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Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has

claimed the lives of millions of people worldwide in the last 2 years. Because

of the disease’s rapid spread, it is critical to diagnose it at an early stage in

order to reduce the rate of spread. The images of the lungs are used to

diagnose this infection. In the last 2 years, many studies have been introduced

to help with the diagnosis of COVID-19 from chest X-Ray images. Because

all researchers are looking for a quick method to diagnose this virus, deep

learning-based computer controlled techniques are more suitable as a second

opinion for radiologists. In this article, we look at the issue of multisource

fusion and redundant features. We proposed a CNN-LSTM and improved max

value features optimization framework for COVID-19 classification to address

these issues. The original images are acquired and the contrast is increased

using a combination of filtering algorithms in the proposed architecture. The

dataset is then augmented to increase its size, which is then used to train

two deep learning networks called Modified E�cientNet B0 and CNN-LSTM.

Both networks are built from scratch and extract information from the deep

layers. Following the extraction of features, the serial based maximum value

fusion technique is proposed to combine the best information of both deep

models. However, a few redundant information is also noted; therefore, an

improved max value based moth flame optimization algorithm is proposed.

Through this algorithm, the best features are selected and finally classified

throughmachine learning classifiers. The experimental processwas conducted

on three publically available datasets and achieved improved accuracy than

the existing techniques. Moreover, the classifiers based comparison is also

conducted and the cubic support vector machine gives better accuracy.
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Introduction

In December 2019, Wuhan, Hubei Province, China,

became the epicenter of an unknown-cause pneumonia

epidemic, attracting national and international attention (1).

The current outbreak of coronavirus disease 2019 (COVID-

19), a coronavirus-associated acute respiratory illness, is the

third worldwide pandemic in less than two decades (2). The

COVID-19 sickness is caused by the SARS-CoV-2 virus (3). In

severe cases, this illness can cause organ failure and breathing

difficulties. Aside from the medical consequences, the disease

had amassive economic and environmental impact on the world

(4, 5).

Coronavirus disease 2019 detection methods include nucleic

acid-based assays and polymerase chain reaction (PCR).

The traditional real-time polymerase chain reaction (RT-

PCR) method of COVID-19 detection is time-consuming (6).

Artificial intelligence (AI) technologies have been widely used

to combat the COVID-19 outbreak and its complications. To

identify the COVID-19 instance based on the X-ray images, an

automation method is required. It is the least expensive process

when compared to the COVID-19 test. Human examination of

these photographs, on the other hand, is a difficult and time-

consuming task. For accurate classification, an expert physician

is always required. As a result, it is critical to find these

photos as soon as possible using a reliable method. In clinics,

computerized approaches assist radiologists in confirming their

subjective results and detecting COVID-19 (7).

The AI-based estimation methods rely on data from the

patient’s symptoms. A person infected with the coronavirus

usually exhibits no signs or symptoms. As a result, identifying

an infectious individual is extremely difficult (8). Traditional

feature-based approaches and deep learning-based techniques

are the two categories of AI-based techniques. Traditional

features-based algorithms include some preprocessing

procedures, handcrafted features (such as shape, texture,

and geometric characteristics), removal of extraneous features,

and classification. In deep learning architectures, raw photos

are fed into convolutional neural network (CNN) models,

which extract features from convolution layers and perform

classification using the fully connected layers. Following that, a

few researchers used feature optimization methods to select the

best features before classifying them with the Softmax classifier.

Using deep learning (DL), several techniques are introduced

for COVID-19 diagnosis and classification using chest X-rays

and CT images (9–15). Additionally, CNN models are useful

in the deployment of sophisticated COVID-19 pneumonia

detection systems (16). Numerous strategies for identifying

COVID-19 have been presented, all of which make use of

deep CNN features and generate more precise findings than

manual feature-based methods (17). In a few studies, the

researchers focused on feature fusion techniques to get better

information about an image. They fused features from different

sources into one feature matrix. Özkaay et al. (18) fused

deep features for COVID-19 classification using the feature

ranking method. Shankar et al. (19) introduced an entropy

based handcrafted and deep features fusion approach for better

classification of COVID-19. Ragab et al. (20) combined several

features based on concatenated fashion. These techniques

performed well in terms of accuracy but on the other side, the

computational time is significantly increased. Few researchers

introduced feature reduction techniques to resolve the problem

of high computational time but the reduction process decreases

in accuracy due to dropping some important features (21,

22).

Feature selection is an important research area nowadays

and many techniques are introduced in the literature. As

compared to features reduction techniques, the feature selection

technique is the process of subset selection from the originally

extracted features instead of generating new features. The

purpose of feature selection techniques is to reduce the

computational time by selecting only important features based

on some selection criteria or fitness function. A few important

feature selection techniques are- genetic algorithm based

selection, particle swarm optimization based selection, entropy

based selection, bee colony optimization based selection, and

many more (23).

In recent years, many research works have been done for

the detection and classification of COVID-19 in X-ray and CT-

scan images (24). They followed some traditional techniques and

showed improved accuracy (25); however, COVID-19 patients

are increasing day by day worldwide. A lot of data has been

generated in the form of Chest X-ray and CT images that are

not feasible for classification through traditional techniques.

The traditional techniques work better for the smaller datasets

but for the large datasets, accuracy is degraded (26). Based

on this reason, it is room for improving the accuracy through

the development of deep learning architectures. In this article,

we proposed a new architecture based on deep learning and

improvedmoth flame optimization for COVID-19 classification.

Our major contributions are as follows:

• A contrast enhancement technique is proposed based

on the fusion of the output of local and global filters.

The resultant enhanced image is further utilized for the

augmentation process.

• Proposed a CNN-LSTM architecture and trained it using

deep transfer learning from scratch instead of freezing a

few layers.

• Proposed a new features fusion technique named Serial

based Maximum Information.

• An improved max value based moth flame

optimization algorithm is proposed for best

features selection.
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Related study

Many computerized techniques have been introduced for

COVID-19 in recent years by researchers of computer vision

(27). Several researchers focused on traditional techniques

and few of them using deep learning architectures for the

detection and classification of COVID-19 from chest X-

ray images. Ibrahim et al. (28) presented a deep learning

method for multiclass classification problems such as COVID-

19, pneumonia, and normal. They used a pre-trained CNN

model named AlexNet and trained it on selected COVID-

19 datasets. They considered the problems of both binary

and multiclass and achieved accuracies of 94.43, 98.19, and

95.78%, respectively. The limitation of this study was the lack

of data for training. Ismael and Sengür (24) presented a deep-

learning-based technique for classifying COVID-19 and normal

(healthy) chest X-ray images. They followed some sequential

steps including deep feature extraction, fine-tuning of pre-

trained CNNs, and end-to-end training of a fine-tuned CNN

model. Three pre-trained CNN models were used for the

training and feature extraction such as ResNet18, VGG16, and

VGG19. The extracted deep features were finally classified using

the Support Vector Machines (SVM) classifier. The fine-tuned

ResNet50 deep model gives better accuracy of 92.60% than

the other methods. The drawback of this method was less

number of training samples. Ketu and Mishra (29) introduced

a CNN-LSTM deep learning model that can accurately detect

the COVID-19 infection. The proposed approach extracts useful

information from the convolutional layers. Later on, the Long

short-term memory (LSTM) network is designed to extract

features that are fused with CNN features. The limitation of

the presented method was the reliability and suitability of

the model to the other series of data. Nivetha et al. (30)

presented a new classification technique for COVID-19 based on

Neighborhood Rough Neural Network Algorithm (NRNN). The

presented method performed better than existing algorithms

like Backpropagation Neural Network (BNN), Decision Tree,

and Naive Bayes Classifiers. The accuracies of NRNN were

98, 92, 100, and 100% which was significantly better than

other methods. Moreover, NRNN consumes less amount of

training data compared to the existing methods. Shastri et al.

(31) introduced a novel neural network based framework for

COVID-19 classification. They used ChestXImageNet CNN

model for the classification purpose and tested on the open-

access dataset that consisted of both binary classes andmulticlass

and achieved accuracies of 100 and 100%, respectively. Khan

et al. (32) described a deep learning technique in which they used

three pre-trainedmodels named EfficientNet B1, NasNetMobile,

and MobileNetV2. Before training deep models, they performed

data augmentation. Moreover, they optimized hyper-parameters

for improving accuracy. The described model achieved 96.13%

accuracy which was better than the existing methods. The

limitation of described work was the use of high-weighted

models that required high time for computation.

Imagawa et al. (33) presented a hybrid framework for

the classification of COVID-19 images. They used two pre-

trained deep learning models named- AlexNet and ResNet34

with and without transfer learning. On both fine-tuned models,

classification is performed and attained improved accuracy.

Falco et al. (34) designed another evolutionary algorithm

based approach for COVID-19 classification. Sarki et al. (35)

developed a deep learning system for the classification and valid

detection of coronavirus using chest images. They evaluated

the traditional networks and also developed a CNN from

scratch and trained on the binary class and multiclass based

datasets. Öztürk et al. (36) designed a machine learning method

for the classification of viral epidemics by analyzing chest X-

ray images and CT images. They applied hand-crafted feature

extraction to make the data more convenient and optimized

the features by using stacked auto-encoder and principal

component analysis techniques. Al-Zubaidi et al. (37) applied

CNNs for the classification of COVID-19 images. They used

Google-Net for training and extracting automated features from

the images. The above methods have several gaps such as—

not performing well on imbalanced datasets and increasing

higher computational time. Shazia et al. (38) presented a neural

network based system for COVID-19 detection from Chest

X-Ray images. They used three pre-trained models and fine-

tuned them. The fine-tuned models have been trained through

transfer learning and obtained improved accuracy. Shazia et al.

(39) presented a comparative study of several deep learning

models for COVID-19 classification from Chest X-Ray images.

They used seven pre-trained deep models such as VGG16 and

ResNet50 and named a few more and attained a classification

accuracy of 99.48%. Joloudari et al. (40) combined the CNN

model with a global feature extractor for the classification of

COVID-19 infected and healthy patients. They used 10-fold

cross-validation and obtained an accuracy of 96.71%.

Proposed methodology

Figure 1 depicts the suggested CNN-LSTM deep learning

and features optimization architecture. In this diagram, the

original images are acquired and the contrast is enhanced using

a combination of filtering algorithms. Then, to expand the size

of the dataset, data augmentation is used to train two deep

learning networks: Modified EfficientNet B0 and CNN-LSTM.

Both networks are built from scratch and extract information

from the deep layers. Following the extraction of features,

serial based maximum value fusion is carried out, which is

then enhanced using the moth flame optimization technique.

Finally, machine learning classifiers such as support vector

machines (SVM), neural networks, and others are used to
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FIGURE 1

The proposed architecture of coronavirus disease 2019 (COVID-19) classification using an e�cient network and CNN-LSTM.

TABLE 1 Brief description of selected datasets.

Classes Original Augmented Training/

images images testing images

COVID-19 radiography database

COVID-19 3,616 5,864 2,932/2,932

Lung opacity 6,012 8,345 4,173/4,172

Normal 10,192 10,192 5,096/5,096

Viral pneumonia 1,345 4,976 2,488/2,488

COVID-GAN and COVID-Net mini chest X-ray

Corona 461 3,119 1,560/1,559

Normal 1,575 3,048 1,524/1,524

Pneumonia 4.481 5,936 2,968/2,968

Chest X-ray (pneumonia, COVID-19, tuberculosis)

COVID-19 566 3,396 1,698/1,698

Normal 1,575 3,150 1,575/1,575

Pneumonia 4,265 5,198 2,599/2,599

Tuberculosis 491 3,075 1,538/1,537

classify the best optimal features. Below is a quick description of

each sub-step.

Dataset collection and normalization

The experimental approach in this research uses

three publicly available datasets: COVID-19 Radiography

(https://www.kaggle.com/datasets/tawsifurrahman/covid19-

radiography-database), COVID-GAN, and COVID-Net small

chest x-ray (https://www.kaggle.com/yash612/covidnet-mini-

and-gan-enerated-chest-xray), and Chest X-Ray (Pneumonia,

COVID-19, Tuberculosis) (https://www.kaggle.com/datasets/

jtiptj/chest-xray-pneumoniacovid19tuberculosis). There are

four classes in the COVID-19 radiography dataset: COVID-19,

lung opacity, normal, and viral pneumonia. COVID-19, normal,

and pneumonia are the three classes in the COVID-GAN and

COVID-Net small chest X-Ray dataset. COVID-19, normal

pneumonia and tuberculosis are the four classes in the chest X-

Ray dataset. The amount of images in each dataset is insufficient

to train deep learning models, as shown in Table 1 for each

dataset. Furthermore, these datasets are imbalanced, therefore

we used data augmentation. Three simple approaches are used

for data augmentation: rotate 90 degrees, flip left, and flip right.

Figure 2 depicts the effects of each strategy graphically. The

number of images is raised after the augmentation phase, as

shown in Table 1.

Contrast enhancement

The enhancement of an input image is an important step to

improve the quality of the original image. Based on this step,

we obtained a brighter image (41). The primary motivation of

this step in this study is to visualize the COVID-19 positive

images than the healthy ones. The COVID-19 Radiography

Database images have low contrast and bad quality; therefore,

we designed a hybrid approach based on the fusion of different
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FIGURE 2

Sample images after the data augmentation step.

FIGURE 3

Sample resultant images of hybrid contrast enhancement technique.

filtering outputs. Three different filters are opted such as top-

hat and bottom-hat filtering, adjusting the pixel values, and

sharp filter.

Consider that the COVID-19 Database has n imagesD∈ R
n,

where every image denoted by kn(x, y) and (x, y) belong to R.

Every image has a size of N ×M =512. Assume that s is a

structuring element with the value of 11 and ◦ is an opening

operator, • is a closing operator, then the top-hat and bottom-hat

filtering is defined as follows:

ktop
(

x, y
)

= kn
(

x, y
)

−
(

kn
(

x, y
)

◦ s
)

(1)

kbottom
(

x, y
)

=
(

kn
(

x, y
)

• ∫
)

− kn
(

x, y
)

(2)

f
(

x, y
)

= kn
(

x, y
)

+ ktop
(

x, y
)

− kbottom
(

x, y
)

(3)

Where f (x, y) is the resultant top-bottom hat filtering image,

ktop(x, y) is the top-hat filtered image, and kbottom(x, y) is
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FIGURE 4

Visual process of transfer learning for the training of fine-tuned deep models.

bottom hat filtered image, respectively. This image is further

refined using adjust image pixel values filter. This filter raises

the image’s brightness by transferring the values of the input

pixel intensity to particular values such that on average 1% of the

information is absorbed in low and high input data intensities.

The notation i is the intensity value of the image, and the gamma

(γ ) is a coefficient, which determines the form of the function

between the coordinating variables (a, c) and (b, d ).

An
(

x, y
)

=

(

i− a

b− a

)γ
(

d − c
)

+ c (4)

After that the resultant image An
(

x, y
)

is sharpened using the

unsharp masking method. This filter is applied to increase the

contrast along the edges. The radius is 2 which specifies the

length of the sharpness zone from around gray levels and the

amount is 1 which leads to greater enhancement in the contrast

of the enhanced pixels. The sharpen using an un-sharp mask

denoted as:

gn
(

x, y
)

= An
(

x, y
)

− ksmooth

(

x, y
)

(5)

Sn
sharp

(

x, y
)

= kn
(

x, y
)

+ a × gn
(

x, y
)

(6)

where ksmooth(x, y) is a smoothed version of kn(x, y),Sn
sharp

(x, y)

is a sharpen using the un-sharp mask filtered image and a is a

scaling variable that provides the amount of sharpening. Hence,

the resultant image is defined as follows:

Rn
(

x, y
)

= f
(

x, y
)

+An
(

x, y
)

+ Sn
sharp

(

x, y
)

(7)

Where Rn
(

x, y
)

represents the resultant contrast enhanced

image and is visually presented in Figure 3.

E�cientNet deep features

EfficientNet is a deep neural network design and scaling

method that uses a complicated parameter to evenly scale all

depth, width, and resolution variables. Unlike current practice,

which scales these variables arbitrarily, the EfficientNet scaling

approach uses a pre-determined set of scalability variables to

alter network breadth, depth, and resolution uniformly (42).

This model was trained on 1,000 classes (ImageNet dataset) and

accepts input images up to 224 × 224 × 3 pixels in size. As

the fully-connected layer is replaced with a new fully-connected

layer that includes the target classes, we fine-tune this model.

The updatedmodel was trained using a transfer learning strategy

on the target datasets. Transfer learning (TL) is the process of

reusing a previously learned model for a new task. In TL, a

computer applies the information gained from previous work to

improve prediction about a specific task. The primary goal of

TL is to resolve the target domain efficiently. It is an excellent

technique if the targeted domain dataset is much less than the

origin domain dataset (43). DomainD ={F ,P(f)} Includes two

parts: a higher dimensional space F and a marginal probability

density P(f), where F = {f|fi ∈ F ,i = 1, 2 . . . .N }, and

N is a dataset containing M items. Typically, distinct domains
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FIGURE 5

Proposed CNN-LSTM architecture.

TABLE 2 Proposed features fusion method results on COVID-19 Radiography Database.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 93.25 94.12 0.025 0.98 93.68 93.4 685.33

L SVM 92.87 93.81 0.025 0.98 93.33 93.2 477.9

M G SVM 92.72 93.92 0.025 0.987 93.31 93.1 1,122.5

C SVM 93.12 94.00 0.025 0.98 93.55 93.2 841.09

C G SVM 91.82 93.07 0.027 0.98 92.44 92.4 936.98

Cosine KNN 91.52 91.61 0.032 0.98 91.55 91.3 940.05

Medium neural 91.87 92.00 0.03 0.97 91.93 91.5 105.98

W KNN 90.9 90.63 0.032 0.98 90.76 90.6 848.1

Wide neural 92.25 92.57 0.027 0.98 92.40 92.0 170.59

Tri-layered neural 91.25 91.02 0.0325 0.96 91.13 90.8 655.8

Bold indicates the best accuracy.

are established by the existence of distinct feature spaces or

marginal probability distributions among them. when we give

a specific domain D then it represented as: T ={R, f(∗)}.

It also consists of two parts: a label space R and mapping

function f(∗) where R = {r|ri∈ R, i = 1, 2 . . . .N } is a

label space set which equivalent instances in D. The mapping

procedure f(∗), also represented as f(x)= P(fr), is a non-linear

and implicit procedure that may connect the input items to

the projected choice, which is intended to be learned from the

provided datasets.

Given an original domain Do = {Fo,Po(fo)}, with the

original task T o = {Ro, fo(∗)} and a target domain DT =

{FT ,PT (fT )} with target task T T = {RT , fT (∗)} intends

to develop a more accurate mapping function fT (∗) for the

target task T T utilizing the transferrable knowledge acquired

in the original domain Do and T o. In contrast to traditional

machine learning and deep learning, where the area and goal

are similar across the original and target circumstances (Do =

DT & T o = T T ). Transfer learning addresses issues that arise

when the domain and task of the original and target situations

are unrelated (i.e., (Do 6= DT & T o 6= T T )). Hence, the deep

transfer learning can be expanded as: Given a transfer learning

task fo→T (∗):FT → RT based on [Do,DT ,T o,T T ]. This

process is visually illustrated in Figure 4. This figure illustrated

how the original model weights and parameters are transferred

to the updated model, which is subsequently trained using

the COVID-19 datasets. After the training, deep features are

extracted from the global average pooling layer of dimensional

N × 1,280.

LSTM-CNN features

LSTM is the category of recurrent neural network (RNNs),

good at learning long-term relationships using residual

connections (44). Feedforward neural networks have a “low

memory” problem, which leads to poor performance on

sequential and time-series tasks. To extract characteristics from

time-series and sequence data, such models use cyclic linkages

in their hidden layer. The well-known vanishing gradient
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FIGURE 6

Confusion matrix of QSVM using proposed fusion method on COVID-19 Radiography Database.

FIGURE 7

Illustration of computational time for COVID-19 Radiography Database after proposed fusion method.

difficulty hinders RNNs from learning long-term associations,

despite this limitation. Input, output, and forget are the three

basic gates in any LSTM network. As part of this framework,

the LSTM learns long-term connections by “forgetting” and

“preserving” information, allowing it to maintain a controlled

flow of input (45). Further precisely, the input gate It associate

with the second gate n∗t regulates the new knowledge that stored

in the memory state nt in time t. The forget gate Ft regulates

the previous knowledge which must be removed or retained in

the memory block at time t − 1. Although, the output gate Yt
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TABLE 3 Proposed features optimization results on COVID-19 Radiography Database.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 92.85 93.05 0.025 0.98 92.94 92.9 291.75

L SVM 92.65 93.06 0.025 0.98 92.85 92.9 219.94

M G SVM 92.72 92.03 0.025 0.98 92.37 92.3 554.32

C SVM 92.82 93.00 0.025 0.98 92.90 93.0 354.78

C G SVM 91.67 93.07 0.027 0.98 92.36 92.3 409.88

Cosine KNN 91.82 91.82 0.032 0.98 91.82 91.6 380.69

Medium neural 91.07 92.12 0.03 0.97 91.59 90.7 65.55

W KNN 90.85 91.17 0.03 0.98 91.00 90.8 378.12

Wide neural 91.07 91.92 0.03 0.97 91.49 91.5 100.2

Tri-layered neural 90.62 90.6 0.032 0.95 90.60 90.3 679.4

Bold indicates the best accuracy.

determines which information may be used as the memory cell’s

output. Mathematically, it is defined as follows:

Jt = σ
(

MIxt +NIht−1 + bi
)

, (8)

Ft = σ
(

Mgxt +Nght−1 + bg
)

, (9)

n
∗

t = tanh
(

Mnxt +Nnht−1 + bn
)

, (10)

nt = gt ⊙ nt−1 + Jt ⊙ n
∗

t , (11)

yt = σ
(

Myxt +Nyht−1 + by
)

, (12)

Where xt represents the input, M∗ and N∗ are weights vectors

and b∗ are bias vectors, σ is the sigmoid procedure.⊙ represents

the element-wise multiplication. Finally, the hidden block ht

which includes the output of the memory block is evaluated by:

ht = yt ⊙ tanh (nt) . (13)

In our study, we utilized the LSTM by using convolutional

layers called CNN-LSTM. It consists of a convolutional layer

of filter size is 5 and the number of filters is 20. Followed

by a pooling layer, an LSTM layer included with the number

of hidden units is 200. Furthermore, a fully connected layer,

Softmax layer, and classification layers are added. The features

are extracted from the LSTM layer and obtained a feature vector

of dimension N × 200. Figure 5 illustrated the workflow of the

proposed CNN-LSTM.

Proposed features fusion

The process of combining information from two or more

sources to improve an object’s information is known as feature

fusion. The serial-based features fusion technique is a simple

but effective fusion method for combining data from multiple

sources into a single matrix without losing any features. Simple

serial based fusion is formulated as follows:

Consider that we have two feature vectors f1 and f2 having

dimensionsN×1, 280 andN×200, respectively. Then the serial

based fusion vector dimension will be N × 1, 480 based on the

following equation.

SFu(v) =

[

f1

f2

]

N×k1+N×k2

(14)

This process combined all features in onematrix SFu(v) but after

the analysis based on the results, it is observed that several of the

combined features contain unrelated information; therefore, we

tried to resolve this problem by employing a new equation called

serial based maximum information.

mx = MAX
(

SFu(v)
)

(15)

V1 = compare(f1,mx) (16)

V2 = compare(f2,mx) (17)

˜SFu (v) =

[

V1

V2

]

N×k̃1+N×k̃2

(18)

Where ˜SFu (v) is the updated fused vector of dimensionN×980.

This fused vector is further refined using the improved moth

flame optimization approach.

Features optimization

In the field of Computer Vision (CV), feature selection is

the process of selecting the best subset of features from the

original feature vector to improve the accuracy and reduce

the computational time. The dimension of the solution space

grows exponentially in proportion to the number of features

in the data collection. As a result, exhaustive search strategies

are unable to get the optimum solution in reality, and these

feature selection techniques continue to struggle from a local

optima standstill (46). The concept is that using a subset of

features improves classifier performance and enables quicker

classification, resulting in an equivalent or even better accuracy
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FIGURE 8

Confusion matrix of CSVM using proposed optimization method on COVID-19 Radiography Database.

rate than when all features are used (47). In this study, we

implemented an improved moth flame optimization (IMFO) for

best feature selection. Consider, we have a fused feature vector of

dimension N × 980 and after implementing the IMFO, the size

of the resultant vector is N × 751.

In this algorithm, moths and flames are the main concepts

and potential solutions are moths, that are based on the

movements in space. Due to the population-based nature of the

MFO algorithm, the set of nmoths is employed as a search agent

in the challenge space. Flames represent the best n locations of

moths that have been discovered so far. As a result, each moth

seeks for and updates a flame if a better solution is discovered. As

a result, flames are d dimensional statistics as well. A particular

moth updates the location based on the following formulation:

S (Mm, Fn) = Dm · ecr · cos (2πr) + Fn (19)

WhereDm is the Euclidian Distance of themth moth for the nth

flame, c is the coefficient describing the shape of the logarithmic

spiral, Mm represents the mth moth, Fn represents the nth

flame and r is the random number between [−1, 1]. A moth’s

upcoming location is determined with a flame. As a result, a

hyper-ellipse may be considered in all dimensions surrounding

the flame, and the moth’s new location will be contained inside

this area. To stress exploitation, even more, t is a random integer

in the range
[

k, 1
]

, where k decreases linearly from 1 to 2 over

the course of each iteration, referred to as the convergence rate.

Along with increasing the likelihood of convergence to a global

solution, each moth is required to update its location utilizing

just one of the flames. Each iteration, and once the flames list

has been updated, the flames are sorted according to their fitness

values. The moths then adjust their locations concerning their

assigned fires. To facilitate extensive exploitation of the most

potential solution, the number of flames to be tracked is lowered

in proportion to the number of iterations.

Kflames = round

(

K − l ·
K − 1

Z

)

(20)

Where K is the maximum number of flames, l is the current

iteration number, and Z represents the maximum number of

iterations. The selected K flames (features) are normalized and

select the maximum values as follows:

NZi =
Ki − µ

S
(21)

Where Ki denotes the selected flames, µ is the mean value, S

denotes the standard deviation, and NZi is a normalized feature

vector. After that, the max features are computed as follows:

Best = max
1<i≤ñr

(NZi) (22)
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FIGURE 9

Illustration of computational time for COVID-19 Radiography Database after proposed optimization method.

Where, ñr represent the maximum iterations (100 times).

Finally, we set a comparison among Ki and best selected features

by Equation (23) and the best vector. The quadratic SVM is

opted as a fitness function and the performance of the fitness

function is measured through the mean squared error rate

(MSER). The final selection is defined as follows:

FSi =

{

F̃S (i) for Best ≥ T

Discard, Elsewhere
, where T = 0.4 (23)

Results and analysis

The detailed experimental results of the proposed

framework have been presented in this section- tabular

form and visual graphs. Three datasets have been utilized for

the experimental process and detail of each dataset has been

given under Section Dataset collection and normalization.

The results of each dataset are presented separately under

the below sections. Each dataset is divided into 50:50 and set

cross-validation value to 10. Several classifiers are utilized for

the classification comparison and each classifier’s performance

is opted using several measures such as sensitivity rate, precision

rate, F1-Score, accuracy, and time. The entire experimental

process is tested on MATLAB2021b using Personal Desktop

Computer with 16 GB of RAM and an 8 GB graphics card.

COVID-19 radiography database results

Proposed fusion

The proposed fusion method classification results for the

COVID-19 Radiography dataset have been presented in Table 2.

This table presents that the maximum attained accuracy is

93.4% for the QSVM classifier. For this classifier, the noted

sensitivity rate is 93.25%, the precision rate is 94.12%, F1-Score

is 93.68%, FPR is 0.025, and AUC is 0.98. These values are also

computed for the rest of the classifiers and it is observed based

on the numerical values, the performance of QSVM is better

than the rest of the classifiers. These computed measures of the

QSVM classifier can be further verified using a confusionmatrix,

illustrated in Figure 6. The computational time of each classifier

is noted for this experiment and the minimum time is 105.98

(s) for the Medium Neural classifier, whereas, the maximum

execution time is 1,122.5(s). Moreover, a clear picture of the

change in time of different classifiers is shown in Figure 7. From

this figure, it is observed that theMediumNeural classifier needs

less time for execution than the rest of the classifiers.

Proposed IMFO

The proposed optimization results for the COVID-19

Radiography dataset have been presented in Table 3. This table

presents the best accuracy of 93.0% for the CSVM classifier.

For this classifier, highlighted sensitivity rate is 92.82%, the
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TABLE 4 Proposed features fusion method results on COVID-GAN and COVID-net mini chest X-ray dataset.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 94.46 93.76 0.03 0.98 94.10 93.7 61.969

L SVM 93.00 93.33 0.03 0.98 93.16 93.3 68.377

M G SVM 93.10 93.43 0.03 0.98 93.26 93.4 75.685

C SVM 94.00 94.26 0.03 0.99 94.12 94.2 65.307

C G SVM 91.96 92.37 0.03 0.97 92.16 92.3 60.051

Cosine KNN 89.10 90.46 0.05 0.97 89.77 89.5 63.264

Medium neural 93.70 93.90 0.03 0.98 93.79 93.9 30.626

W KNN 93.72 93.90 0.03 0.98 93.80 92.1 64.517

Wide neural 93.63 93.9 0.03 0.98 93.76 93.8 50.115

Tri-layered neural 92.46 92.63 0.03 0.96 92.54 92.7 55.752

Bold indicates the best accuracy.

FIGURE 10

Confusion matrix of COVID-GAN and COVID-Net mini chest X-ray dataset after fusion.

precision rate is 93.00%, F1-Score is 92.90%, FPR is 0.025, and

AUC is 0.98. These values are likewise calculated for the other

classifiers, and it is noted that CSVM performs better than the

remaining classifiers based on the statistical figures. This CSVM

classifier’s generated scores could be further confirmed using a

confusion matrix, illustrated in Figure 8. For this hypothesis, the

computing time of each classifier is recorded; the quickest time

is 65.55 (s) for the Medium Neural classifier, while the highest

execution time is 554.32 (s). Additionally, Figure 9 illustrates the

relationship between the change in time of several classifiers. As

shown in this figure, the Medium Neural classifier requires less

time to execute than the other classifiers.

COVID-GAN and COVID-Net mini chest
X-ray dataset

Fusion method

The classification results of the proposed fusion method

using the Chest X-Ray dataset are presented in Table 4. This
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FIGURE 11

Illustration of computational time for COVID-GAN and COVID-Net mini chest X-ray dataset after proposed fusion method.

TABLE 5 Proposed features optimization method results on COVID-GAN and COVID-Net mini chest X-ray dataset.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 93.80 94.13 0.03 0.98 93.96 94.0 23.666

L SVM 92.96 93.30 0.03 0.98 93.12 93.2 23.28

M G SVM 93.26 93.60 0.03 0.98 93.42 93.5 36.492

C SVM 94.30 94.63 0.03 0.99 94.46 94.5 27.285

C G SVM 91.96 92.2 0.04 0.97 92.07 92.1 25.952

Cosine KNN 91.23 91.70 0.04 0.97 91.46 91.6 25.98

Medium neural 93.33 93.53 0.03 0.98 93.42 93.5 11.943

W KNN 91.90 92.60 0.04 0.97 92.24 92.2 26.175

Wide neural 93.66 93.93 0.03 0.98 93.79 93.9 17.266

Tri-layered neural 92.43 92.60 0.03 0.96 92.51 92.7 23.331

Bold indicates the best accuracy.

table illustrates that the CSVM classifier best accuracy of 94.2

%, sensitivity is 94.00 %, precision rate is 94.26 %, F1-Score is

94.12 %, FPR is 0.03, and AUC is 0.99 for this classifier. CSVM

outperforms the rest of the classifiers in terms of statistical

numbers, as are the values generated for the other classifiers.

A confusion matrix is also illustrated in Figure 10 for the

confirmation of CSVM performance. Classifier computation

times have been noted for each classifier and the best noted

time is 30.626 (s) for the Medium Neural classifier, whereas

the highest execution time is 75.685 (s). Figure 11 depicts the

execution time of all selected classifiers and shows that the

Medium Neural Network classifier takes less time.

Proposed IMFO

The proposed features optimization results on COVID-

GAN and COVID-Net mini Chest X-ray dataset have been

presented in Table 5. The CSVM classifier attained an accuracy

of 94.5%, whereas the sensitivity of 94.30, precision rate of 94.63,

an F1-Score of 94.46%, an FPR of 0.03, and an AUC is 0.99,

respectively. Figure 12 illustrates the confusion matrix of CSVM

for the confirmation of computed values. We also noted the

classifiers’ computational time during the testing process and

the Medium Neural classifier has the shortest time duration of

11.943 (s), whereas the highest execution time is 36.492 (s). The

computational time of each classifier is also plotted in Figure 13.
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FIGURE 12

Confusion matrix of COVID-GAN and COVID-Net mini chest X-ray dataset using proposed optimization method.

FIGURE 13

Illustration of computational time for COVID-GAN and COVID-Net mini chest X-ray dataset after proposed optimization method.
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TABLE 6 Proposed features fusion method results on chest X-ray dataset.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 98.32 98.32 0.05 1.00 98.32 98.3 127.57

L SVM 97.82 97.85 0.05 1.00 97.83 97.8 80.783

M G SVM 97.92 97.95 0.05 1.00 97.93 97.9 145.99

C SVM 98.32 98.32 0.05 1.00 98.32 98.3 107.57

C G SVM 96.72 96.70 0.012 1.00 96.70 96.6 115.77

Cosine KNN 90.87 91.65 0.027 0.99 91.26 90.7 88.484

Medium neural 97.92 97.90 0.007 1.00 97.91 97.9 30.022

W KNN 95.92 96.15 0.015 0.99 96.03 95.9 89.907

Wide neural 98.02 98.05 0.005 1.00 98.03 98.0 41.439

Tri-layered neural 97.80 97.77 0.007 0.99 97.78 97.8 73.92

Bold indicates the best accuracy.

FIGURE 14

Confusion matrix of chest X-ray dataset for proposed fusion method.

Chest X-ray dataset (pneumonia,
COVID-19, tuberculosis)

Fusion results

Classification results for the Chest X-Ray (Pneumonia,

COVID-19, Tuberculosis) dataset have been shown in Table 6.

This table shows that the CSVM classifier attained the best

accuracy of 98.3%. Among the other calculated measures, the

sensitivity rate is 98.32, the precision rate is 98.32%, the F1-Score

is 98.32%, the FPR is 0.05, and the AUC is 1. These values

are also calculated for the other classifiers, and based on the

numerical values, it is noted that the CSVM outperforms other

classifiers. Figure 14 illustrated the confusion matrix of CSVM

that was utilized for the confirmation of calculated values. For

each classifier, the execution time is also noted, as plotted in

Figure 15. In this figure, it is shown that the minimum noted is

30.022 s for theMediumNeural classifier, whereas themaximum

noted time is 145.99 (s) for the MGSVM.
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FIGURE 15

Illustration of computational time for chest X-ray dataset using the proposed fusion method.

TABLE 7 Proposed features optimization method results on chest X-ray dataset.

Classifiers Sensitivity Precision FPR AUC F1-score Accuracy Time (s)

Q SVM 98.00 98.25 0.005 1.00 98.12 98.3 35.919

L SVM 97.75 97.75 0.005 1.00 97.75 97.9 34.585

M G SVM 97.50 97.75 0.005 1.00 97.62 97.9 54.583

C SVM 98.50 98.22 0.005 1.00 98.35 98.5 40.551

C G SVM 96.50 96.50 0.012 1.00 96.50 96.6 46.575

Cosine KNN 96.00 96.25 0.012 0.99 96.12 96.1 36.823

Medium neural 97.92 97.90 0.005 1.00 97.90 98.1 32.537

W KNN 96.00 96.25 0.015 0.99 96.12 95.9 37.033

Wide neural 98.01 98.12 0.005 1.00 98.06 98.1 52.025

Tri-layered neural 97.95 98.00 0.005 0.99 97.97 98.0 75.75

Bold indicates the best accuracy.

IMFO method

The proposed optimization method based classification

results are given in Table 7. This table demonstrates that the

CSVM classifier has attained the best accuracy of 98.5%. The

values of other measures such as sensitivity rate is 98.50, the

precision value is 98.22, F1-Score is 98.35%, FPR is 0.005, and

AUC is 1, respectively. These statistics are also generated with

the other learners, and based on the statistical results, it is

reported that CSVM beats other listed classifiers. The CSVM

performance can be further confirmed using a confusion matrix,

illustrated in Figure 16. The execution time of each classifier is

also noted and the minimum time is 32.537 (s) for the Medium

Neural classifier. The maximum reported time is 75.75 (s) for

the Tri-layered neural network. The time of all classifiers is also

plotted in Figure 17. Overall, it is observed that the proposed

optimization method performed well for all selected datasets.

In the end, a detailed comparison is conducted with some

recent techniques, presented in Table 8. In this table, several

recently published techniques have been given and all of them

used the deep learning framework. Recently, the maximum

noted accuracy is 98.1% by (50). However, the proposed

framework achieved an accuracy of Table 8, we compare the

proposed technique with the different deep learning techniques.

The COVID-19 diagnosis using deep learning methods on
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FIGURE 16

Confusion matrix of chest X-ray dataset for proposed optimization method.

FIGURE 17

Illustration of computational time for chest X-ray dataset using proposed optimization method.
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TABLE 8 Comparison of the proposed framework with recent techniques.

Sr. no References Year Method Accuracy (%)

1 (24) 2020 Deep learning based technique 94.7

2 (32) 2022 Deep CNNmethod 96.1

3 (48) 2021 Deep learning and collaborative edge-cloud computing 96.4

4 (49) 2022 Deep learning method 96.6

5 (50) 2022 LSTM with attention mechanisms 98.1

Proposed CNN-LSTM and fusion-optimization 93.0

94.5

98.5

Bold indicates the best accuracy.

chest X-ray images was proposed and this technique achieved

high accuracy of 94.7%. Classification of chest x-ray images

using deep learning approaches and achieved 96.1% accuracy.

The detection of COVID-19 by using deep learning through

chest CT images for the joint edge-cloud computing framework

method achieved 96.4%. A method based on deep learning

for automatically diagnosing COVID-19 images using chest

X-ray images acquired 96.6% accuracy. By using LSTM with

an attention mechanism for COVID-19 detection and nodules

segmentation on chest CT scans, the technique gained high

accuracy of 98.1%. Our proposed method achieves 98.5%.

Conclusion

We proposed an automated deep learning and improved

optimization algorithm-based framework for COVID-19

classification using Chest X-ray images in this paper. In the

proposed framework, contrast enhancement is done first

to improve the quality of the infected region, and then data

augmentation is used to increase the training samples. Following

that, a CNN-LSTM architecture is created and trained with

deep transfer learning. In addition, an EfficientNet deep model

is fine-tuned, and feature extraction for both developed models

is performed. Later, instead of using the original serial-based

approach, the proposed fusion approach is used to better

combine the information. The analysis of the fused feature

vector reveals several redundant features; thus, a new features

optimization technique is proposed. The proposed optimization

method improves accuracy while also shortening classification

time. The controlled vector size during the fusion process is

the work’s limitation. Furthermore, the optimization technique

appears to have reduced some important features, which may

have resulted in a reduction in final accuracy.
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