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Face identity coding in the deep neural network and
primate brain
Jinge Wang1,4, Runnan Cao 1,4, Nicholas J. Brandmeir2, Xin Li 1✉ & Shuo Wang 1,3✉

A central challenge in face perception research is to understand how neurons encode face

identities. This challenge has not been met largely due to the lack of simultaneous access to

the entire face processing neural network and the lack of a comprehensive multifaceted

model capable of characterizing a large number of facial features. Here, we addressed this

challenge by conducting in silico experiments using a pre-trained face recognition deep

neural network (DNN) with a diverse array of stimuli. We identified a subset of DNN units

selective to face identities, and these identity-selective units demonstrated generalized dis-

criminability to novel faces. Visualization and manipulation of the network revealed the

importance of identity-selective units in face recognition. Importantly, using our monkey and

human single-neuron recordings, we directly compared the response of artificial units with

real primate neurons to the same stimuli and found that artificial units shared a similar

representation of facial features as primate neurons. We also observed a region-based fea-

ture coding mechanism in DNN units as in human neurons. Together, by directly linking

between artificial and primate neural systems, our results shed light on how the primate brain

performs face recognition tasks.
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The ability to identify and recognize faces is one of the most
important cognitive functions in social communications.
Primates have a dedicated neural system to process faces.

Neurons that are selectively responsive to faces (i.e., face-selective
neurons) have been observed in a distributed network of brain
areas, notably including the face patches in the temporal cortex1

(shown in monkeys) as well as the amygdala and hippocampus2,3

(shown in both monkeys and humans). In particular, there are
two extreme hypotheses about how neurons encode and represent
faces. The exemplar-based model posits that faces are represented
by highly selective, sparse, but visually invariant neurons4–7. This
model has been supposed by single-neuron recordings in the
human amygdala, hippocampus, and other parts of the medial
temporal lobe (MTL). The feature-based model posits that faces
are represented by simultaneous activation of a broad and dis-
tributed population of neurons and each neuron responds to
many pictures with similar basic features8,9. This model has been
supported by single-neuron recordings in the monkey infer-
otemporal (IT) cortex10–13. Although exemplar-based and
feature-based models are not mutually exclusive because both
types of neurons have been observed in different brain regions, it
remains unclear how to bridge these prior findings and how the
brain transitions from one model to the other, which is largely
due to the lack of simultaneous access to the activity of the entire
face processing neural network (i.e., the whole population of
neurons from all brain regions involved in face processing)14.

To address this limitation, in this study, we exploit the
opportunity to analyze the activity of all units from an artificial
neural network (ANN) dedicated to face recognition. Impor-
tantly, we were able to compare the results directly with record-
ings from the primate neurons, which will shed light on how the
primate brain encode face identities. Rapid advances in computer
vision and the development of deep neural networks (DNNs)
have provided an unprecedented opportunity to study face
recognition and representation15. DNNs can help researchers to
understand the functional architecture of the primate brain and
test the computational benefits of fundamental organizational
features for the visual system16. For example, within a class of
biologically plausible hierarchical neural network models, there is
a strong correlation between a model’s categorization perfor-
mance and its ability to predict single-neuron responses from the
IT cortex17. In addition, both human neuroimaging studies18 and
intracranial electroencephalogram (EEG) studies19 have shown
that features in DNNs can be represented in the human brain,
which in turn can explain our ability to recognize individual faces.
Recent studies in monkeys have shown that images synthesized
by DNNs can control neural population activity11,12. Using nat-
ural face stimuli and face features extracted from DNNs, our
recent work has shown that neurons in the human MTL encode
visually similar identities20.

This study continues from our recent work showing feature-
based encoding of face identities in the human MTL using DNN-
extracted visual features20. The motivation for the present study is
largely two-fold. First, the sparse coding hypothesis for face
recognition has been inspected recently under the framework of
DNN. It has been shown that identity, gender, and viewpoint
information all contributes to individual unit responses21,22,
similar to the neuronal coding of facial attributes in the primate
brain9,20,23. Experimentally, it is difficult to comprehensively
characterize the tuning properties of neurons from the human
brain to a large number of facial attributes; therefore, in this
study, we will conduct in silico experiments to probe the tuning
properties of DNN units using a diverse array of stimuli, which
will in turn shed light on the tuning properties of human neurons.
Second, several lines of research in DNN (e.g., dropout24, neural
architecture search25) have shown supporting evidence about the

so-called lottery ticket hypothesis26 (i.e., among all possible fully
connected and feedforward architectures, the winning ticket is a
sparse subnetwork). This hypothesis has important biological
implications into both energy efficiency and generalization
properties, but there is still a missing parallel and convergent
connection between the sparse coding hypothesis in
neuroscience27 and the lottery ticket hypothesis in deep
learning26. To fill in this gap, in this study, we used a DNN as a
proxy model for studying the tuning properties of neurons that
encode face identities. Our present study will directly compare
and link the sparse coding of face identities between human
neurons and DNN units.

Results
Identity-selective DNN units. We used 500 natural face images
of 50 celebrities (10 faces per identity) to elicit response from a
pre-trained deep neural network (DNN) VGG-16 trained to
recognize faces (see Fig. 1a for DNN architecture and Supple-
mentary Fig. 1 for stimuli). We performed a fine-tuning on the
top/output layer FC8 to ensure that the network was able to
discriminate the identities used in the present study (see
“Methods” for details). The pre-trained DNN had an accuracy of
94.2 ± 2.3% (mean ± SD across identities) in identity recognition
after fine-tuning. Note that to make our results more comparable
to the literature, we used the original VGG network without any
fine-tuning for further analyses.

We identified a subset of DNN units that showed a
significantly unequal response to different identities (one-way
ANOVA of activation for each DNN unit: P < 0.01; Supplemen-
tary Fig. 2a), and we refer to this population of units as identity-
selective units (see Fig. 1b–d for examples and Fig. 1e–g for the
summary). There were identity-selective units in every layer
(Fig. 1e). On the one hand, the high proportion of identity-
selective units in earlier DNN layers (Fig. 1e) suggested that
simple facial features (e.g., higher/lower contrast, more curves,
more wrinkles, or more colorful makeup) could discriminate face
identities. On the other hand, the higher percentage of identity-
selective units in the later DNN layers (Fig. 1e) was likely because
the later DNN layers were closer to the output (note that the
output was the identity of the input face). Interestingly, we
observed that a substantial amount of units were selective to
multiple identities (referred to here as multiple-identity [MI]
units; Fig. 1c, f, g, h; see “Methods” and Supplementary Fig. 2a for
selection procedure), consistent with prior studies with direct
recordings from single neurons in the human brain20,28.
Compared to units that were selective to a single identity
(referred to here as single-identity [SI] units; Fig. 1b, f), the
percentage of MI units increased in the later DNN layers (Fig. 1f).
Furthermore, the average number (Fig. 1g) and maximum
number (Fig. 1h) of identities encoded by MI units showed that
the receptive fields of the MI units increased from earlier layers to
later layers. Lastly, some identities were encoded by more SI and
MI units than the other identities (Supplementary Fig. 2b).

Identity-selective DNN units demonstrated generalized selec-
tivity to face identities. We first analyzed the selectivity prop-
erties of identity-selective units. We used a support vector
machine (SVM) to assess to what extent units from a specific
DNN layer could distinguish the input stimuli. First, with the
original stimuli used to select identity-selective units, we found
that the discriminability of all DNN units for face identities
increased in the later DNN layers (Fig. 2a). This was expected
because the later DNN layers were closer to the output and
contained more information about face identities. Notably, such
discriminability was primarily driven by identity-selective units;
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and non-identity-selective units alone could not discriminate
against different identities (Fig. 2a). Interestingly, identity-
selective units had even better discriminability than all units in
the earlier DNN layers (Fig. 2a); and SI and MI units had even
better discriminability than all identity-selective units (Fig. 2a;
also note that SI units had slightly better discriminability than MI
units). It is worth noting that although the last five layers

(Conv5_3, Pool5, FC6, FC7, and FC8) had a very different per-
centage of identity-selective units (Fig. 1e), the identity dis-
crimination performance was similar across these layers (Fig. 2a;
similarly for other stimuli as shown in Fig. 2), indicating that the
layer Conv5_3 might have already contained sufficient informa-
tion for identity discrimination. The similar accuracy across all
last five layers and unit types (all vs. identity-selective vs. SI vs.
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MI) indicated that the information for identity discrimination
was already saturated.

Second, we found that the DNN could discriminate identities
in a different set of celebrity faces (Fig. 2b), as well as the original
celebrity, faces transformed to various cartoon styles (Fig. 2c–f),
and the response profile was similar to that with the original
stimuli (although cartoon faces had an overall reduced dis-
crimination accuracy): identity-selective units primarily drove the
discrimination and had even better discriminability than all units
in the earlier DNN layers whereas non-identity-selective units
could not discriminate identities in all these tests. Within
identity-selective units, SI and MI units primarily drove the
discrimination.

Third, we found that identity-selective units could still
discriminate face identities even with very limited information
in faces (Fig. 2g). Although the accuracy was reduced to
discriminate these low-information two-tone Mooney faces
(generated from the original celebrity faces), a similar pattern
of response was observed with identity-selective units (especially
SI and MI units) primarily driving the discrimination.

Fourth, we found that identity-selective units could discrimi-
nate a different set of celebrity caricature faces in an exaggerated
cartoon style (Fig. 2h). Although the overall accuracy was
reduced, identity-selective units still played the dominant role
in discriminating the identities and non-identity-selective units
did not contribute to the discrimination. It is also worth noting
that identity-selective units (including SI and MI units) as well as
all units could not discriminate face identities any more in earlier
layers (Fig. 2h).

Fifth, we found that the DNN could still discriminate inverted
faces (Fig. 2i), although the accuracy was reduced, consistent with
impaired discrimination of inverted face in humans29. Such
discrimination was again driven by identity-selective units
(especially SI and MI units). However, we found that the DNN
(all units, identity-selective units, SI units, MI units, and non-
identity-selective units) could barely discriminate non-face object
categories (Fig. 2j). Therefore, the response could only be
generalized within faces.

Lastly, we conducted the following control analyses. (1) We
derived similar results when we equated the number of units per
layer when comparing identity-selective and non-identity-
selective units (Supplementary Fig. 3), since classification
performance could depend on the number of units (features).
(2) We found that DNN units selective to identities from one race
(e.g., Caucasian) could also discriminate face identities from other
races, suggesting that the DNN and identity-selective units had
cross-race generalizability. (3) We found that DNN units selective
to identities from one gender (e.g., male) could also discriminate
face identities from the other gender, suggesting that the DNN
and identity-selective units had cross-gender generalizability. (4)
We found that combined SI and MI units (i.e., a subset of

identity-selective units selected by an additional criterion that the
response for certain identities stood out from the global mean
response; see “Methods” and Supplementary Fig. 2a) demon-
strated even stronger discriminability of face identities (Supple-
mentary Fig. 2c). (5) Although most of our stimuli were frontal
faces (Supplementary Fig. 1), we confirmed that the DNN could
well discriminate profile faces as well (Supplementary Fig. 4a, b).
(6) Using a VGG network pre-trained for ImageNet object
stimuli30,31, we confirmed that the VGG network could
discriminate the non-face object categories (Supplementary
Fig. 4c; see Fig. 2j for a comparison). (7) We employed different
DNNs and found that our findings could generalize to other
DNNs (Supplementary Fig. 5; note that as expected face-
recognition performance was reduced in some DNNs that were
not trained for face recognition).

Together, our results showed that identity-selective units
played a general and critical role in discriminating face identities
under various circumstances, whereas non-identity-selective units
could discriminate face identities in none of the circumstances.
Therefore, our results suggested that although the discriminability
varied as a function of the level of information contained in the
stimuli, a subset of DNN units were consistently involved in the
face identity discrimination and these units demonstrated
generalized selectivity to face identities.

DNN visualization explained the role of identity-selective units
in face recognition. We next visualized the response of identity-
selective vs. non-identity-selective units in order to understand
why identity-selective units but not non-identity-selective units
played a general and critical role in face recognition. First, we
found that identity-selective units indeed corresponded to the
critical visual features of the stimuli such as the eyes, nose, and
mouth (Fig. 3a). Second, when we constructed a two-dimensional
stimulus feature space using t-distributed stochastic neighbor
embedding (t-SNE) feature reduction for each DNN layer, we
found that face identities clustered in the feature space con-
structed by identity-selective units but not non-identity-selective
units (Fig. 3b), confirming that identity-selective units could
discriminate face identities. Similar results were derived if we
constructed a three-dimensional feature space or used different
perplexity parameters for t-SNE (balance between local and glo-
bal aspects of the data). We could also replicate our results in the
full-dimensional space of the DNN. Together, DNN visualization
revealed that identity-selective units encoded critical stimulus
features so that they embodied a general discriminability of face
identities.

Lesion and perturbation of the network. We next investigated
how critical the identity-selective units as well as the trained

Fig. 1 Identity-selective units in a pre-trained VGG-16 deep neural network (DNN). a Structure of the VGG-16 DNN. The convolutional neural network
(CNN) consisted of a feature extraction section (13 convolutional layers) and a classification section (three fully connected (FC) layers). The feature
extraction section was consistent with the typical architecture of a CNN. A 3 × 3 filter with 1-pixel padding and 1-pixel stride was applied to each
convolutional layer, which followed by rectified linear unit (ReLU) operation. Every convolutional block was followed by a max-pooling operation with a
stride of two pixels. There were three FC layers in each classification section: the first two had 4096 channels each, and the third performed a K-way
classification. Each FC layer was followed by a ReLU and 50% dropout to avoid overfitting. A nonlinear Softmax operation was applied to the final output of
VGG-16 network to make the classification prediction of 50 identities. b An example of a single-identity (SI) unit. c An example of a multiple-identity (MI)
unit. d An example of a non-identity-selective unit (i.e., the unit did not encode any particular identities). Shown are responses of DNN units to 50 identities
(500 faces in total; 10 faces per identity) in arbitrary units (a.u.). On each box, the central mark is the median, the edges of the box are the 25th and 75th
percentiles, and the whiskers extend to the most extreme data points the algorithm considers to be not outliers. Encoded identities are shown in red.
e Percentage of identity-selective units for each DNN layer. f Percentage of single-identity (SI; green) and multiple-identity (MI; purple) units for each DNN
layer. g The average number of identities encoded by MI units. h The maximum number of identities encoded by MI units.
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network weight structure were to discriminate face identities by
lesioning and perturbing the network.

First, following each convolutional layer, we added a
“RandDrop” layer (i.e., a binary mask applied to the preceding
layer; Fig. 4a) to randomly set a subset of DNN units to be 0,
which partially lesioned the network. Indeed, we found that
identity recognition accuracy decreased as a function of

increasing lesion amount (Fig. 4b–f). With a small amount
(10%) of information loss (Fig. 4b), the network could still well
discriminate face identities and only had a small decrease in
performance compared to the intact network (Fig. 2a; the
decrease in performance was primarily in later layers). When
30–50% of DNN units were dropped (Fig. 4c, d), only earlier
layers had a comparable performance as the intact network but
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Fig. 2 Selectivity properties of identity-selective units. a Original faces used to identify identity-selective units. b Faces from a different set of 50
identities randomly selected from the CelebA database. c Original faces in the cartoon style Hayao. d Original faces in the cartoon style Hosoda. e Original
faces in the cartoon style Paprika. f Original faces in the cartoon style Shinkai. g Original faces in the Mooney style. h A different set of celebrity caricature
faces. i Original faces in inversion. j A set of non-face objects selected from the ImageNet stimuli. Identity recognition accuracy is shown for each deep
neural network (DNN) layer. Error shade denotes one standard deviation across five-fold cross-validation. Blue: all units from each DNN layer. Red:
identity-selective units. Gray: non-identity-selective units. Green: single-identity (SI) unit. Purple: multiple-identity (MI) units.
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later layers had a significant decrease of performance. When
70–90% of DNN units were dropped (Fig. 4e, f), the network
could not perform identity discrimination any more. Notably, in
all these cases, identity-selective units still played the dominant
role in discriminating the identities and non-identity-selective
units did not contribute to the discrimination. It is also worth
noting that we dropped the same percentage of units for every
layer, so information loss would accumulate in later layers.
Interestingly, we found that dropping units from a single layer
had only limited impact on recognition performance in

subsequent layers (Supplementary Fig. 6; 30% of units were
dropped; only dropping units from the very first layer Conv1_1
impacted performance in subsequent layers; no re-training was
involved), suggesting that the network had great plasticity.

Furthermore, we investigated the impact of SI and MI units on
identity discrimination by dropping these units (Fig. 4g–i). We
found that when dropping SI units (Fig. 4g) and MI units
(Fig. 4h) alone, the network could still well discriminate face
identities, indicating that SI and MI units could well complement
each other. The decrease in performance was primarily in the
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later layers (likely due to accumulation of information loss, as
shown above), and the earlier layers had a comparable
performance as the intact network (Fig. 2a). Dropping all SI
units (Fig. 4g) had a similar impact as dropping 10% of all units
(Fig. 4b), whereas dropping all MI units (Fig. 4h) had a less
impact and led to a performance comparable to the intact
network (Fig. 2a), indicating that MI units were less important
compared to SI units in identity discrimination (see also Fig. 2
where SI units had a slightly better identity discriminability
compared to MI units). As expected, when we dropped both SI
and MI units (Fig. 4i), the performance further decreased, leading
to a performance comparable to dropping 30% of all units
(Fig. 4c).

Second, we perturbed the network by breaking the optimal
weight structure (i.e., connection between DNN units) derived
from training and generated a random permutation of weights
(i.e., connections between DNN units) to evaluate the impact of
the model training on identity recognition. We employed two
approaches. Kernel-wise shuffle randomly permuted the weights
in a single kernel. Similar to the above dropout results, the DNN
gradually lost the ability to discriminate face identities with
increasing levels of kernel-wise shuffle (Fig. 4j–n). Unlike kernel-
wise shuffle that only rearranged the weights within one kernel,
layer-wise shuffle pooled the weights of all kernels from a layer
and reorganized the weights to form new kernels. Again, we

found that with increasing levels of layer-wise shuffle, the DNN’s
ability to discriminate face identities decreased and was eventually
abolished (Fig. 4o–s).

Together, our model manipulation suggested that identity-
selective units, as well as the optimal DNN unit connections
derived from training, were critical to face identity
discrimination.

Establishing the relationship between artificial DNN units and
real monkey neurons. It has been suggested that DNNs share
similarities with the primate visual cortex and can therefore help
us better understand the sensory cortex32. Here, we explored the
relationship between artificial DNN units and real primate neu-
rons. We first analyzed whether the DNN had a similar encoding
as monkey inferotemporal (IT) neurons. We used the same sti-
muli (500 natural face images of 50 celebrities) and recorded
neuronal activity using two Utah arrays in the anterior and
central IT cortex (see “Methods”) while the monkey performed a
passive viewing task (Fig. 5a). We identified 53 multiunit activity
(MUA) channels that showed sufficient internal consistency and
we focused on these channels for further analysis.

We found that IT MUA not only showed face responsiveness
(Fig. 5b) but also encoded the geometry of DNN layers (Fig. 5c).
To formally quantify this result at the group level, we used DNN
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Fig. 4 Manipulation of the deep neural network (DNN). a Illustration of how random dropout of DNN units was performed. We added a binary mask
following every convolutional layer in the original DNN architecture to randomly deactivate a subset of DNN units. The percentage of dropped DNN units
was controlled by the percentage of zeros in the binary mask and varied from 10 to 90%. b–f Recognition accuracy following a random dropout of DNN
units. g–i Recognition accuracy following a complete dropout of (g) SI units, (h) MI units, and (i) combined SI and MI units. j–n Recognition accuracy
following kernel-wise shuffle. o–s Recognition accuracy following layer-wise shuffle. Legend conventions as in Fig. 2.
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units to construct a face space and correlated that with the IT
neuronal face space using a distance metric (see “Methods“).
Using pairwise activation similarities19, we found that the
pairwise distance from the intermediate to later DNN layers
significantly correlated with the neuronal pairwise distance from
the monkey IT cortex (Fig. 5d; nonparametric permutation test:
P < 0.05, Bonferroni correction), suggesting that the population of
DNN units encoded the geometry of the face space similarly as
monkey IT neurons. We further investigated the temporal
dynamics of the correspondence between face spaces and found
a strong correlation starting from ~50ms after stimulus onset
(Fig. 5e; permutation test: P < 0.05, Bonferroni correction across
time bins for each DNN layer; note that a moving time window
was used), consistent with the response latency of monkey IT
neurons33,34. Therefore, with our direct recordings from the
monkey IT cortex using the same stimuli, we showed that the
DNN shared a similar encoding of faces as the monkey IT cortex.

Establishing the relationship between artificial DNN units and
real human neurons. The DNN performs the face-recognition
task similarly as humans. Does the ensemble of DNN units share
representational similarity with the ensemble of human neurons?

In order to answer this question, we used the same stimuli (500
natural face images of 50 celebrities) and recorded from 667
neurons in the MTL (340 neurons from the amygdala, 222 neu-
rons form the anterior hippocampus, and 105 neurons from the
posterior hippocampus; firing rate >0.15 Hz) of 8 neurosurgical
patients (23 sessions in total)20. Patients performed a one-back
task (Fig. 6a; accuracy= 77.38 ± 4.94% [mean ± SD across ses-
sions]) and they could well recognize the faces20. The responses
of 76/667 neurons (11.39%) differed between different face
identities in a window 250–1250 ms following stimulus onset and
these neurons were the real human identity-selective neurons (see
Fig. 6b–d, e.g., neurons). We grouped amygdala and hippocampal
neurons as a single neuronal population (i.e., MTL neurons) for
further analysis because they show very similar identity-selectivity
responses6,20.

Similar to our analysis of IT MUA, we used DNN units to
construct a face space and correlated that with the MTL neuronal
face space using a distance metric (see “Methods”). We found that
the pairwise distance from the later/top DNN layers significantly
correlated with the neuronal pairwise distance from the human
MTL (Fig. 6e; nonparametric permutation test: P < 0.05, corrected
by false discovery rate (FDR)35 for Q < 0.05), suggesting that the
population of DNN units encoded the geometry of the face space
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Fig. 5 Comparison between the deep neural network (DNN) units and (real) monkey inferotemporal (IT) cortical neurons. a Task used to acquire neural
responses from a monkey. In each trial, eight faces were presented for 100ms each, followed by a fixed interstimulus interval (ISI) of 100ms. There was a
central fixation point of 300ms at the beginning of each trial and there was an intertrial interval (ITI) of at least 500ms following each trial. The central
fixation point persisted through the trial. b, c An example multiunit-activity (MUA) channel showing a significant correspondence with the DNN feature
space. b MUA to 50 identities, shown in 10 ms time bins. Time 0 denotes the stimulus onset. Firing rate was normalized to the average of the gray images
(i.e., control stimuli). c Correlation between MUA pairwise distance and DNN layer Pool4 feature pairwise distance (see “Methods“). Each dot represents a
face pair, and the gray line denotes the linear fit. d Correlation between pairwise distance in the monkey inferotemporal (IT) neuronal face space and
pairwise distance in the DNN face space. Here, we used the mean firing rate in a time window 70ms to 180ms after stimulus onset as the response to
each face, and we averaged the responses to ten faces for each face identity. We calculated the correlation using all identities. Solid circles represent a
significant correlation (permutation test: P < 0.05, Bonferroni correction across layers). The shaded area denotes ±SD across permutation runs. e Temporal
dynamics of correlation of pairwise distance between monkey neurons and DNN units (bin size= 40ms, step size= 10ms). Color coding indicates the
magnitude of Spearman’s correlation. Asterisks (*) indicate a significant correlation in that bin (permutation test: P < 0.05, Bonferroni correction across
time bins for each layer).
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similarly as human MTL neurons. Notably, compared to IT
neurons that had a drop in correspondence with DNN features
from the later layers (Fig. 5d), MTL neurons had a smooth
increase of correspondence and peaked at the top/output layer
(Fig. 6e), consistent with the different processing stages along the
ventral visual pathway. Here, we calculated the correlation
between DNN units and human neurons using the ten identities
that were most frequently encoded by MTL neurons, given the
sparseness of MTL responses; but we derived a similar pattern of
results using all 50 identities. We further investigated the
temporal dynamics of the correspondence between face spaces
and found a significant correlation in later DNN layers starting
from 250 ms after stimulus onset (Fig. 6f; permutation test:
P < 0.05, FDR corrected across time bins for each DNN layer),
consistent with the response latency of human MTL neurons36.

In addition, we found that compared to the human MTL, the
DNN had a significantly higher percentage of SI units in later
layers (starting from the layer Pool4; Fig. 6g; χ2-test with
Bonferroni correction for multiple comparisons). The DNN also
had a significantly higher percentage of MI units in the layers
FC6, FC7, and FC8 (Fig. 6h) but a significantly lower percentage
of MI units in all other layers, where we did not expect to observe
MI units because faces of the same identity were not yet clustered.

Together, using human single-neuron recordings we directly
compared identity selectivity between artificial units and real
human neurons. Our results have revealed a systematic
correspondence between the two face-recognition systems.

Region-based feature coding in DNN units and a mechanism
underlying face recognition. How does the DNN transition from
representing visual features (in earlier and intermediate layers) to
representing identities (in later and output layers)? Inspired by
the primate visual system, one possible mechanism is that earlier
DNN layers encode the axes of a face space and provide infor-
mation to later DNN layers, which encode a region in the high-
level feature space and are selective to identities that fall in this
region. This mechanism has been instantiated in the primate
brain: IT neurons encode visual features and axes of the feature
space10–13,17 (notably, the axes of our CelebA face space in
the current study have been shown20), whereas MTL neurons are
selective to specific face identities6. Our recent study has sup-
ported such transition by revealing a region-based feature coding
by real human MTL neurons20, i.e., human MTL neurons encode
a specific region in the feature space and are selective to identities
that are clustered in this region. Here, we further compared
between artificial and primate neural systems and explored
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Fig. 6 Comparison between the deep neural network (DNN) units and (real) human medial temporal lobe (MTL) neurons. a Task used to acquire
single-neuron responses from humans. We employed a one-back task, in which patients responded whenever an identical famous face was repeated. Each
face was presented for 1 s, followed by a jittered interstimulus interval (ISI) of 0.5–0.75 s. b–d Neuronal responses to 500 faces (50 identities) shown in
raster plots. b An example of a single-identity (SI) neuron. c An example of a multiple-identity (MI) neuron. d An example of a non-identity-selective
neuron (i.e., the neuron did not encode any particular identities). Trials are aligned to face stimulus onset (gray line) and are grouped by individual identity.
On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, and the whiskers extend to the most extreme data
points the algorithm considers to be not outliers. e Correlation between pairwise distance in the human MTL neuronal face space and pairwise distance in
the DNN face space. Here, we used the mean firing rate in a time window 250–1000ms after stimulus onset as the response to each face, and we averaged
the responses to 10 faces for each face identity. We calculated the correlation using the top ten identities that were most frequently encoded by MTL
neurons. Solid circles represent a significant correlation (permutation test: P < 0.05, corrected by false discovery rate (FDR)35 for Q < 0.05) and open
circles represent a non-significant correlation. The shaded area denotes ±SD across permutation runs. f Temporal dynamics of correlation of pairwise
distance between human neurons and DNN units (bin size= 500ms, step size= 50ms). Color coding indicates Spearman’s correlation coefficient.
Asterisks (*) indicate a significant correlation in that bin (permutation test: P < 0.05, FDR corrected across time bins for each layer). g Percentage of SI
units in each DNN layer and comparison with SI neurons from the human MTL. h Percentage of MI units in each DNN layer and comparison with MI
neurons from the human MTL. Asterisks indicate a significant difference in the percentage using χ2-test with Bonferroni correction for multiple
comparisons. *P < 0.05, **P < 0.01, and ***P < 0.001.
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whether DNN units also demonstrated region-based feature
coding, which will provide critical insights into the computational
mechanisms underlying face recognition.

We focused on the DNN layers FC6 and FC7, where faces of
the same identity was clustered; and we primarily observed
human MTL neurons demonstrating region-based feature coding
in the face feature spaces from these layers20. Notably, the face
feature spaces showed an organized structure: for example,
Feature Dimension 2 represented a gender dichotomy, and darker
skinned faces were clustered at the bottom left corner of the
feature space (Fig. 7a). Indeed, we found that a large number of
MI units in these layers (24.9% for FC6 and 36.5% for FC7)
encoded identities that were adjacent in the feature space (see
Fig. 7b, c), demonstrating region-based feature coding. We refer

to this subpopulation of MI units as feature MI units. On the
other hand, non-feature MI units did not have selective identities
clustered in the feature space (Fig. 7d), and non-identity-selective
units did not encode any particular identities (Fig. 7e).

At the population level, we found that the tuning region of an
individual feature MI unit covered ~5–6% of the 2D feature space
(Fig. 8a; note that when we calculated the tuning region, we
adjusted the kernel size to be proportional to the feature
dimensions such that the percentage of space coverage was not
subject to the actual size of the feature space). In contrast, the
response of an individual SI or non-feature MI unit covered a
significantly smaller region in the feature space (Fig. 8a; two-
tailed unpaired t test: P < 0.001 for all comparisons). As expected,
the distance in the face space between encoded identities was
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smaller for feature MI units compared with non-feature MI units
(Fig. 8b). As a whole, the entire population of DNN units covered
~55–60% of the feature space (Fig. 8c; some areas were encoded
by multiple units), and the covered areas were similar for SI,
feature MI, and non-feature MI units (Fig. 8c).

We conducted several control analyses to ensure that our
findings were robust in regard to the construction of the feature
space. (1) We derived similar results if we constructed a three-
dimensional feature space, or used different perplexity parameters
for t-SNE or kernel/cluster size parameters to detect a tuning
region. (2) We derived similar results if we constructed the
feature space using uniform manifold approximation and
projection (UMAP) or principal component analysis (PCA). (3)
We could replicate our findings using full DNN features, where
the Euclidian distance between encoded identities was signifi-
cantly smaller than that of non-encoded identities.

Together, we found that as neurons in the human MTL, DNN
units also demonstrated region-based feature coding. Together with
the default axis-based coding (i.e., DNN units encode a linear
combination of features from a previous layer) and exemplar-based
coding (i.e., DNN units output a face identity with visual invariance
of the input images) in the DNN, our findings may provide an
important mechanism that explains how the DNN transitions from
representing visual features to representing identities and thus
performs face-recognition tasks. Importantly, our results suggest
that artificial and primate neural systems share similar computa-
tional mechanisms for face recognition.

Discussion
In this study, we analyzed the response characteristics of a face-
recognition DNN and found that identity-selective units in the
DNN could generalize their discriminability to face identities
shown in various styles as well as face identities that were not
involved in the training. Visualization and manipulation of the
DNN showed the importance of identity-selective units in face
recognition. By establishing the coding similarity with real pri-
mate neurons, our study provided an important method to
understand face coding in primates. Furthermore, by analyzing
an artificial neural network dedicated to face recognition, we will

be able to formulate hypotheses that can be validated in the
primate brain.

In this study, we focused on analyzing the VGG-face model,
which was pre-trained for face recognition and expected to
contain identity-selective units. Using this functioning face-
recognition model that is highly capable of processing face
identity information enabled us to (1) test the generalizability of
identity response to different categories of stimuli, (2) compare
with primate visual systems, and (3) visualize and perturb the
network to reveal the critical features for face identity dis-
crimination. It is worth noting that here we also explored other
DNN models (Supplementary Fig. 5) and found that our findings
could generalize to other DNNs (although as expected face-
recognition performance was reduced in some DNNs that were
not trained for face recognition), consistent with a previous
report surveying a large class of DNN models for face
representation37. Interestingly, a recent study has even shown
that face-selective units can emerge from an untrained DNN38. A
future study will need to investigate whether identity-selective
units can emerge from an untrained DNN.

We found that although cartoon faces had a decreased dis-
criminability in general, they had a similar pattern of response as
natural faces across DNN layers (Fig. 2a, c–f). Furthermore, we
found that inverted faces elicited a similar response as upright
faces in the early and middle DNN layers (Fig. 2a, i), suggesting
that the DNN used similar information for both inverted and
upright faces, a form of viewpoint invariance. However, in con-
trast to all upright faces that had increasing discriminability
across layers, the discriminability decreased in later layers for
inverted faces. Therefore, the impaired discriminability of inver-
ted faces in humans may stem from neurons downstream in the
visual processing stream29. Furthermore, consistent with our
DNN lesion results (Supplementary Fig. 6), it has been shown
that DNN units demonstrate distributed and sparse codes to
represent different face attributes22. Lastly, our present results
may depend on the hyperparameters used in the study (batch-
norm vs. dropout, pooling, architecture, dataset size, etc.) and our
results should be interpreted in the context of our DNN archi-
tecture and set of hyperparameters.
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Although the SVM had substantially more features (i.e., DNN
units used for classification) than observations (i.e., training
faces), the high recognition accuracy of identity-selective units in
testing suggested that our results could not be simply explained
by overfitting. Furthermore, the low recognition accuracy of non-
identity-selective units in testing provided specificity of our
approach; and notably, later DNN layers had fewer units but a
higher recognition accuracy. Interestingly, such overfitting also
appears in the human brain as a large number of neurons are
often simultaneously activated by a single percept; and the theory
of backward feature correction can well explain such overfitting39.
It is also worth noting that we derived similar results when we
input the same number of identity-selective units and non-
identity-selective units to the SVM (Supplementary Fig. 3), sug-
gesting that the difference in encoded information between unit
groups could not be attributed to the different number of
input units.

We identified the DNN units critical for identity recognition,
and the evolution of identity-selective units across DNN layers
(Fig. 1e). The identity-selective units in the earlier layers primarily
corresponded to image pixels containing information about faces,
but with the increase of kernel size in later layers, identity-
selective units encoded more holistic information about face
identities. In particular, the fully connected layers utilized infor-
mation from all units from the previous layers. Therefore, identity
selectivity could not be solely attributed to the receptive field of
the DNN units. It is worth noting that our present results were
not about face selectivity (i.e., contrasting response between faces
vs. objects) but identity selectivity (i.e., contrasting response
between face identities, which does not require face selectivity20).
However, we found that the response of face identity-selective
units could well generalize within faces but barely generalize to
non-face objects, consistent with a dedicated and specialized face
perception system1,38. It is also worth noting that most monkey
MUA channels showed strong face responsiveness (i.e., modula-
tion by face onset; e.g., Fig. 5b), consistent with the previous
studies1.

We observed both identity-selective units that were selective to
a single identity (SI units) and identity-selective units that were
selective to multiple identities (MI units), analogous to the SI
neurons6,20 and MI neurons20,28,40 from the human brain. The SI
units and MI units identified in the present study are also
reminiscent of the concept cells of the exemplar-based model7.
Concept cells primarily appear in the human medial temporal
lobe, respond in a remarkably selective and abstract manner to
particular persons or objects, may be crucial for memory
formation7. Given that we here show computational similarities
between the primate visual system and the DNN, future studies
can benefit from the computational architecture of the DNNs and
address two important questions: (1) how concept neurons arise
computationally (i.e., the transition from representation of visual
features to representation of concepts), and (2) how concept
neurons create associations and transits between related concepts
to form episodic memories.

We found that the DNN shared a similar coding with both
monkey IT cortex and human MTL (see also ref. 41). Specifically,
the intermediate to later DNN layers corresponded to the IT
neuronal space whereas the later/top DNN layers corresponded to
the MTL neuronal space, consistent with the ventral visual pro-
cessing pathway in the primate brain42,43. In particular, in
addition to the axis-based coding (i.e., DNN units encode a linear
combination of features from a previous layer) and exemplar-
based coding (i.e., DNN units output a face identity with visual
invariance of the input images) in the DNN as observed in the IT
cortex10–13,17 and MTL6, respectively, we confirmed the region-
based coding in the DNN, which is an important mechanism that

bridges the representation of visual features and the representa-
tion of identities. It is worthing that the correlation strength with
DNN layers was different between the monkey (Fig. 5) and
human (Fig. 6) visual systems, which was likely due to differences
in recording method (Utah array vs. microwire), noise level in
recordings, repetition (repeated vs. single) and duration (100 ms
vs. 1 s) of stimulus presentation, recording location (cortical vs.
subcortical), and spike sorting (multiunit vs. single-unit), so the
correlation was not directly comparable between the IT cortex
and the MTL. However, for each visual system, we found a sig-
nificant correlation; and importantly, we found that the most
strongly encoded DNN layer differed between brain areas in
accordance with the ventral visual stream.

We found that identity-selective units had a general dis-
criminability to face identities shown in various styles, consistent
with feature-invariant coding of face identities by neurons in the
human medial temporal lobe (MTL)6,7. Furthermore, identity
selectivity could be generalized to face identities that were not
involved in the training, similar to how memory is formed in the
human brain44. Consistent with our prior findings that only a
small proportion (~20%) of human neurons are involved in
coding a certain task aspect, such as emotion content45, emotion
subjective judgment46, attention47,48, task sequence48, visual
selectivity47, eye movement49, social judgment50, as well as face
identity20, in the present study we found a large population non-
identity-selective DNN units that did not contribute to coding
face identities. On the other hand, we quantitatively compared the
proportion of SI and MI units/neurons between the DNN and
human brain and found that the DNN in general had a higher
proportion of identity-selective units than the human MTL
(Fig. 6f, g). This was likely because the human MTL is involved in
many aspects of cognitive functions whereas the DNN has only
been optimized to recognize face identities. Notably, the dis-
tribution of identity-selective and non-identity-selective DNN
units across layers may provide important insights into under-
standing the human visual processing stream, where our cur-
rently available technology does not allow simultaneous sampling
of neurons along the entire visual processing stream.

Rapid advances in DNNs have offered new opportunities for
studying face perception by providing computational proxy
models. State-of-the-art DNNs such as the VGG-face51 and
DeepFace52 have achieved excellent face-recognition performance
and even outperformed humans. These DNNs are biologically
inspired and therefore have the potential to successfully provide
insight into the underlying mechanisms of brain functions,
especially with respect to the perception and recognition of visual
stimuli such as faces. Existing work at the intersection of DNNs
and face perception can be broadly classified into two categories:
face reconstruction (decoding models) and face recognition
(encoding models). The former includes the reconstruction of
faces from fMRI patterns18,53 (see refs. 54,55 for more general
natural image reconstruction). The latter includes a flurry of lit-
erature on the convergent evolution of face spaces across DNN
layers and human face-selective brain areas19, the neurally plau-
sible efficient inverse graphics model for face processing56, and
spontaneous generation of face recognition in untrained DNNs38.
Our recent study showing feature-based encoding of face iden-
tities in the human MTL using DNN-extracted visual features20

also employed an encoding model.
DNNs have the following advantages to help us better under-

stand visual processing in primates32. First, most previous studies
of face space had to use computer-generated faces in order to
parametrically vary the faces10,57,58 but DNNs are able to extract
features from real human faces and subsequently manipulate
these features to generate new unique faces while providing well-
controlled stimuli to investigate differences in neural responses to
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feature changes. Second, DNNs have simultaneous access to the
activity of the entire face processing neural network (i.e., the
whole population of neurons from all brain regions involved in
face processing)14, which is particularly useful to study visual
processing pathways (e.g., how the brain transitions from one face
coding model to another). Third, we are readily able to selectively
manipulate DNN units to study a causal effect. These advantages
have been embodied in our present study.

Our present study points to several future directions. First,
most faces in the present study had a frontal view and were
primarily emotionally neutral. A future study will further test
faces from different angles (e.g., profile faces) and/or emotional
faces. Second, an interesting future study will be to compare DNN
lesion results with behavior of human brain lesion patients, who
demonstrate impaired face perception45. The lesion approach can
also help us better understand the functional segregation of face
recognition59. Third, only one DNN architecture was examined
in the present work; but more DNN architectures will need to be
considered in order to further generalize our results. Lastly,
region-based feature coding may also provide an account for
object recognition (e.g., using the AlexNet) and visual selectivity
(also observed in human MTL neurons): objects falling within the
coding region of a neuron/unit may elicit an elevated response.
Again, this mechanism applies to both artificial units and human
neurons and needs to be tested in a future study.

A central challenge in cognitive neuroscience is to understand
how the brain encodes faces. In particular, it remains largely
unclear how visual experience, learning, and memory shape face
perception and recognition. There are two competing hypotheses
about the emergence of face-selective neurons. One hypothesis
argues that face-selective neurons require visual experience to
develop, and this hypothesis has been supported by fMRI studies
in the monkey fusiform face areas60. The other hypothesis argues
that face-selective neurons have an innate origin, and this
hypothesis has been supported by studies from human infants
and adults without visual experience of faces61–64. Along this line,
future studies will be needed to explore if identity-selective units
can spontaneously emerge from untrained neural network (but
see also the lottery ticket hypothesis26) or neural networks trained
with other image databases (e.g., ImageNet). Although the DNN
used in the present study was a pre-trained artificial neural net-
work, it demonstrated strong ability to generalize to new faces,
comparable to the primate visual system. Importantly, in silico
experiments allow us to test a large set of parameters and better
control experimental conditions, which is often not feasible when
directly working with human or animal subjects. Therefore, our
present study not only highlights the importance of the direction
of training and visual experience in shaping the neural response
to face identities, but also provides a useful approach to test these
hypotheses and reconcile previous findings.

Methods
Stimuli. We employed the following stimuli in this study (Fig. 2).

First, for the original stimuli, we used faces of celebrities from the CelebA
dataset65, and we selected 50 identities with 10 images for each identity, totaling
500 face images. The identities were selected to include both genders and multiple
races (see also Supplementary Fig. 1 and Fig. 7a).

Second, we selected another 500 faces from 50 different identities (10 images
per identity) from the CelebA dataset as a testing set.

Third, we generated four versions of cartoon faces (Hayao, Hosoda, Paprika,
Shinkai) of the original stimuli using CartoonGAN66.

Fourth, we generated Mooney faces by first transforming the original images
into grayscale. We then filtered the images with a two-dimensional Gaussian
smoothing kernel with standard deviation of 0.5. We lastly thresholded the images
using a threshold determined for each individual face based on its luminance
(threshold=mean luminance of the cropped image center− 0.03).

Fifth, we randomly selected 500 caricature faces of 50 identities (10 images per
identity) from the IIIT-CFW dataset67.

Sixth, we randomly selected 500 non-face objects from 50 categories (10 objects
per category) from the ImageNet database68.

Deep neural network (DNN). We used the well-known deep neural network
(DNN) implementation based on the VGG-16 convolutional neural network (CNN)
architecture51 (Fig. 1a; https://www.robots.ox.ac.uk/~vgg/software/vgg_face/). The
inputs to the first convolutional layer were RGB images of fixed size (224 × 224
pixels). The images were passed through a stack of convolutional layers, where the
filters were used with a very small receptive field (3 × 3 pixels, which was the smallest
size to capture the notion of left/right, up/down, and center). The convolution stride
was fixed to 1 pixel; and the spatial padding of the convolutional layer input was 1
pixel for 3 × 3 convolutional layers such that the spatial resolution was preserved after
convolution. Spatial pooling was carried out by five max-pooling layers, which fol-
lowed some of the convolutional layers. Max pooling was performed over a 2 × 2 pixel
window, with a stride of two pixels. Three fully connected (FC) layers followed a stack
of convolutional layers: the first two had 4096 channels each, the third performed 50-
way classification and thus contained 50 channels (one for each identity). The final
layer was the soft-max layer.

We fine-tuned the FC8 layer with the original CelebA stimuli to confirm that
this pre-trained model was able to discriminate the identities and ensure that the
pre-trained model was suitable as a feature extractor. Specifically, we modified the
output layer to 50 units for our model. Two-thirds of the original CelebA stimuli
were used as the training set and the remaining stimuli were used as the testing set.
We used the Adam optimizer with an initial learning rate of 5 × 10−4 and we had
10 epochs in total. A learning rate scheduler was applied after each epoch with the
gamma value set to 0.9 to facilitate the convergence of the loss function. To update
the weights during fine-tuning, we computed the cross-entropy loss on random
batches of four face images (scaled to 224 × 224 pixels) for backpropagation. We
used five-fold cross-validation, which reached an accuracy of approximately 95%.
Note that only the FC8 layer was fine-tuned and all the other layers were frozen. It
is also worth noting that the VGG-16 was originally trained with 23 of the 50
identities involved in the present study (including Adam Levine, Bahar Soomekh,
Betty White, Dana Delany, Dean Geyer, Eduardo Noriega, Hugh Jackman, Isla
Fisher, John Slattery, Katherine Bailess, Kevin Hart, Logan Marshall-Green, Mario
Lopez, Missi Pyle, Natalie Zea, Olivia Palermo, Rachel McAdams, Ron Perlman,
Shawn Ashmore, Steven Soderbergh, Tim Gunn, Treat Williams, Zac Efron).
However, we derived similar results when we excluded the identities involved in the
original VGG-16 training (see also our generalization results with new identities in
Fig. 2b).

To visualize the DNN response, we subsequently applied a t-distributed
stochastic neighbor embedding (t-SNE) method to convert high-dimensional
features into a two-dimensional feature space. t-SNE is a variation of stochastic
neighbor embedding (SNE)69, a commonly used method for multiple class high-
dimensional data visualization70. We applied t-SNE for each layer, with the cost
function parameter (Prep) of t-SNE, representing the perplexity of the conditional
probability distribution induced by a Gaussian kernel, set individually for each
layer. We also used t-SNE to construct a face feature space so that we were able to
investigate region-based feature coding for both DNN units and primate
neurons20.

Assessment of face-recognition accuracy. We used a support vector machine
(SVM) to assess face-recognition accuracy for each group of DNN units from a
specific DNN layer. We employed five-fold cross-validation: we randomly parti-
tioned the stimuli into five equal portions, and in each run, four portions of the
stimuli were used as the training dataset and the remaining portion of the stimuli
was used as the test dataset. We used the python package Scikit-learn71 to build our
radial basis function (RBF) kernel SVM classifier.

DNN lesion and perturbation. By analogy with brain lesions, we designed a
random-drop model to lesion the original VGG-16 network in order to understand
how many DNN units were needed to discriminate face identities. We conducted
two experiments. In the first experiment, following every convolutional layer, we
included a binary mask for the preceding layer that randomly set a subset of DNN
units to be 0. In the second experiment, we applied the binary mask to a specific
layer only. Note that in both experiments, both identity-selective and non-identity-
selective units were dropped, according to their proportions.

In addition, we perturbed the network by rearranging the weights in the model.
We conducted two experiments. In the first experiment, kernel-wise shuffle, we
randomly permuted the weights in a single kernel. Since the kernel size of the
network was 3-by-3 for all layers, kernel-wise shuffle permuted the 9 weight values
for each kernel. In the second experiment, layer-wise shuffle, we pooled the weights
of all kernels from a layer and reorganized the weights to form new kernels. Note
that in both experiments, both identity-selective and non-identity-selective units
were shuffled.

Neural recordings from a monkey. One male rhesus macaque (Macaca mulatta)
was used in this study. All procedures conformed to local and U.S. National
Institutes of Health guidelines, including the U.S. National Institutes of Health
Guide for Care and Use of Laboratory Animals. All experiments were performed
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with the approval of the MIT Institutional Animal Care and Use Committee
(IACUC).

The monkey passively viewed the original CelebA stimuli (Fig. 5a). In each trial,
the monkey first viewed a white central fixation point (0.2 degrees of visual angle
[DVA]) on a gray background for 300 ms to initiate a trial. Then, eight faces were
presented for 100 ms each, each followed by a blank (gray) screen for an
interstimulus-interval (ISI) of 100 ms. The central fixation point persisted through
the trial, and fluid reward was given if the monkey successfully fixated through the
entire trial. The intertrial-interval (ITI) of blank gray screen was at least 500 ms.
We recorded 4155 trials in total, and we rejected 666 trials where the monkey broke
the fixation (±2 DVA). For each round of presentation, we generated a random
sequence for the 500 faces; and we used different sequences for different rounds of
presentation. On average, each face was presented 55.7 ± 1.49 (mean ± SD) times.
Note that we randomly inserted one gray image in each round of presentation as a
control stimulus for baseline normalization.

The monkey was chronically implanted with two Utah arrays (Blackrock
Microsystems) in the anterior and central inferotemporal (IT) cortex (see refs. 33,34

for details). Each array consisted of one 10-by-10 electrode grid with 96 active
iridium oxide electrodes. Each electrode was 1.5 mm long with an inter-electrode
distance of 400 μm. During each recording session, band-pass filtered (0.1 Hz to
7.5 kHz) neural activity was recorded continuously at a sampling rate of 20 kHz
using Intan Recording Controller (Intan Technologies, LLC). We detected the
multiunit spikes after the raw data were zero-phase band-pass filtered between 300
and 6000 Hz (Matlab ellip function, fourth-order with 0.1 decibel pass-band ripple
and 40 dB stop-band attenuation), and we used multiunit activity (MUA) for
analyses. A multiunit spike event was defined as the threshold crossing when
voltage (falling edge) deviated by more than three times the standard deviation of
the raw voltage values. We estimated internal consistency for each channel using a
standardized image set that was run before the recording session on the same day
and we accepted 53 MUA channels (from two arrays) that showed sufficient
internal consistency (>0.6). Consistent with previous studies33,34, we used the mean
firing rate in a time window 70 ms to 180 ms after stimulus onset as the response to
each face. We averaged the response from repeated presentations for each face.

Single-neuron recordings in human neurosurgical patients. To acquire the
neuronal response from humans, we conducted single-neuron recordings from five
neurosurgical patients (16 sessions in total). All participants provided written
informed consent using procedures approved by the Institutional Review Board of
West Virginia University (WVU). The detailed procedure has been described in
our previous study20. Briefly, we employed a 1-back task for the original CelebA
stimuli (Fig. 6a). In each trial, a single face was presented at the center of the screen
for a fixed duration of 1 sec, with a uniformly jittered intertrial interval (ITI) of
0.5–0.75 s. Patients pressed a button if the present face image was identical to the
immediately previous image. Each face was shown once unless repeated in one-
back trials; and we excluded responses from one-back trials to have an equal
number of responses for each face.

We recorded from implanted depth electrodes in the amygdala and
hippocampus from patients with pharmacologically intractable epilepsy. Bipolar
wide-band recordings (0.1–9000 Hz), using one of the eight microwires as
reference, were sampled at 32 kHz and stored continuously for off-line analysis
with a Neuralynx system. The raw signal was filtered with a zero-phase lag
300–3000 Hz band-pass filter and spikes were sorted using a semi-automatic
template matching algorithm as described previously72. Units were carefully
isolated, and recording and spike sorting quality were assessed quantitatively. Only
units with an average firing rate of at least 0.15 Hz (entire task) were considered.
Only single units were considered. Trials were aligned to stimulus onset and we
used the mean firing rate in a time window 250ms to 1000 ms after stimulus onset
as the response to each face.

Pairwise distances in the face space. We employed a pairwise distance metric19

to compare neural coding of face identities between primate neurons and DNN
units. For each pair of identities, we used the dissimilarity value (1−Pearson’s r)73

as a distance metric. The primate neuronal distance metric was calculated between
firing rates of all recorded neurons and the DNN distance metric was calculated
between feature weights of all DNN units. We then correlated the primate neuronal
distance metric and the DNN distance metric. To determine statistical significance,
we used a nonparametric permutation test with 1000 runs. In each run, we ran-
domly shuffled the face labels and calculated the correlation between the primate
neuronal distance metric and the DNN distance metric. The distribution of cor-
relation coefficients computed with shuffling (i.e., null distribution) was eventually
compared to the one without shuffling (i.e., observed response). If the correlation
coefficient of the observed response was greater than 95% of the correlation
coefficients from the null distribution, it was considered significant. A significant
correlation indicated that the DNN face space corresponded to the primate neu-
ronal face space19. We computed the correlation for each DNN layer so that we
could determine the specific layer that the neuronal population encoded. For each
face identity, we averaged the response of all faces of that identity to get a single
mean firing rate. To get temporal dynamics, for human neurons, we used a moving
window with a bin size of 500 ms and a step size of 50 ms. The first bin started
−300 ms relative to trial onset (bin center was thus 50 ms before trial onset), and

we tested 19 consecutive bins (the last bin was thus from 600 ms to 1100 ms after
trial onset). We used false discovery rate (FDR)35 to correct for multiple com-
parisons across DNN layers or time bins. For monkey neurons, we used a moving
window with a bin size of 40 ms and a step size of 10 ms. The first bin started
−70 ms relative to stimulus onset (bin center was thus 50 ms before stimulus
onset), and we tested 26 consecutive bins (the last bin was thus from 180 ms to
220 ms after stimulus onset). We used Bonferroni correction to correct for multiple
comparisons across DNN layers or time bins.

Statistics and reproducibility. To select identity-selective units, we used a one-
way ANOVA to identify identity-selective units that had a significantly unequal
response to different identities (P < 0.01; Supplementary Fig. 2a). We further
imposed an additional criterion to identify a subset of identity-selective units with
selective identities (Supplementary Fig. 2a): the response of an identity was
2 standard deviations (SD) above the mean of responses from all identities. These
identified identities whose response stood out from the global mean were the
encoded identities. We refer to the units that encoded a single identity as single-
identity (SI) units and we refer to the units that encoded multiple identities as
multiple-identity (MI) units.

We followed the identical selection procedure for primate neurons. We used the
mean firing rate in a time window 250–1000 ms after stimulus onset as the
response to each face for primate neurons. Note that we also used this response to
study the correlation between DNN units and primate neurons.

To select DNN feature units, we employed the same procedure as we did with
human neurons20. We first estimated a continuous spike density map in the feature
space by smoothing the discrete activation map using a 2D Gaussian kernel (kernel
size= feature dimension range * 0.2, SD= 4). We then estimated statistical
significance for each pixel by permutation testing: in each of the 1000 runs, we
randomly shuffled the labels of faces. We calculated the P value for each pixel by
comparing the observed spike density value to those from the null distribution
derived from permutation. We lastly selected the region with significant pixels
(permutation P < 0.01, cluster size >0.23 * pixel number in the whole space). We
also applied a mask to exclude pixels from the edges and corners of the spike
density map where there were no faces because these regions were susceptible to
false positives given our procedure. If a unit had a region with significant pixels, the
unit was defined as a feature unit and demonstrated region-based feature coding.
We selected feature units for each individual DNN layer.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The full dataset for this study is publicly available on OSF (https://osf.io/824s7). The
source data to generate each figure is available from Supplementary Data 1–7.

Code availability
The source code for this study is publicly available on GitHub (https://doi.org/10.5281/
zenodo.6575224).
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