITFALLS

1. T2 shine-through effect 
One of the pitfalls of visual assessment of DWI is known as 

the T2 shine-through effect [8]. Because the signal intensity on 
DWI can be influenced by the signal intensity on T2WI, high 
signal intensity tissues on T2WI may exhibit increased signal 
intensity on DWI [47]. ADC map eliminates the effect of T2 
decay. In cases of high signal intensity on DWI, evaluation of 
T2WI as well as an ADC map, which depicts changes in signal 
intensity that are solely caused by diffusion, are required [1]. 

2. T2 blackout effect
A T2 blackout effect occurs when there is low or very low 

signal intensity of the solid component on T2WI and due to 
high collagen concentration and low cellularity [74]. Accord-
ingly, low ADC values may be misinterpreted as a malignancy, 
and concurrent evaluation of DWI may be necessary (Fig. 5).

3. Ovarian cystic lesions with water diffusion restriction
DWI is useful for tumor characterization, namely differentiat-

ing malignant and benign lesions. However, abscesses, ma-
ture cystic teratomas, and hemorrhagic cysts such as endome-
triotic cysts may show high signal intensity on DWI and lower 
ADC values than other benign ovarian cysts [47,94-96]. Water 
diffusion in abscesses is restricted due to the paramagnetic 
properties of cystic components. In the majority of mature 
cystic teratomas, conventional MRI with fat saturation may 
be sufficient for making a correct diagnosis [76]. According to 
Nakayama et al. [76], mature cystic teratomas are lined with a 
keratinized squamous epithelium in most cases; by contrast, 

Fig. 7. Left common iliac lymph node metastasis posttreatment 
(operation and subsequent chemotherapy) of stage IC endometrial 
carcinoma in a 70-year-old woman. Left common iliac lymph node 
region (arrowhead) shows high signal intensity on inverted grayscale 
of diffusion-weighted imaging (A). Positron emission tomography 
also shows abnormal uptake in the left common iliac lymph node 
region (arrowhead) (B).
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fatty components and calcification are pathologically found in 
67-75%. Keratinoid substances restrict water diffusion in ma-
ture cystic teratomas [76]. DWI and ADC values may be useful 
and serve as an adjunctive tool to ensure the accuracy of the 
diagnosis, particularly in patients with a teratoma with paucity 
of fat (Fig. 8) [76]. Endometriotic cysts tend to contain hemo-
globin degeneration products, and its viscosity lowers ADC 
values [47]. On the contrary, detection of a malignant lesion, 
such as malignant transformation of a mature cystic teratoma 
or a malignant tumor arising in an endometriotic cyst, might 
be difficult, because the entire cystic component may show 
high signal intensity on DWI.

4. Inflammatory lesion
A solid adnexal mass with high signal intensity on DWI 

within a solid component is predictive of malignancy, as men-
tioned above. Inflammatory, granulomatous adnexal lesions 
may show morphologically solid and restricted water diffusion 
on MRI and can mimic a malignant tumor (Fig. 9). Oussalah 

et al. [97] reported restricted water diffusion in the inflamed 
bowel of a Crohn’s disease patient; this restricted water diffu-
sion in active Crohn’s disease is explained by the strong asso-
ciation with lymphoid aggregates. 

5. Well-differentiated malignant tumors
In poorly differentiated malignant tumors, the extracellular 

space is characterized by increased tortuosity, with a resultant 
decrease in ADC values, whereas well-differentiated malig-
nant tumors (particularly adenocarcinomas) may not show 
high signal intensity on DWI or low ADC values [2,7,49,67].

CONTROVERSY

In gynecologic disorders, conventional morphologic evalu-
ation on T1WI and T2WI is essential. DWI should be utilized 
as a complementary sequence to conventional morphologic 
imaging. Because DWI has relatively poor spatial resolution, 

Fig. 8. Right ovarian teratoma with paucity of fat in a 77-year-old woman. The cystic lesion (arrowheads) shows high signal intensity on axial 
T2-weighted imaging (A) and axial diffusion-weighted imaging (C) in the right adnexal region. The apparent diffusion coefficient (ADC) map 
(not shown) demonstrated low ADC values (0.67×10-3 mm2/sec). A small fraction of the cystic lesion shows high signal intensity (arrows) on 
axial T1-weighted (B), and chemical shift imaging (not shown) suggested fat. H&E stain (not shown) indicated hyperkeratoic epidermis cells. u, 
uterus.

Fig. 9. Right salpingo-oophoritis in a 50-year-old woman. Axial T2-weighted imaging show solid lesion (arrowheads) in the right adnexal region 
(A). Fat saturated contrast enhanced (FS-CE) T1-weighted (not shown) was homogeneously enhanced. The solid lesion shows high signal 
intensity on axial diffusion-weighted imaging (B) and the apparent diffusion coefficient (ADC) map (not shown) demonstrated low ADC values 
(0.84×10-3 mm2/sec). Pathological diagnosis was a right salpingo-oophoritis. u, uterus.
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detection of small lesions on DWI may be limited. It is neces-
sary to refer to other imaging sequences or fusion images for 
sufficient identification of lesion boundaries [47]. Moreover, a 
major challenge to the widespread implementation of DWI is 
the lack of an acceptable standard approach to data collection 
and analysis [8,56]. Standardization will allow for improved 
repeatability and reproducibility based on diffusion indices 
[2]. Reproducible measurements are particularly important to 
determine both the limits of using quantitative ADC values to 
discern the magnitude of change and whether DWI measure-
ments are to be routinely used for monitoring therapeutic ef-
fects [8].

CONCLUSION

Functional imaging is becoming increasingly important in 
the evaluation of cancer patients because of the limitations 
of morphologic imaging [1]. DWI can be applied widely for 
tumor detection and tumor characterization and for the moni-
toring of response to treatment [47]. However, since there are 
some overlaps on DWI between benign and malignant gyne-
cological disease, DWI evaluation of the lesion should be done 
in concert with conventional imaging, to distinguish between 
benign and malignant gynecological disorders [47]. The ad-
vantages of DWI include its cost-effectiveness and brevity of 
execution, its complete noninvasiveness, its lack of ionizing 
radiation, and the fact that it does not require injection of con-
trast material, thus enabling its use in patients with reduced 
renal function [2,8,47,48]. DWI could provide supplemental in-
formation in patients with gynecological disorders and could 
easily be incorporated into standard clinical protocols utilizing 
MRI [47,78,90].
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