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Abstract 

The Lateral Geniculate Nucleus (LGN) represents one of the major processing sites along the visual pathway. Despite 
its crucial role in processing visual information and its utility as one target for recently developed visual prostheses, 
it is much less studied compared to the retina and the visual cortex. In this paper, we introduce a deep learning 
encoder to predict LGN neuronal firing in response to different visual stimulation patterns. The encoder comprises a 
deep Convolutional Neural Network (CNN) that incorporates visual stimulus spatiotemporal representation in addition 
to LGN neuronal firing history to predict the response of LGN neurons. Extracellular activity was recorded in vivo using 
multi-electrode arrays from single units in the LGN in 12 anesthetized rats with a total neuronal population of 150 
units. Neural activity was recorded in response to single-pixel, checkerboard and geometrical shapes visual stimula-
tion patterns. Extracted firing rates and the corresponding stimulation patterns were used to train the model. The 
performance of the model was assessed using different testing data sets and different firing rate windows. An overall 
mean correlation coefficient between the actual and the predicted firing rates of 0.57 and 0.7 was achieved for the 
10 ms and the 50 ms firing rate windows, respectively. Results demonstrate that the model is robust to variability in 
the spatiotemporal properties of the recorded neurons outperforming other examined models including the state-of-
the-art Generalized Linear Model (GLM). The results indicate the potential of deep convolutional neural networks as 
viable models of LGN firing.
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1  Introduction
Modeling the encoding of the external visual stimulus 
along the visual pathway has been the topic of a mul-
titude of studies given that humans arguably rely on 
vision more than any other sense [1–3]. With the recent 
advances in neural interfaces technology and the devel-
opment of visual prostheses to restore vision to the blind 
[4, 5], more attention has been given to the development 
of accurate visual encoding models that could predict the 
activity of neurons to arbitrary visual inputs along the 
visual pathway. For instance, including an encoding stage 
prior to retinal stimulation to identify the expected firing 

pattern of retinal ganglion cells (RGCs) has been dem-
onstrated to result in RGCs activity that closely mimics 
natural responses [6, 7]. In addition, it has been demon-
strated that modeling the encoding of RGCs firing could 
be used to better tune inputs to cortical visual prostheses 
[8]. Finally, in thalamic visual prostheses, we have previ-
ously demonstrated that using Kalman filter-based and 
autoencoder-based encoders to tune electrical stimula-
tion parameters could drive thalamic Lateral Geniculate 
Nucleus (LGN) neurons in a way similar to how natural 
visual inputs drive their activity [9, 10]. These findings 
across different visual prostheses types emphasize the 
need for encoding models of visual neurons as essential 
components of the design of visual prostheses.

The LGN has been demonstrated to be one of the 
major visual pathway sites used as a target for implanted 
visual prostheses [9, 11, 12]. However, it is much less 
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studied compared to other visual pathway sites despite 
its crucial role as the major gateway of visual informa-
tion to higher processing levels along the visual pathway 
[13]. It integrates and transforms the visual information 
flowing from the retina and passes such information to 
the primary visual cortex (V1) for further processing. 
Despite the simplistic role LGN neurons are argued to 
play, multiple studies demonstrated a rather complex role 
of the LGN in encoding visual information. Anatomically, 
it has been demonstrated that the LGN receives inputs 
from multiple brain areas such as the corticogeniculate 
feedback received from V1, which outnumbers retinal 
projections, and inputs from the brainstem, which modu-
late LGN activity independent of retinal input [14, 15]. In 
terms of firing patterns, LGN neurons have been demon-
strated to exhibit both transient and sustained responses 
post-visual stimulus presentation [16, 17]. These findings 
suggest a more elaborate function of the LGN as opposed 
to acting as simple relay cells.

Extensive research in the past few decades has focused 
on developing models of neuronal firing in the visual 
pathway based on simultaneously recorded neuronal 
activity. Integrate-and-fire models have been demon-
strated to predict neuronal responses corresponding 
to visual stimuli in multiple visual pathway sites [18, 
19]. Statistical models have also been utilized to model 
the encoding of visual stimuli in neuronal spike trains. 
Generalized Linear Model (GLM) and its variants have 
been utilized in multiple studies to model neuronal fir-
ing along different sites of the visual pathway [1, 3]. It has 
been considered for years as the gold-standard statistical 
model for representing neural data [20, 21].

Recently, advances in machine learning techniques 
have motivated their use in modeling neuronal firing in 
multiple brain areas [22–24]. Convolutional Neural Net-
works (CNNs) in particular have demonstrated robust 
results in different domains including brain encoding [25, 
26]. Compared to other statistical models of brain encod-
ing, CNNs assume no prior knowledge about the distri-
bution of the training data [24]. In addition, in studying 
visual encoding, inputs to visual encoding models typi-
cally represent images presented across time. Therefore, 
using CNNs would be the most suitable, since CNNs are 
by nature specialized to deal with spatiotemporal data 
that has grid-like topology. Moreover, CNNs could repre-
sent non-linear as well as linear relationships through the 
use of successive layers of units with non-linear activa-
tions [24, 25]. This is critical in modeling LGN neuronal 
firing given the growing evidence that using non-linear 
models can better characterize LGN firing compared to 
simple linear models [3, 27, 28].

In this paper, we introduce a deep CNN approach to 
represent spatiotemporal visual encoding in the LGN. We 

simultaneously recorded the extracellular activity of  rat 
LGN neurons in response to single-pixel, checkerboard 
and geometrical shapes visual stimulation patterns. Data 
recorded using multi-electrode arrays from 12 anesthe-
tized rats were pre-processed to extract instantaneous 
single-trial neuronal firing rates of the underlying popu-
lation. Firing rates and the firing rate history, in addition 
to the corresponding visual stimulus spatiotemporal rep-
resentation are then used to train the model. Our results 
indicate the efficacy of the proposed CNN visual encoder 
in predicting the neural firing activity of LGN neurons 
corresponding to single-trial visual stimulation patterns.

2 � Methods
2.1 � Rat lateral geniculate nucleus (LGN) in vivo recording
In this study, 12 adult female Albino rats (S1 to S12) were 
used with an average weight of ~ 100gm. All the experi-
mental procedures were approved by the Research Eth-
ics Committee at the Faculty of Medicine, Ain Shams 
University, Cairo, Egypt (Approved on February 15, 
2017). Animals were anesthetized using Urethane (1  g/
kg injected intraperitoneally and supplemented as 
needed). The animal was fitted in a stereotaxic instru-
ment (Digital Lab Standard Stereotaxic, Stoelting Co, 
Wood Dale, IL, USA) and its body temperature was kept 
at ~ 37  ˚C. An incision was made into the scalp and the 
underlying connective tissue was cut. A craniotomy of 
size 4 mm × 4 mm was then drilled over the right LGN 
(2–6 mm posterior and 1–5 mm lateral to bregma). The 
measured bregma–lambda distance was used as a scaling 
factor to map the coordinates of the LGN in the Rat brain 
atlas of Paxinos and Watson [29].

After resecting the dura to expose the brain surface, a 
32-channel microelectrode silicon array (NeuroNexus 
Technologies, Ann Arbor, MI, USA) with four shanks, 
eight recording sites/shank, 200  μm shank separa-
tion and 50  μm within shank electrode separation was 
advanced into the right LGN in 100 μm/min steps. The 
ground wire of the electrode was connected to a screw 
fixed to the rat’s skull for noise elimination. The rat’s left 
eye was kept open during the recording using a hemostat 
attached to the skin. Signals acquired from the electrodes 
were amplified and bandpass filtered in the range 300–
5000 Hz and sampled at 25 kHz (Tucker-Davis Technolo-
gies, Alachua, FL, USA).

LGN coordinates were identified at ~ 3.2 mm posterior 
and ~ 2.85  mm lateral to bregma at a depth of ~ 4  mm 
[29]. To identify the desired depth, a flashing light stim-
ulus was applied, and the corresponding activity was 
observed. After reaching the desired depth, the visual 
stimulation patterns were presented using a 13-inch 
screen placed tangent to the rat’s left eye at ~ 15 cm dis-
tance (spanning ~ 88° of the visual field) in a completely 
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dark room. At the end of the experiment, the rat was 
euthanized using an overdose intraperitoneal Sodium 
Thiopental injection.

2.2 � Visual stimulation patterns
We examined three types of visual stimulation patterns. 
The first type comprises single-pixel patterns, in which 
the screen is divided into 4 × 8 grid of pixels, where 
one pixel at a time is turned ON (white) for 200 ms and 
OFF (black) for 300 ms. The flickering of the same pixel 
is repeated for 100 times (trials) consecutively, followed 
by the flickering of the following pixel from the top left 
pixel on the screen till the bottom right pixel (see Addi-
tional file 1: Figure S1a). The single-pixel stimulation was 
applied to rats (S1 to S6). The second type is represented 
by checkerboard patterns of size 4 × 8 pixels. In each pat-
tern, four pixels are randomly chosen to flicker simulta-
neously with durations of 200 ms ON and 300 ms OFF. 
A sequence of 32 different checkerboard patterns is pre-
sented consecutively. Patterns were generated such that 
all pixels within the whole sequence of patterns are guar-
anteed to flicker exactly the same number of times. The 
same checkerboard sequence is repeated for 100 times 
(trials) (see Additional file  1: Figure S1b). The checker-
board stimulation was applied to rats (S7 to S12). A third 
type of stimulation is represented by arbitrary geometri-
cal shapes (rectangle, circle, triangle and cross) in whole 
screen resolution. For each stimulation pattern, a ran-
dom shape is chosen to flicker with durations of 200 ms 
ON and 300 ms OFF in a random screen location (top–
left, top–right, bottom–left, bottom–right or center). A 
sequence of 20 different shape patterns is presented con-
secutively (see Additional file  1: Figure S1c). The same 
sequence of shapes is repeated for 50 trials. The shapes 
stimulation was applied to rats (S7, S8 and S9).

The visual stimulation types examined are consistent 
with the patterns utilized in previous studies [30–32]. 
Stimulation patterns were preceded by full-field stimula-
tion. In this pattern, the whole screen is turned ON for 
200 ms followed by OFF for 300 ms. The full field pattern 
is repeated 80 times. This full-field stimulation is used 
to define the responsive neurons and to synchronize the 
recorded activity with the visual stimulus.

2.3 � Data pre‑processing
The raw stimulus-driven activity recorded during the 
experiment was then passed through multistage pre-pro-
cessing. This is to convert the recorded signals to spike 
trains. A spike train is a binary sequence of instances at 
which a neuron is detected to fire an action potential, 
where ‘1’ indicates a spike, while ‘0’ indicates no spike. 
We used NeuroQuest, which is a MATLAB toolbox for 
neural data processing and analysis for this task [33, 34]. 

First, spikes were extracted from each recording site fil-
tered signal. A spike was detected if the signal surpasses 
a tunable threshold set at three times the signal stand-
ard deviation of the noise. Spikes were extracted at an 
interval starting at 0.75  ms pre-threshold to 2  ms post-
threshold crossing. Spikes detected from each site were 
then aligned at their trough and Principal Component 
Analysis (PCA) was applied to the extracted aligned 
spikes. We used the first two principal components as 
features for K-means clustering algorithm to identify dif-
ferent clusters of spikes within the recording site [35]. 
Each cluster of spikes was considered as the spiking of 
a single unit (neuron) recorded on this site. Number of 
single units recorded on each recording site was manu-
ally determined. Spike trains were then extracted with a 
resolution of 1 ms. Finally, we computed the firing rate of 
each neuron from the corresponding spike train. The fir-
ing rate at any time bin k is the spike count of this neuron 
in the interval ((k – 1) × w) – (k × w) divided by w, where 
w is the firing rate bin width. In our analysis, we exam-
ined two different values of w; 10 ms (fine resolution) and 
50 ms (coarse resolution) [36, 37].

2.4 � Responsive neurons spatiotemporal properties
Spike raster and Post-stimulus Time Histogram (PSTH) 
analyses of the full-field stimulation were used to select 
neurons with a clear stimulus-driven response from the 
total population [38]. PSTH and spike rasters were also 
used for the alignment of the spike trains with the onset 
of the visual stimulus.

Further responsiveness analysis was carried out that is 
based on the periodic nature of the presented stimulus. 
Since the stimulus is repeated every 500 ms, it is expected 
that responsive neurons would exhibit spiking responses 
that have a similar periodic nature. The periodicity of fir-
ing is assessed using Power Spectral Density (PSD) [39]. 
A responsiveness-index R was computed in decibels from 
the PSD of the firing rate of neurons based on the domi-
nant frequency components:

where f is the frequency of the periodic visual stimulus 
(i.e., 2  Hz). The frequencies 2f and 3f are considered in 
this analysis as they represent the harmonics of the stim-
ulus frequency. Responsive neurons are expected to have 
high R due to high power at the frequencies correspond-
ing to the visual stimulus.

The spatiotemporal properties of the recorded neurons 
were also examined. Neurons were classified into two 
groups based on their temporal properties: transient neu-
rons in which the spiking increases after the onset/offset 
of visual stimulus, and sustained neurons in which the 

(1)R = 10 log10 max
(

PSD
(

f
)
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(

3f
))



Page 4 of 16Mounier et al. Brain Inf.            (2021) 8:11 

spiking is relatively maintained during the stimulus dura-
tion. This was quantified using a transient-sustained ratio 
computed from the spike train of each neuron from the 
full-field stimulation trials as

where tsr is the transient-sustained ratio, Spkt is the aver-
age number of spikes across trials for a specific neuron 
computed within a transient window = 100 ms after the 
stimulus (onset/offset), and Spks is the corresponding 
average number of spikes across trials during the entire 
stimulus duration (ON/OFF). A neuron was classified as 
transient if the transient-sustained ratio > 0.5; otherwise, 
it was classified as sustained.

Spatial properties of the recorded neurons were also 
examined. We used the spike-triggered average (STA) to 
interpret each neuron’s visual receptive field [40]. STA of 
each neuron for each pixel is simply computed by extract-
ing stimulus signal within the trial duration preced-
ing each spike and then averaging the extracted signals 
across all spikes. By integrating the STAs over time for 
each neuron, we obtained the normalized receptive field 

matrix. To classify a neuron as ON or OFF neuron, we 

(2)tsr =
Spkt
Spks

examined the STA of this neuron with the pixel that has 
maximum response. High STA value at the onset of the 
stimulus indicates an ON neuron, while low STA value at 
the onset of the stimulus indicates an OFF Neuron.

2.5 � Convolutional neural network visual encoder model
The purpose of the proposed visual encoder is to predict 
the firing rate of each recorded LGN neuron at time bin k 
for each individual subject based on the presented visual 
stimulus spatiotemporal representation as well as the fir-
ing history of the neurons. In the introduced encoder, we 
employed a deep convolutional neural network (CNN) 
architecture. We refer to this model as CNN-visual stim-
ulus-firing history, denoted hereafter by CNN-V-FH. The 
model topology is illustrated in Fig.  1. In all layers, we 
used the Parametric Rectified Linear Unit (PReLU) acti-
vation f which takes the form [41]:

where x is the input of f and α is a learnable parameter 
controlling the slope of the negative part of the func-
tion. The use of PReLU was introduced to solve the dis-

advantage of the popular traditional ReLU activation of 

(3)f (x) = PReLU(x) =

{

x, x > 0
αx, x ≤ 0

Fig. 1   Topology of the deep convolutional visual encoding model. The visual stimulus input matrix passes through a 1D convolution process, 
followed by a maximum pooling stage then a flattening stage to produce a 1D visual feature vector. The firing history input matrix passes through 
similar stages to produce a 1D firing feature vector. The two feature vectors are concatenated to produce a combined feature vector which is 
presented to a fully connected neural network to finally predict firing rate values for all neurons
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producing zero output for all negative input values. This 
problem is called “dying ReLU”. For instance, the usage of 
PReLU outperformed the original ReLU with nearly zero 
extra computational cost producing better error rates for 
ImageNet 2012 with convolutional neural network mod-
els [41].

A model was trained for each individual subject using 
single trials, where two types of inputs were presented to 
the model at any given bin k in time: the first input is the 
Visual Stimulus matrix, which represents the visual stim-
ulus spatiotemporal pattern presented to the rat. This 
matrix contains the intensity of each pixel of the stimu-
lus during the interval k to k − L+ 1 , where L is the total 
number of time bins equivalent to 500 ms (10 bins in case 
of w = 50 ms and 50 bins in case of w = 10 ms). The size 
of the Visual Stimulus matrix is thus L × P, where P is the 
number of pixels in the 4 × 8 visual stimulation grid (32 
pixels). The second input to the model is the Firing His-
tory matrix, which contains the firing rate of all neurons 
in the interval k − 1 to k − L +1. The size of the matrix 
is (L − 1) ×  N, where N is the number of neurons per 
subject.

A 1D temporal convolution operation is applied to the 
Visual Stimulus matrix, where the number of convolu-
tional filters is set to be equal to the number of pixels P 
(i.e., 32 filters). The width of the temporal convolutional 
filters is constant equal to the width of the Visual Stimu-
lus matrix, while the length of the filters is varied from 3 
to 8 which is along the direction of the 1D convolution 
(i.e., time axis). The result of this stage is a matrix of size 
L × P. In this matrix, the values in column i represent 
the result of convolving filter f vi  with the Visual Stimu-
lus matrix. The PReLU activation was then applied to the 
resulting matrix. A maximum pooling operation is then 
performed to compute the maximum value in the output 
of the preceding layer with a pooling size of 2 and a stride 
value of 2 to avoid overlapping. The size of the matrix 
resulting from this operation is (L/2) × P. The combina-
tion of convolution followed by maximum pooling is used 
once in the case of w = 50 ms and cascaded three times in 
the case of w = 10 ms. When w = 50 ms, the length of the 
resulting matrix after maximum pooling is 5 × P, since 
the input matrix in this case has 10 bins (500 ms divided 
by w). Thus, applying another layer of convolution-max-
imum pooling would result in diminished data length 
with no significant feature representation. However, in 
the case of w = 10 ms, the resulting matrix after the first 
convolution-maximum pooling layers would result in a 
matrix of size 25 × P, since in that case, the input matrix 
has 50 bins. Thus, applying additional convolution-maxi-
mum pooling layers could capture higher level features in 
such finer resolution case.

The output of the final maximum pooling stage is then 
flattened into a 1D vector of visual stimulus features. This 
same process is applied to the Firing History Matrix with 
similar architecture, where the number of convolutional 
filters is equal to the number of neurons N. The final fea-
ture vector is then obtained by concatenating the visual 
stimulus and firing history flattened feature vectors. A 
2-layer fully connected neural network is applied to the 
final feature vector, where both the hidden and output 
layers consist of N PReLU units. Each of the output layer 
units represents the predicted firing of one neuron at 
time bin k. To summarize, the model consisted of a 1D 
CNN layer, followed by a maximum pooling layer, fol-
lowed by a flattening layer for the visual and firing history 
branches. A concatenation layer is applied to the output 
of both branches. A 2-layer fully connected network is 
then applied to produce the firings rates. The total num-
ber of layers is 9 in the case of w = 50 ms. While in the 
w = 10  ms case, the cascading of the CNN—maximum 
pooling blocks three times for the visual and firing his-
tory branches increases the total number of layers to 17.

The model was implemented in Python using Keras 
[42], and trained to optimize all the weights and the 
biases using Adam stochastic optimizer to minimize the 
root-mean-square error loss function [43]. The learning 
rate of the optimizer was set to 0.001 and the exponen-
tial decay rate for the first and second moment estimates 
was set to 0.9 and 0.999, respectively. In all layers, Xavier 
uniform weights initialization was used, with all biases 
initialized to zero.

It should be noted that we examined the use of batch 
normalization and dropout techniques to enhance the 
model performance. However, no significant enhance-
ment was observed. We also examined different filter 
lengths as indicated previously (3–8) in the 1D convo-
lution process, but we included hereafter the results of 
the best filter lengths. For comparison, we also exam-
ined variants of the CNN-V-FH model that use the same 
topology of Fig.  1 but with the Visual Stimulus Matrix 
(CNN-V) only as an input, and another variant with the 
Firing History Matrix (CNN-FH) only as an input.

2.6 � Poisson generalized linear visual encoder model
The proposed deep learning model was compared to the 
Generalized Linear Model (GLM) that has been used for 
modelling neuronal firing in numerous studies [1, 3]. In 
this approach, the statistical learning model of the GLM 
is used to fit and predict the neuronal firing correspond-
ing to the presented visual stimulus and the neuronal fir-
ing history. In this model, the firing rate of any neuron i 
at any timepoint t is expressed using a conditional mean 
intensity function:
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where βi is the background firing rate of neuron i, Vi(t) 
denotes the presented visual stimulation pattern param-
eters, and Hi(t) denotes the firing history of all neurons 
including neuron i:

where Sn(t −mw) is the firing of neuron n in history bin 
m and βh

in is the weight of the contribution of this neuron 
firing to the overall function Hi(t) . Similarly, Ip(t −mw) 
is the intensity of pixel p in history bin m and βv

ip is the 
weight of the contribution of this pixel intensity to the 
overall function Vi(t) (see Additional file 1 for details of 
GLM training).

2.7 � Performance assessment of the visual encoder models
We examined the performance of the models using first 
the single pixel and checkerboard data sets using 5-fold 
cross-validation with non-overlapping training/test sets. 
In single-pixel experiments, we used 80% of the trials of 
each pixel for training in each fold and kept the remain-
ing 20% for testing. In the case of checkerboard experi-
ments, we used all trials of 80% of the patterns in each 
fold for training and we kept all trials of the remaining 
20% of the patterns for testing. For all encoding models, 
we used the same training and testing data sets.

The process of model assessment was performed as 
follows: every sample at time bin k in the testing por-
tion of the data set consisting of the visual stimulus spa-
tiotemporal representation and the firing history of all 
neurons was presented to the model to generate a pre-
diction of the firing rate to be compared with the corre-
sponding actual firing rate. This process is repeated for 
all data samples for all neurons in each fold of the cross-
validation analysis. The correlation coefficient between 
the actual and predicted firing rates averaged across all 
test trials and all fivefolds of cross-validation was used to 
evaluate the performance of the model [18, 44].

In our analysis of the recorded neurons performance 
based on their temporal characteristics, we aimed to 
eliminate the effect of the responsiveness of the neurons. 
This was done by scaling the obtained correlation coeffi-
cient based on the normalized value of its responsiveness 
index. The adjusted correlation can be expressed as

(4)�i(t|Vi(t),Hi(t)) = exp(βi + Vi(t)+Hi(t))

(5)Hi(t) =

N
∑

n=1

L
∑

m=1

βh
in(mw)Sn(t −mw)

(6)Vi(t) =

P
∑

p=1

L
∑

m=0

βv
ip(mw)Ip(t −mw)

where Rnorm is the normalized responsiveness index 
computed from the responsiveness index R of Eq. (1) by 
subtracting the minimum responsiveness value and then 
dividing by maximum value. This is to ensure that the 
range of adjusted correlation measure ranges from 0 to 1, 
where the correlations achieved for all analyzed neurons 
are from 0 to 1.

To assess the ability of the model to generalize, we also 
examined the performance of the model when tested 
using geometrical shapes. In this case, we trained the 
model using the whole checkerboard data set and tested 
the model on the more complicated shapes data set. 
The training procedure of the model was the same as 
described before, but using 100% of the checkerboard tri-
als instead. To test the model, we projected every shape 
stimulus pattern into the low dimensional space (4 × 8) 
that the model was trained on.

3 � Results
3.1 � LGN neurons response characteristics
We recorded from a total of 150 well-isolated single units 
(neurons) from the right LGN in 12 anesthetized rats. 
Data was recorded in response to three visual stimula-
tion patterns: single-pixel stimulation (Subjects S1 to S6, 
n = 86 neurons), checkerboard stimulation (Subjects S7 
to S12, n = 64 neurons) and geometrical shapes stimu-
lation (Subjects S7, S8 and S9, n = 29 neurons that are 
subset of the 64 neurons of checkerboard stimulation). 
An average neuronal population of size 12.5 ± 2.64 neu-
rons per rat was extracted. Initial responsiveness of the 
recorded neurons to visual stimulation was assessed 
based on the analysis of the rasters and PSTHs extracted 
from spiking data of each neuron in response to initial 
full-field stimulation.

We first examined the temporal firing characteristics 
of the recorded neurons. Figure  2 shows the raster and 
PSTH plots of three sample neurons from different sub-
jects. The raster plots show the spiking corresponding to 
a certain stimulus pattern across 100 different trials with 
a duration of 500 ms. The onset and offset times of the 
stimulus are marked with vertical arrows at 100 ms and 
300  ms, respectively. The figure demonstrates the vari-
ability in the temporal firing characteristics where two 
different types of neurons were identified; namely, tran-
sient and sustained. Fig. 2a shows the firing of a transient 
response neuron in which a significant response is only 
observed post stimulus onset, while Fig. 2b shows the fir-
ing of another transient response neuron in which a sig-
nificant response is only observed post stimulus offset. 

(7)adjustedcorr =
corr + (1− Rnorm)

2
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Finally, Fig.  2c shows the response of a sustained firing 
neuron which maintains its response for the duration of 
stimulus.

To classify neurons to one of the two types (transient 
versus sustained), we computed the transient-sustained 
ratio as the average number of spikes across trials fired 
after stimulus onset/offset to the average number of 
spikes fired across trials. The majority of neurons were 
classified as transient with a total of 102 neurons (68%) 
across all rats, while only 48 neurons (32%) were classi-
fied as sustained. We next examined the spatial firing 
characteristics of the recorded neurons in terms of their 
receptive fields. Receptive fields were reconstructed from 
the integration of the obtained STAs over time for each 
neuron. Based on the STAs, 87 neurons (58%) were clas-
sified as spatial-ON neurons, while 63 neurons (42%) 
were classified as spatial-OFF neurons. Additional file 1: 
Figure  S2 shows the normalized receptive fields of the 
neurons shown in Fig.  2 and the normalized receptive 
field of all neurons across all rats.

3.2 � Performance of the CNN model
A deep convolutional visual encoding model was trained 
using the recorded data. For each visual stimulation pat-
tern, 100 trials of duration 500  ms were extracted from 
single pixel and checkerboard stimulation. Firing rates 
were then computed with bins of width w = 50  ms and 
w = 10 ms. For each rat, two models were trained follow-
ing the architecture shown in Fig. 1 (CNN-V-FH); one for 
each value of w. Fivefold cross-validation was adopted to 
train the model using 80% of the data. The visual stimu-
lation patterns of the remaining 20% were then used as 
input to the model to predict the firing of the recorded 
neurons.

To evaluate the performance of the proposed model, 
we computed the correlation coefficient between the pre-
dicted firing and the actual recorded firing of each neu-
ron averaged across all test trials and cross-validation 
folds. Figure  3a demonstrates the normalized actual fir-
ing rate and the firing rate predicted using the model for 
the best performing neuron in subject S12. The figure 
shows significant similarity between the actual and pre-
dicted firing rates.

a b c

Fig. 2  Responses of three sample neurons. (Top) Spike raster plots for multiple trials in response to specific stimulation pattern, where each dot 
represents a spike. (Bottom) Post-Stimulus Time Histograms (PSTH) with 10 ms bin width. a Transient neuron that responds more with stimulus 
onset (Neuron 9 in S12). b Sample transient neuron that responds more to the stimulus offset (Neuron 5 in S3). c Response of a sample sustained 
neuron (Neuron 5 in S5) 
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The performance of the model was assessed at the pop-
ulation level by computing the correlation matrix for the 
data set of each rat in which each value represents the 
correlation between actual and predicted firing rates of 
the corresponding pair of neurons. Figure 3b shows the 
correlation matrix obtained in rat S12 for the 14 neurons 

recorded with w = 50  ms. The diagonal-like form of the 
correlation matrix indicates the ability of the model to 
learn the intrinsic firing properties of each neuron rather 
than learning the underlying common mode firing of the 
population.

In our analysis, two different resolutions for the firing 
rate window were used: w = 50  ms and w = 10  ms. Fig-
ure 4 shows a histogram of the correlations between pre-
dicted and actual firing rates of all neurons in all subjects. 
The figure shows the histograms for both single pixel 
(Fig.  4a) and checkerboard (Fig.  4b) visual stimulation 
patterns for each firing rate window. The figure demon-
strates significant similarity between predicted and actual 
firing rates as indicated by the fitted Beta distributions. 
Prediction correlation reached a maximum of 0.945 in 
the w = 50 ms case and 0.884 in the w = 10 ms case. For 
both single pixel and checkerboard stimulation patterns, 
a better performance is observed for w = 50  ms (single-
pixel correlation: 0.75 ± 0.13, checkerboard correlation: 
0.75 ± 0.14) compared to w = 10 ms (single-pixel correla-
tion: 0.57 ± 0.15, checkerboard correlation: 0.65 ± 0.17). 
This is expected given the noise reduction when comput-
ing the firing rate in a 50 ms window compared to a nar-
rower 10 ms window.

To evaluate the performance of the model furthermore, 
we compared the actual and predicted peak firing rate 
of every neuron post the onset of each stimulation pat-
tern. Figure 5 demonstrates that the model predicts the 
peak firing rate with a significant similarity (w = 10  ms: 
r 2 = 0.78, P < 1e−33 w = 50  ms: r 2 = 0.88, P < 1e−33). In 
addition, we assessed the ability of the model to capture 
the trial-to-trial variability across stimulation patterns. 
Significant similarity between the trial-to-trial variability 
in predicted firing and that in actual firing was detected 
(w = 10  ms: r 2 = 0.6, P < 1e−33; w = 50  ms: r 2 = 0.67, 
P < 1e−33) (See Additional file 1: Figure S3).

a

b

Fig. 3  Firing rate prediction. a Predicted firing rate (black) versus the 
actual firing rate (gray) corresponding to the shown checkerboard 
stimulation patterns in subject S12, Neuron 11, with firing rate 
window w = 50 ms. Each stimulation pattern remains ON for 200 ms 
followed by 300 ms of no stimulus (OFF). b Correlation matrix of 
subject S12 obtained using the CNN-V-FH visual encoder model

a b

Fig. 4  Histogram of the achieved correlation coefficients using CNN-V-FH for all neurons and the fitted beta distribution. Solid and dotted curves 
represent fits of the 50 ms and 10 ms histograms, respectively. a Single-pixel stimulation (α = 5.69 and β = 4.33 for w = 10 ms, and α = 7.45 and 
β = 2.48 for w = 50 ms). b Checkerboard stimulation (α = 4.46 and β = 2.41 for w = 10 ms, and α = 6.33 and β = 2.13 for w = 50 ms)
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3.3 � Relating model performance to neuronal 
responsiveness

The responsiveness of the recorded neurons to stimula-
tion patterns was not uniform across all populations. 
Thus, given the periodic nature of the stimulus applied, 
we first quantified the responsiveness of the neurons 
using a responsiveness index based on the power spectral 

density (PSD) of the spike train of each neuron. We next 
examined the impact of the responsiveness of the neu-
rons on the performance of the model. Figure 6a shows 
the PSD of two neurons calculated from their corre-
sponding firing rates with w = 50 ms. The figure demon-
strates a higher power for neuron A compared to neuron 
B at 2  Hz (the stimulus frequency). This indicates that 

a b

Fig. 5   Predicted versus the Actual Peak Firing Rates (PFRs) following the stimulus for a w = 10 ms and b w = 50 ms. Each point in a and b 
corresponds to one neuron peak spiking for a specific stimulation pattern. Dotted lines indicate linear regression lines

a

b c

Fig. 6  Performance as a function of responsiveness. a Power spectral density calculated from the firing rate of 2 neurons; neuron A (gray) and 
neuron B (black). b Achieved correlation coefficients using CNN-V-FH for all neurons versus normalized responsiveness index for all neurons with 
firing rate windows w = 10 ms and c w = 50 ms. Each point in b and c corresponds to one neuron. Solid lines indicate linear regression lines. Arrows 
in c point to the neurons whose PSD is shown in a 
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neuron A is more responsive to the presented stimuli 
compared to neuron B. A relatively high responsiveness 
index is obtained for neuron A of 0.306 ( − 5.23 dB) com-
pared to 0.058 ( − 12.36 dB) for neuron B. Figure 6 shows 
how the model performance measured as the correlation 
between predicted and actual firing rates varies with the 
neuronal normalized responsiveness index. The figure 
demonstrates that the model predicts the firing of highly 
responsive neurons with higher accuracy compared 
to less-responsive neurons in both cases w = 10  ms, as 
shown in Fig. 6b (r 2 = 0.6503, P < 1e−33), and w = 50 ms, 
as shown in Fig.  6c (r 2 = 0.6512,  P < 1e−33). This was 
observed for both single pixel and checkerboard visual 
stimulation patterns. These results indicate that the low 
correlations obtained for some neurons could be attrib-
uted to their diminished response to visual stimulation 
rather than improper training of the model.

3.4 � Relating model performance to spatiotemporal firing 
characteristics

Given the variability in the spatiotemporal firing charac-
teristics of the recorded neurons, we examined the cor-
responding effect on the model performance. We first 
assessed the performance as a function of the temporal 
characteristics, as shown in Fig.  7a, to determine if the 
model is biased towards one of the two types (transient 
or sustained). Given that the majority of the sustained 
firing neurons have diminished responsiveness index 
compared to their transient counterpart, we sought to 
eliminate the effect of the responsiveness when assessing 
the model performance. We used an adjusted correlation 
coefficient measure in which we scaled the correlation 
coefficient between the predicted and actual firing rates 
of a given neuron by its corresponding responsiveness 
index. Figure 7a demonstrates the firing rate prediction of 

the model for transient and sustained neurons. The figure 
illustrates no significant difference between adjusted cor-
relations of the two types for both w = 10 ms (sustained: 
0.58 ± 0.06, transient: 0.57 ± 0.09, P > 0.3) and w = 50 ms 
(sustained: 0.66 ± 0.1, transient: 0.63 ± 0.07, P > 0.1). In 
terms of spatial characteristics, Fig. 7b shows no signifi-
cant difference between the performance of the model 
for ON and OFF neurons. This is observed for w = 10 ms 
(ON: 0.57 ± 0.07, OFF: 0.58 ± 0.07, P > 0.5) and w = 50 ms 
(ON: 0.65 ± 0.08, OFF: 0.63 ± 0.08, P > 0.05). These results 
indicate that the model is not biased to specific temporal 
or spatial firing characteristics.

3.5 � Comparison with other models
We compared the performance of the proposed CNN-V-
FH model to three other models. All three models pre-
dict the firing of the entire population of each subject. 
The first is a deep CNN model similar to the architec-
ture shown in Fig. 1, but without taking into account the 
spiking history of the modeled neurons. This model is 
referred to as CNN-V. The second is also a similar deep 
CNN model but without the visual stimulation; referred 
to as CNN-FH. The third model is the classical General-
ized Linear Model (GLM) which has been employed in 
a multitude of studies to model neuronal firing in the 
visual pathway [1, 45]. The CNN-V, CNN-FH and GLM 
models were trained using the same training data set that 
was used to train the CNN-V-FH model. The models 
were then used to predict the firing rates of all neurons 
in the testing data sets. Figure  8a shows the actual and 
predicted firing rates estimated using the four models for 
a sample neuron (same neuron demonstrated in Fig.  3a 
with 0.91 correlation for CNN-V-FH. The figure demon-
strates the similarity between the firing rates predicted 

a b

Fig. 7  Model performance expressed as the adjusted correlation coefficient scaled by responsiveness index for different spatiotemporal firing 
characteristics. a Transient and sustained neurons for both w = 10 ms and w = 50 ms (mean ± SD). b ON and OFF neurons achieved for both 
w = 10 ms and w = 50 ms (mean ± SD)
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using the deep CNN models, and the actual firing rate, as 
opposed to that predicted using the GLM.

Comparing the CNN-V-FH model accuracy to the 
other CNN variants, a slight but not significant improve-
ment was observed over CNN-V, while a more signifi-
cant improvement over CNN-FH was observed for both 
single-pixel stimulation, as shown in Fig. 8b (w = 10 ms—
CNN-V-FH: 0.57 ± 0.13, CNN-V: 0.55 ± 0.13, CNN-FH: 
0.53 ± 0.12; w = 50  ms—CNN-V-FH: 0.76 ± 0.11, CNN-
V: 0.74 ± 0.11, CNN-FH: 0.68 ± 0.1) and checkerboard 
stimulation, as shown in Fig. 8c (w = 10 ms—CNN-V-FH: 
0.65 ± 0.14, CNN-V: 0.63 ± 0.15, CNN-FH: 0.61 ± 0.15; 
w = 50 ms—CNN-V-FH: 0.75 ± 0.12, CNN-V: 0.74 ± 0.12, 
CNN-FH: 0.68 ± 0.12). On the other hand, a significant 
improvement was observed comparing the CNN-V-FH 
model to the GLM model in the single-pixel stimula-
tion pattern at w = 10 ms and to less extent at w = 50 ms 
(w = 10  ms—CNN-V-FH: 0.57 ± 0.13, GLM: 0.45 ± 0.15, 
P < 0.001; w = 50  ms—CNN-V-FH: 0.76 ± 0.11, GLM: 
0.72 ± 0.1). For the checkerboard stimulation pattern, 
significant improvement was observed using CNN-V-FH 
compared to GLM (w = 10 ms—CNN-V-FH: 0.65 ± 0.14, 
GLM: 0.19 ± 0.1, P < 1e−19; w = 50  ms—CNN-V-FH: 
0.75 ± 0.12, GLM: 0.6 ± 0.14, P < 1e−5).

We next quantified the enhancement in the predic-
tion correlation of the CNN-V-FH compared to the three 
other models at the single neuron level. Figure  9 illus-
trates the prediction correlation for each neuron com-
paring CNN-V-FH to the other methods. We observed 
a significant enhancement in the prediction correlation 
at the single neuron level in the CNN-V-FH compared 
to the GLM model reaching an enhancement in 100% 
of the recorded neurons with the checkerboard stimula-
tion pattern for w = 10  ms. Moreover, despite the slight 
enhancement in the overall prediction correlation using 
CNN-V-FH compared to CNN-V and CNN-FH, the 
prediction correlation of a significant percentage of the 
recorded neurons was enhanced. The prediction correla-
tion at w = 10 ms of 79.1% and 79.7% of the neurons was 
enhanced using the CNN-V-FH compared to the CNN-V 
model in the single pixel and checkerboard stimulation 
patterns, respectively, and of 86.1% and 78.1% of the neu-
rons compared to the CNN-FH model in the single pixel 
and checkerboard stimulation patterns, respectively. For 
the w = 50  ms case, the prediction correlation of 81.4% 
and 54.7% of the neurons was enhanced using the CNN-
V-FH compared to CNN-V in the single pixel and check-
erboard stimulation patterns, respectively, and of 89.5% 
and 87.5% of the neurons compared to the CNN-FH 

a

b c

Fig. 8  Performance of different models. a Firing rates predicted using the four models compared to the actual firing rate in a sample neuron 
(Neuron 11) in subject S12. Firing rates correspond to checkerboard visual stimulation pattern with a firing rate window of size w = 50 ms. (b) 
Correlation coefficient averaged across all neurons in the single-pixel stimulation pattern for both w = 10 ms and w = 50 ms (mean ± SD). *P < 0.05, 
Wilcoxon rank-sum test. (b) Correlation coefficient averaged across all neurons in the checkerboard stimulation pattern for both w = 10 ms and 
w = 50 ms (mean ± SD). **P < 1e−5, ***P < 1e−19, Wilcoxon rank-sum test
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model in the single pixel and checkerboard stimulation 
patterns, respectively. This indicates the significance of 
incorporating the firing history in addition to the input 
visual stimulus into the model.

3.6 � Assessment of the model generalization ability
The achieved results using the checkerboard stimula-
tion patterns indicate the ability of the model to gen-
eralize given the lack of overlap between the training 
and testing patterns. To further confirm the generali-
zation ability of the model, the CNN-V-FH model was 
examined by training the model using checkerboard 
stimulation patterns and testing it using the more com-
plicated shapes patterns in three subjects (S7, S8 and 
S9). Figure  10a demonstrates the normalized actual 

and predicted firing rates corresponding to geometri-
cal shapes stimulation patterns using the CNN-V-FH 
model for the best performing neuron in subject S7 
with w = 50 ms. The figure shows significant similarity 
(0.65 correlation) between the actual and predicted fir-
ing. To evaluate the performance for the entire popula-
tion, we computed the correlation coefficient between 
the actual and predicted firing rates corresponding to 
shapes stimulation for all neurons in the three sub-
ject’s prediction.

Correlation reached a maximum of 0.65 and 0.63 in 
the w = 50  ms and w = 10  ms cases, respectively. The 
overall correlation across all subjects was 0.42 ± 0.11 
for w = 10  ms and 0.43 ± 0.09 for w = 50  ms. In addi-
tion, we computed the peak firing rate following stim-
ulation onset for every neuron. Figure 10 demonstrates 

a

b

Fig. 9  Prediction of all neurons in the CNN-V-FH model compared to the CNN-V, CNN-FH and GLM models for a w = 10 ms and b w = 50 ms. 
Each point in the plots represents one neuron. The three dotted lines with different slopes represent how much enhancement is achieved. The 
45° line represents equal correlation between the corresponding pair of examined methods. The two other lines represent two and three times 
enhancement in the prediction correlation for the CNN-V-FH model compared to the other model
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that the model predicts the peak firing rate with sig-
nificant similarity (w = 10  ms: r 2 = 0.62,  P < 1e−33; 
w = 50  ms: r 2 = 0.66,  P < 1e−33). These results dem-
onstrate the ability of the model to generalize when 
applied to unseen patterns.

4 � Discussion
Unraveling the details of visual information encoding 
in the visual system has been a long-standing problem 
in systems neuroscience. Here, we aimed to develop a 
visual encoding model of the LGN. Using single-trial 
extracellular activity recorded from rat LGN, we trained 
a CNN deep learning model to predict LGN firing rates 
in response to different visual stimulation patterns. The 
proposed model showed efficacy in predicting neural 
firing at different temporal resolutions. In particular, 
the proposed CNN model that uses the visual stimulus 
as well as the firing history of the population as inputs 
achieved a mean correlation (between the actual and pre-
dicted firing rates) of 0.7 measured across all 12 exam-
ined rats and three different stimulation patterns. Our 
study represents, to our knowledge, the first utilization of 
deep learning techniques to model visual encoding in the 
LGN. Deep learning, and CNNs in particular, were used 

in multiple visual system studies to model visual encod-
ing in other species such as modeling the firing of reti-
nal ganglion cells in salamanders and mice [22] and V1 
responses in macaques [23, 26]. One novel aspect of the 
proposed model in comparison to the aforementioned 
deep learning studies is the use of temporal convolution 
of firing rates history as an additional input to the model, 
which enhanced the overall performance compared to 
relying solely on the visual input.

In this study, we compared the performance of the pro-
posed encoding models to the well-known generalized 
linear model (GLM). We found that the proposed CNN 
models predicted firing rates with significantly higher 
accuracy compared to the GLM. Our models far outper-
formed the GLM in the checkerboard stimulation pat-
terns for both examined firing rate windows and in the 
simple single-pixel patterns at the fine 10 ms firing rate 
resolution. This indicates that the proposed models scale 
better in case of more complicated stimulus inputs and in 
case of finer firing rate resolutions compared to the GLM. 
Our results are consistent with previous reports that 
compared deep learning techniques to linear–nonlinear 
models such as the GLM in modeling neural encoding 
[24, 46]. The proposed model is highly non-linear which 

a

b c

Fig. 10  Model predictions to geometrical shapes stimulation. a Sample of the predicted firing rate (black) versus the actual firing rate (gray) 
corresponding to geometrical shapes stimulation patterns in subject S7, neuron 9, with firing rate window w = 50 ms. The predicted versus actual 
peak firing rates (PFRs) following the stimulus for b w = 10 ms and c w = 50 ms. Each point corresponds to one neuron peak firing for a specific 
shape pattern. Dotted lines indicate linear regression lines
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is manifested by the use of non-linear activation func-
tions. Compared to the results obtained using the GLM 
model, the higher accuracies achieved using the pro-
posed model indicates the underlying non-linearity in 
LGN activity. This represents another evidence that the 
LGN plays a more complex role in the visual pathway 
than providing a simple linear combination of retinal 
inputs.

One challenge that generally complicates the use of 
CNNs is determining the optimal CNN structure for a 
given data set as there is no agreement on a methodol-
ogy that is guaranteed to result in the optimal model [47, 
48]. Different trials that rely on grid search techniques 
are typically performed to identify the best parameters 
in terms of number of filters, filter size, number of hid-
den layers, dropout ratios and other parameters [49]. 
For instance, in our analysis, we have examined different 
filter lengths as well as batch normalization and drop-
out methods to determine the reported CNN model. 
Another challenge that is associated with deep learning 
techniques is the need for large data sets to be able to 
train the large number of hyperparameters that typically 
exist in deep learning models. However, with the rapid 
developments in the deep learning field, these challenges 
are expected to be resolved.

The generalization ability of the proposed model has 
been examined using two different experiments: train-
ing and testing the model using two non-overlapping 
sets of checkerboard patterns, in addition to training the 
model using checkerboard patterns and testing it using 
geometrical shapes patterns. The demonstrated ability 
of the model to generalize when applied to unseen pat-
terns indicates its potential utility in the design of tha-
lamic visual prosthesis. The proposed encoder could be 
used as an initial stage in visual prostheses to predict the 
activity of LGN neurons in response to a specific visual 
stimulus. The predicted firings can be then provided to a 
decoding stage that generates a corresponding electrical 
stimulus. The obtained electric stimulus would be used to 
artificially evoke neural firing similar to the activity that 
occurs under normal viewing conditions, thus resulting 
in a more accurate visual sensation [9]. In addition, the 
proposed model is not specific to a certain animal model. 
We aimed in this work to demonstrate, as a proof-of-con-
cept using rat LGN data, the utility of the proposed CNN 
model, and more generally, deep learning, in modeling 
visual encoding. The choice of rats in this study is con-
sistent with other studies that examined rat LGN firing 
properties to get insights on the visual encoding in the 
LGN in addition to visual prosthesis studies that relied on 
rats as target species [50–53]. However, this model could 
also be employed and extended to model visual encoding 
in other species. Moreover, the proposed encoding model 

is not limited to thalamic LGN only. It could be exam-
ined with other visual regions as in retinal and cortical 
visual encoding to improve the overall performance of 
other visual prostheses. Finally, extending this model to 
study the visual encoding along the visual pathway could 
provide insights into the intricate processing of the visual 
system.

5 � Conclusion
This paper introduced CNN-V-FH; a convolutional 
neural network visual encoding model of rat LGN 
that utilizes both the visual stimulus information and 
neuronal firing history. The model was used to pre-
dict rat LGN neural firing in response to different 
visual stimulation patterns achieving a mean correla-
tion of 0.7 between the actual recorded and predicted 
firing rates. Our results showed the robustness of the 
proposed CNN strategy to different spatiotemporal 
properties of the recorded neurons. No significant dif-
ference was observed comparing the performance of 
the model for ON versus OFF neurons. Similarly, no 
significant difference was observed comparing the per-
formance of the model for transient versus sustained 
firing neurons. Moreover, our results demonstrated the 
efficacy of the proposed model in comparison to other 
models. Specifically, for a firing rate window of 50 ms, 
the CNN-V-FH model achieved a mean enhancement 
in the performance of 68.1%, 88.5% and 98.8% of the 
neurons compared to the CNN-V, CNN-FH and GLM 
models, respectively. In addition, for the more precise 
firing rate window of 10  ms, the CNN-V-FH model 
achieved a mean enhancement in the performance of 
79.4%, 82.1% and 93.8% of the neurons compared to the 
CNN-V, CNN-FH and GLM models, respectively. The 
model could provide insights about the LGN and how 
it encodes the visual information. It could also be used 
to guide the engineering of futuristic thalamic visual 
prostheses.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s40708-​021-​00132-6.

Additional file 1: Figure S1. Samples of visual stimulation patterns 
presented in the experiments. (a) Single-pixel (4×8) patterns. (b) Check-
erboard (4×8) patterns. (c) Shapes (900 × 1600) patterns. (d) Temporal 
properties of the presented stimulus pattern. Figure S2. Receptive 
Field of Recorded Neurons. (a) Normalized receptive fields of the same 
neurons given in Fig. 2 corresponding to the 4 × 8 screen obtained using 
spike-triggered average (STA). (b) Overall normalized receptive field for 
all neurons in all subjects, computed by averaging the receptive field 
matrices of all the recorded neurons in the single pixel and checkerboard 
experiments. The figure demonstrates that all pixels in the presented 4 
× 8 are represented in the receptive fields of the recorded neurons with 
slight preference to pixels in the bottom center. Figure S3. Trial-to-trial 
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variability expressed as the standard deviation (STD) of the actual and 
estimated firing rates across trials for each neuron. Each point represents 
one neuron for a specific stimulation pattern for (a) w = 10ms (r 2 = 0.602, 
P < 1e−33) and (b) w = 50ms (r 2 = 0.671, P < 1e−33). 
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