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ABSTRACT

Objective: Electronic health record (EHR) data linked with address-based metrics using geographic information systems

(GIS) are emerging data sources in population health studies. This study examined this approach through a case study

on the associations between changes in ejection fraction (EF) and the built environment among heart failure (HF) patients.

Materials and Methods: We identified 1287 HF patients with at least 2 left ventricular EF measurements that are

minimally 1 year apart. EHR data were obtained at an academic medical center in New York for patients who

visited between 2012 and 2017. Longitudinal clinical information was linked with address-based built environ-

ment metrics related to transportation, air quality, land use, and accessibility by GIS. The primary outcome is

the increase in the severity of EF categories. Statistical analyses were performed using mixed-effects models,

including a subgroup analysis of patients who initially had normal EF measurements.

Results: Previously reported effects from the built environment among HF patients were identified. Increased

daily nitrogen dioxide concentration was associated with the outcome while controlling for known HF risk fac-

tors including sex, comorbidities, and medication usage. In the subgroup analysis, the outcome was signifi-

cantly associated with decreased distance to subway stops and increased distance to parks.

Conclusions: Population health studies using EHR data may drive efficient hypothesis generation and enable

novel information technology-based interventions. The availability of more precise outcome measurements

and home locations, and frequent collection of individual-level social determinants of health may further drive

the use of EHR data in population health studies.

Key words: cardiovascular diseases, built environment, public health informatics, geographic information system, electronic

health records
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LAY SUMMARY
Electronic health record (EHR) data linked with address-

based metrics using geographic information systems

(GIS) are emerging data sources in population health

studies. We examined the relationship between the built

environment and the changes in ejection fraction (EF) us-

ing EHR data at an urban academic medical center. Longi-

tudinal clinical information of 1287 heart failure (HF)

patients was linked with address-based built environment

metrics related to transportation, air quality, land use,

and accessibility by GIS. The primary outcome is the in-

crease in the severity of EF categories. Statistical analyses

were performed using mixed-effects models, including a

subgroup analysis of patients who initially had normal EF

measurements. Increased daily nitrogen dioxide concen-

tration was associated with the outcome while controlling

for known HF risk factors including sex, comorbidities,

and medication usage. In the subgroup analysis that was

performed among patients with initially normal EF meas-

urements, the outcome was significantly associated with

decreased distance to subway stops and increased dis-

tance to parks. The found association on air quality is

consistent with known literature, whereas the accessibility

to the subway and parks present new evidence to be vali-

dated with bigger datasets in the future. EHR data may

drive efficient hypothesis generation for population health

studies.

INTRODUCTION

Population health studies have commonly been defined by cohort

identification and follow-up in the last decades.1 The success of pop-

ulation health studies is largely determined by the available funding

to define and follow-up patient cohorts as well as the theories and

hypotheses that drive the study designs. Today, researchers across

the domains in medicine and healthcare are increasingly drawn to

electronic health records (EHRs), a source of routinely collected ob-

servational health data that potentially reduces the burden of cohort

identification and follow-up while accelerating the hypothesis gener-

ation process. EHR data have seen a wide variety of use cases, rang-

ing from disease prediction, computational phenotyping, drug

discovery, to personalized treatment strategies.2–6 Cited for its rou-

tine availability, large volume, and rich details, EHR data are

expected to drive automation and innovation for operational tasks

and research studies that are traditionally knowledge- and labor-in-

tensive.

In this study, we aimed to evaluate the feasibility of using EHR

data in population health studies to examine the associations of clin-

ical outcomes with environmental exposures.7,8 In particular, this

case study focused on the built environment, which refers to the

human-made environment through urban planning, such as build-

ings to provide food and shelter, infrastructure for public transpor-

tation, and space for social activities.9 The built environment is

considered to influence public health through several mechanisms,

including air quality, noise level, and access to healthy lifestyles. No-

tably, significant health effects by the built environment on heart

failure (HF) patients have been reported by previous research.9

HF is among the leading causes of morbidity, mortality, and sub-

stantial healthcare expenditure in the United States.10 Its global

prevalence is estimated to be more than 26 million, a figure pro-

jected to increase further as the global population continues to

age.10

Previous population health and epidemiologic studies have iden-

tified risk factors of HF incidence and mortality, including male sex,

high blood pressure, coronary artery disease, diabetes, valvular heart

disease, tobacco use, obesity, low education level, and socioeco-

nomic deprivation.11 Among the built environment factors, the

effects from air quality and roadway proximity have been reported

in multiple studies. HF incidence has been associated with exposure

to particulate matter �2.5 lm in aerodynamic diameter (PM2.5) in a

4-year prospective cohort study of women across the United

States,12 and an 11.5-year prospective cohort study in Europe.13 HF

mortality was associated with exposure to PM2.5 in the Cancer Pre-

vention Study II of 1.2 million adults over a 16-year follow-up.14

HF mortality was also associated with roadway proximity and noise

volume in 5-year follow-up studies in Worcester, Massachusetts, a

9-year cohort study in the Netherlands, and a cross-sectional survey

in Toronto, Canada, respectively.15–17

Observational data such as national Medicare claims and regis-

tries have been used in studies to identify associations between HF

hospital admission rates and air pollutants,8,19 and between socio-

economic deprivation and the cardiovascular events.20 Compared to

claims data, EHRs contain richer clinical information from struc-

tured and unstructured laboratory and imaging test results without

requiring the upfront investment of creating registries. Through geo-

coding of patient residential location information in EHRs and fur-

ther linking it to publicly available environmental data sources,

recent studies have identified associations such as air pollution and

cardiovascular events during labor and delivery,21 air pollution and

asthma,7 among others.8

Limitation of using EHR data in observational studies has been

discussed in previous and recent literature.22,23 Particularly, it is

known that EHR-derived cohorts potentially lead to erroneous and

biased association estimates due to incomplete data collection and

censoring especially in fragmented healthcare markets. Nevertheless,

evaluating the ability to detect known population health associa-

tions in the EHR data may pave the path for more rigorous data col-

lection efforts using the EHR, potentially starting to address current

limitations.24,25 Thus, we sought to contribute to the existing litera-

ture on EHR-based population health studies by conducting a case

study of whether previously reported effects of the built environ-

ment on HF patients’ cardiovascular functions could be identified

from the EHR data combined with address-based metrics. Further-

more, we explored whether additional associations would be found

using EHR data for future hypothesis-generating studies.

MATERIALS AND METHODS

Study setting
This study was performed at an academic medical center in a dense,

urban environment in New York City. Study data were extracted

from a commercial EHR and transformed to the Observational

Medical Outcomes Partnership (OMOP) common data model main-

tained by the Observational Health Data Sciences and Informatics

consortium.26 Weill Cornell Medicine Internal Review Board
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approved the study design and its use of protected health informa-

tion (Protocol#: 1711018789).

Participants
We included patients if they had an encounter at the studied medical

center between 2012 and 2017 and had a primary or secondary di-

agnosis of acute or chronic HF. A diagnosis of HF was defined as

ICD-9-CM: 428.* or ICD-10-CM: I50*. Patients must have had at

least 2 transthoracic echocardiograms with EF measurement that

were more than 1 year apart, or have died more than 1 year after the

baseline EF measurements. Patients were excluded if they died

within 1 year of the baseline EF measurement, if their addresses

were not recorded in the EHR, or if address changes were recorded

from 2012 to 2017. Lastly, due to the reduced levels of physical ac-

tivity and subsequent lower exposure to the built environment,

patients with severely abnormal EF measurements as defined in the

“Outcome Measurement” section at baseline were excluded. The in-

clusion and exclusion criteria are described in Figure 1.

EHR data
Data elements extracted from patients’ EHR data were age, sex,

race, average body mass index (BMI), EF, binary indicators for

whether patients have ever smoked, binary indicators for whether

patients have received at least one prescription of beta blockers (car-

vedilol, metoprolol, bisoprolol), or renin-angiotensin inhibitors (an-

giotensin-converting enzyme inhibitor or angiotensin receptor

blocker), binary indicators for whether patients have had at least

one diagnostic code for hypertension (ICD-9-CM: 401.X-405.X,

437.2 or ICD-10-CM: I10.*, I15.0, I15.8, I67.4), diabetes mellitus

(ICD-9-CM: 250.* or ICD-10-CM: E10.*, E11.*), valvular heart

disease (ICD-9-CM: 394.*-397.*, V42.2, V43.3 or ICD-10-CM:

I05.0, I05.1, I05.2, I05.8, I06.0, I08.0, I08.8, I08.9, I07.1, I07.2,

I07.8, Z95.2, Z95.3), coronary artery disease (ICD-9-CM: 410.*

-414.*,429.2, V45.81 or ICD-10-CM: I21.09, I21.19, I21.11,

I21.29, I21.4, I21.3, I21.9, I21.A1, I21.A9, H18.411, I25.10, I25.2,

I20.8, I20.1, I20.8, I20.9, Z95.1), primary care locations, and mor-

tality. Diagnostic codes were extracted from billing diagnoses. Dates

of death were obtained through the EHR and the Social Security

Death Index. EF measurements were extracted from the unstruc-

tured notes of the patients’ EHR using a rule-based natural language

processing method described by Johnson et al.27 Patients’ residential

locations were passed to an application programming interface of-

fered by the United States Census Bureau28 which allowed us to de-

rive both the latitude/longitude pairs and the US census tracts which

equal to the 11-digit Federal Information Processing Standard (FIPS)

codes.

Public data
The built environment factors on accessibility, traffic, land use, and

air quality were extracted at the individual patient level using the

aforementioned latitude/longitude pairs in the EHR. In addition,

FIPS-level social determinants were extracted based on the 11-digit

FIPS code in the EHR.

Four indicators were defined to measure accessibility to public

and active transportation and green spaces: the distance to the near-

est bus stops, the distance to the nearest subway stops, the distance

to the nearest parks, and the distance to the nearest bike facilities.

Data on accessibility were obtained from the NYC Department of

Planning public data repository.29 Parks were defined as areas desig-

nated as a park, ball field, playground, or public space in NYC Zon-

ing Districts. Figure 2 displays the distances to the park across the 5

boroughs in NYC.

The traffic data were obtained from the New York Best Practice

Model, which is an activity-based travel demand model that includes

traffic volume on highways, major arterials, and collector’s links

along with several other transportation measures.30 The model pre-

dicts daily traffic volume in each roadway link for the different types

of vehicles including passenger vehicles, buses, taxi, and trucks. We

grouped the traffic volumes into 2 groups, respectively, namely,

light-duty vehicles such as passenger cars and taxies, and heavy-duty

vehicles such as buses and trucks. The stratification controls for the

varying environmental impacts by the light- and heavy-duty vehi-

Figure 1. Patient inclusion and exclusion criteria.

Figure 2. Distances to the nearest parks from patients’ home locations.

388 JAMIA Open, 2020, Vol. 3, No. 3



cles.31Figure 3 displays heavy-duty vehicle activity within 250-m

buffers across the 5 boroughs of NYC.

We measured the walkability and availability of a variety of

resources for retail, commercial, facility, and residential purposes

within 500 m of each patient’s home location using the land use mix

index and the floor area ratios. The floor area ratio measures the

building floor area divided by land area. For example, the areas

with a higher share of parking space have lower retail floor area ra-

tio values while areas with smaller setbacks from the street have

higher values. Four types of floor area ratios were computed: retail

floor area ratio, residential floor area ratio, commercial floor area

ratio, and facility floor area ratio.32 Higher floor area ratios are con-

sidered to promote more walkability, an important built environ-

ment indicator as our study focuses on an urban environment.33

Land use data were extracted from the NYC Department of Plan-

ning public data repository which includes information about land

use type at the parcel level.29 A measure for the heterogeneity of

land use,34 higher land use mix indices indicates a higher walkability

of the area.

For air quality, we estimated patients’ exposure to nitrogen diox-

ide (NO2) using the Land Use Regression model obtained from the

Center for Air, Climate and Energy Solutions.35 This air pollutant

model estimates the daily NO2 concentration at the block group

level using land use regression models and covers both regional and

local air pollution hotspots.

Lastly, we obtained census-tract level estimates of social determi-

nants of health including poverty rates, percentages of college

degrees, and median home values from the FACETS dataset.36

While not at the individual-level, these estimates allowed us to con-

trol for socioeconomic risk factors identified in previous studies.

Outcome measurement
Left ventricular ejection fraction (EF), the portion of blood pumped

out by the left ventricle with each contraction, is one of the most im-

portant measurements in diagnosing and defining stages of HF.37

Under the definitions provided by the American Society of Echocar-

diography and the European Association of Cardiovascular Imag-

ing,38 EF measurements are classified into 4 categories: normal

(EF >51% in men and EF >53% in women), mildly abnormal

(EF between 41%–51% in men and 41%–53% in women), moder-

ately abnormal (EF within 30%–40% in men and women), and se-

verely abnormal (EF <30% in men and women). EF severity may be

reflected in HF patients’ changing conditions such as shortness of

breath and reduced ability for physical activity. EF measurements

are most commonly taken with transthoracic echocardiograms and

recorded in the EHRs repeatedly following patients’ routine care.

The outcome in the study is a composite outcome of EF change de-

fined as a deteriorated EF category or mortality within 1 year of a

baseline EF measurement. Deteriorated EF category includes a shift

from normal to mildly/moderately/severely abnormal, from mildly

abnormal to moderately/severely abnormal, or from moderately ab-

normal to severely abnormal. The composite outcome was not

treated as a time-to-event outcome as we assumed that the recorded

dates of EF measurements do not equal to the actual time of EF

change. Although a prognostic marker such as New York Heart As-

sociation (NYHA) Functional Classification would be a strong indi-

cator of HF,39 this marker was not reliably available in the EHR

data, and therefore we defined the study outcomes on the basis of

EF measurements.

Statistical methods
Bivariate associations between the exposure and outcome were

assessed with chi-squared tests for categorical variables and analysis

of variance for continuous variables. Two hypotheses were tested.

H1: The built environment is significantly associated (vs not as-

sociated) with a reduction in EF among patients with HF.

Mixed-effects logistic regression with fixed and random effects

was used to analyze the associations while controlling for previously

reported HF risk factors. HF risk factors that were considered as the

fixed effect variables are age, sex, race, BMI, smoking (yes/no), dia-

betes (yes/no), valvular heart disease (yes/no), coronary artery dis-

ease (yes/no), average poverty level at the census tract. The model

also contained multiple built environment variables as fixed effects,

including floor area ratio for residential use, floor area ratio for fa-

cility use, floor area ratio for commercial use, floor area ratio for re-

tail use, land use mix index, average daily NO2 concentration (lg/

m3), light-duty vehicle in 250 m buffer in kilometer, heavy-duty ve-

hicle in 250 m buffer in kilometer, distance (km) to nearest bus

stops, distance (km) to nearest parks, distance (km) to nearest sub-

way stops, and distance (km) to nearest bike paths. The primary

care locations were treated as the random effects in the model to

control for the possible care variations across clinics within the

health system. Backward elimination was performed for variable se-

lection among the aforementioned variables. Tests for correlations

and multicollinearity among variables were tested using the variance

inflation factor (VIF). The models were constructed using Stata 14’s

generalized structural equation model. Since the majority of the

patients were age 60 and above, we did not create matched cases

and controls by age.

H2: The built environment is significantly associated (vs not as-

sociated) with a reduction in EF among HF patients with baseline

normal EF.

It is known that the amount of physical activity that may be tol-

erated by HF patients decreases as the disease progresses. Since re-

duced physical activity likely leads to different levels of

environmental exposure,40 we examined the effects of the built envi-

ronment on the outcome among patients whose initial EF measure-

ments were normal as a subgroup analysis.

Figure 3. The heavy-duty vehicle activity within 250-m buffer (right) in the

studied environment.
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Sensitivity analyses were conducted. In the first analysis, we

strictly used only deterioration in the EF category as the primary

outcome of a change in EF. In this analysis, if patients were recorded

to have died after at least 1 year following the baseline EF measure-

ment but had no EF measurements that are at least 1 year apart,

they were included in the analysis as no-change. Additionally, we

performed a second sensitivity analysis limiting the study sample to

only patients with both initial and final EF measurements. In the sec-

ond analysis, if patients were recorded to have died after at least 1

year following the baseline EF measurement but had no EF measure-

ments that are at least 1 year following baseline, they were excluded

from the analysis. In addition, on a subset of patients we were able

to obtain values of B-type natriuretic peptide (BNP) which is known

to be a marker for the severity of acute and chronic HF.41 BNP val-

ues were compared between the group with initial EF measurements

studied in the subgroup analysis versus the rest of the study sample

whose initial EF measurements were abnormal as defined by the

American Society of Echocardiography and the European Associa-

tion of Cardiovascular Imaging.

RESULTS

A total of 1287 adult patients who met the study criteria were iden-

tified. Table 1 lists the variables and their bivariate associations with

the outcome. We imputed 215 missing values in BMI using multiple

imputation.42

Results from the mixed-effects logistic regression for H1 are

shown in Table 2. As in previous literature, male sex (OR¼1.093,

P value<0.001) and daily NO2 concentration (OR¼1.071, P val-

ue<0.001) were significantly associated with increased odds of the

outcome. In addition, medication prescription (OR¼1.137, P val-

ue<0.001), age (OR¼0.997, P value<0.017), BMI (OR¼0.999,

P value¼0.001), and Asian race (OR¼0.915, P value<0.041)

were significant in the model. The daily NO2 concentration

remained significant in the sensitivity analyses (see Supplementary

Tables SA2 and SA4), and in larger models that included other built

environment variables (data not shown). We did not find other risk

factors previously reported to be significantly associated. The model

had no significant multicollinearity based on VIF (<10).

For H2, a subgroup analysis of the study cohort (N¼1073)

whose initial EF was normal is shown in Table 3. Male sex

(OR¼1.117, P value<0.001), BMI (OR¼0.999, P value¼0.037),

and medication prescription (OR¼1.158, P value<0.001) were

significantly associated with the outcome. Unlike our findings from

the main analysis, increased distance (km) to nearest parks

(OR¼1.166, P value¼0.049) and decreased distance (km) to sub-

way stops (OR¼0.947, P value¼0.001) were found to be signifi-

cantly associated with the outcome. The daily NO2 concentration

was no longer significantly associated with the outcome in the sub-

group analysis. Similar results were obtained in the 2 sensitivity

analyses (Supplementary Tables SA3 and SA5).

Results from the sensitivity analysis are shown in Supplementary

Tables SA1–SA5 in the Appendix for the main cohort and the sub-

group analysis cohort. In all analyses, the daily concentration of

NO2 remained significantly associated with the outcome in the main

cohort. The associations between the outcome and the distances to

parks and subway stations also remained significant in the subgroup

analysis cohort. Among the patients who were included in the sub-

group analysis, 143 patients had BNP values that were within 2

months of the initial EF measurements used to decide inclusion for

subgroup analysis. The distribution of the BNP across EF category is

shown in Table 4. The normal group, used for the subgroup analy-

sis, has significantly lower BNP levels compared to the patients

whose initial EF measurements were categorized as mild or moder-

ately abnormal (P value¼0.001).

DISCUSSION

The goal of this case study was to identify built environment factors

that are associated with a reduction in EF among a cohort of HF

patients using EHR data linked with address-based metrics. The

daily concentration (lg/m3) of NO2, and accessibility to nearest

parks and subway stops, was found in the main and subgroup analy-

sis to be significantly associated with the outcome, respectively. Our

finding on the daily concentration (lg/m3) of NO2 agreed with

previous studies that examined air quality and cardiovascular

events.12–19 The outcome’s association with the distance to the

parks in the subgroup analysis has also been reported in previous

literature. Given the urban study environment, the associations may

be an indicator of increased opportunities in staying physically

active. Exercise training has been increasingly reported in recent

years to benefit long-term health in HF patients across all ages, gen-

der, and HF severity groups.43 For example, a recent multicenter

randomized clinical trial found exercise training to be associated

with modest significant reductions in cardiovascular mortality and

HF hospitalization among patients with chronic HF.44 Specifically

related to parks, a randomized crossover study in an urban environ-

ment in London, United Kingdom found that walking near a park

led to an improvement in lung function, while significant effect of

the same exercise was not observed when subjects were walking

along a densely populated area.45 In addition, previous studies have

reported that access to parks alleviates stress, improves mental

health, and increases subjective well-being, and associated with

lower medical expenditures.46,47 Both stress and poor mental health

have well-documented correlative and causative associations with

cardiovascular morbidity including HF.48

The outcome’s association with the distance to nearest subway

stops contrasts against previous studies where lack of transportation

has been identified as a barrier to healthcare access and thus a risk

factor.49 However, similar to the distance to parks, in the urban set-

ting we studied, our finding may actually reflect the increased likeli-

hood for routine physical activity through walking. As public

transportation is by far the most common form of commute in this

urban setting, it is possible that longer walks required to reach the

subway stops contributed to an increased level of physical activity.

It may also explain why the associations from proximity to park and

subway stops were only observed in the subgroup analysis since the

main analysis included patients with different EF categories and sub-

sequently possible varying levels of physical activity. We aim to ex-

plore this association further in future studies. Additionally, while

we only studied NO2 in this study as an indicator of air quality, fu-

ture studies will also examine the exposure from other air pollutants

such as PM2.5 in the urban environment.

The use of structured EHR data in our study faced a number of

limitations.22 First, although the healthcare organization had clinics

around the city, it is possible that our study data missed EF measure-

ments and other comorbid conditions that were recorded outside the

study setting in constructing the models. To address this limitation,

we excluded patients who only had 1 EF measurement from our

study to better ensure that patients had continuous care within the

health system. Additionally, our study data had information on

medication but they were limited to prescription and not the actual
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usage. BMI was significantly associated with the outcome in both

the main and subgroup analyses but with very small effects, possibly

due to the number of missing values and the resulting imputations.

Moreover, while we used natural language processing to extract EF

measurements from the imaging reports and clinical notes, diagno-

ses in the study data were extracted mainly using structured diagnos-

tic codes. The diagnostic codes used to define HF included chronic

and acute HF, as well as both HF with preserved and reduced EF.

Therefore, an important limitation of the study is the lack of docu-

mentation for NYHA Functional Classification and other bio-

markers for HF severity in the EHR.39 While EF is a measure of

cardiac function, it is limited in defining the severity of patient

Table 1. Descriptive patient characteristics

Variable Outcome (percentage/standard deviation)

No Yes

Number of patients 887 400

Initial EF category

Normal 747 (84.22%) 326 (81.50%)

Mildly abnormal 86 (9.70%) 45 (11.25%)

Moderately abnormalse 54 (6.09%) 29 (7.25%)

Last EF category/all-cause mortality*

Normal 832 (93.80%) 0 (0.00%)

Mildly abnormal 36 (4.06%) 119 (29.75%)

Moderately abnormal 19 (2.14%) 84 (21.00%)

Severely abnormal 0 (0.00%) 81 (20.25%)

All-cause mortality 0 (0.00%) 116 (29.00%)

Sex*

Female 443 (49.94%) 148 (37.00%)

Male 444 (50.06%) 252 (63.00%)

Race

Asian 55 (6.20%) 21 (5.25%)

Black or African American 182 (20.52%) 73 (18.25%)

White 321 (36.19%) 150 (37.50%)

Unknown 131 (14.77%) 73 (18.25%)

Other 198 (22.32%) 83 (20.75%)

Age* 68.03 (sd¼10.82) 66.44 (sd¼12.14)

BMI 29.17 (sd¼7.47) 27.88 (sd¼6.87)

Smoking (smoker and ex-smoker)

No 392 (44.19%) 155 (38.75%)

Yes 495 (55.81%) 245 (61.25%)

Valvular heart disease

No 235 (26.49%) 113 (28.25%)

Yes 652 (73.51%) 287 (71.75%)

Coronary artery disease

No 89 (10.03%) 34 (8.50%)

Yes 798 (89.97%) 366 (91.50%)

Hypertension

No 37 (4.17%) 18 (4.5%)

Yes 850 (95.83%) 382 (95.5%)

Diabetes

No 395 (44.53%) 170 (42.50%)

Yes 492 (55.47%) 230 (57.50%)

Medication*

No 147 (16.57%) 37 (9.25%)

Yes 740 (83.43%) 363 (90.75%)

Census-tract level poverty rate 18.92% (SD ¼ 0.145) 18.93% (SD ¼ 0.137)

Standardized area for residential use 3.130 (SD ¼ 3.397) 3.373 (SD ¼ 3.591)

Standardized area for commercial use 2.002 (SD ¼ 3.618) 2.111 (SD ¼ 3.711)

Standardized area ratio for retail use 2.132 (SD ¼ 2.754) 2.346 (SD ¼ 3.217)

Standardized land use mix index 8.446 (SD ¼ 10.458) 8.823 (SD ¼ 10.619)

Distance (km) to nearest bus stops 0.103 (SD ¼ 0.117) 0.099 (SD ¼ 0.083)

Distance (km) to nearest subway stops* 0.595 (SD ¼ 0.746) 0.499 (SD ¼ 0.547)

Distance (km) to nearest parks 0.212 (SD ¼ 0.153) 0.222 (SD ¼ 0.163)

Distance (km) to nearest bike paths 0.191 (SD ¼ 0.293) 0.189 (SD ¼ 0.273)

Daily NO2 concentration (lg/m3)* 9.19 (SD ¼ 0.50) 9.27 (SD ¼ 0.51)

Light-duty vehicles in 250-m buffer 28141.99 (SD ¼ 40348.13) 23827.40 (SD ¼ 32150.47)

Heavy-duty vehicles in 250-m buffer 3470.27 (SD ¼ 4492.35) 3284.22 (SD ¼ 4291.09)

*P value <0.05.
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symptoms and not always correlated with physical activity espe-

cially in patients with HF with preserved EF. This study conducted a

sensitivity analysis using available BNP values near the initial EF

measurements to further investigate the patient characteristics in the

subgroup. Future studies will need to leverage unstructured data for

more accurate data extraction, and also to conduct subgroup analy-

sis on patients with preserved and reduced EF separately. Specifi-

cally to this study, in both main and subgroup analyses, we found

that decreased age and more medication prescription were signifi-

cantly associated with an increased odds of reduction in EF. These

findings may reflect the characteristics of a patient cohort under

treatment in a health system identified from the EHR data in com-

parison to a general population.

This study excluded patients who had recorded address changes

during the study period of 2012–2017. As a result, the sample size

was a limiting factor in the identification of additional built environ-

ment factors that may be significantly associated with the outcome.

Despite this effort, there likely still are unrecorded changes in the

home locations that were not captured in the data, in addition to

exposures prior to 2012 that could have contributed to the study

outcome. Future studies may explore large datasets combining EHR

data from multiple health systems and insurance claims data to ad-

dress this challenge. Lastly, our study data did not capture detailed

social determinants of health such as individual income, family sup-

port, occupation, stress level, and altitude of the apartment build-

ings that may contribute to the outcome. Future efforts in better

tracking social determinants of health in the EHR may alleviate this

limitation.

CONCLUSION

Using EHRs linked with address-based metrics on the built environ-

ment, we found that air quality, proximity to subway stops, and

proximity to parks were associated with a reduction in EF among

HF patients in an urban environment. Our findings confirm previous

findings on the effects of clean air quality and physical activity for

enhanced cardiovascular health. More importantly, findings from

this study may help pave the path for promoting future integration

of public data sources with EHR data, and more rigorous and pre-

cise data collection of patient-level exposure from the built environ-

ment in routine patient visits. Clinical decision support may be built

within the EHR to provide built environment-related real-time alerts

and reminders to care providers for personalized management of

HF. Furthermore, collected data may enable larger observational

studies on the effects of the built environment on cardiovascular

health, thus potentially expediting longitudinal environmental

health studies.
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