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Abstract

Whole genome wide identification and annotation of genetic variations in camels is in its first

steps. The aim of this study was the identification of genome wide variants, functional annota-

tions of them and enrichment analysis of affected genes using whole genome sequencing

data of three dromedary camels. The genomes of two Iranian female dromedary camels that

mostly used to produce meat and milk were sequenced to 41.9-fold and 38.6-fold coverage.

A total of 4,727,238 single-nucleotide polymorphisms (SNPs) and 692,908 indels (insertions

and deletions) were found by mapping raw reads to the dromedary reference assembly

(GenBank Accession: GCA_000767585.1). In-silico functional annotation of the discovered

variants in under study samples revealed that most SNPs (2,305,738; 48.78%) and indels

(339,756; 49.03%) were located in intergenic regions. A comparison of the identified SNPs

with those of the African camel (BioProject Accession: PRJNA269274) indicated that they

had 993,474 SNPs in common. We found 15,168 non-synonymous SNPs in the shared vari-

ants of the three camels that could affect gene function and protein structure. Obtained results

revealed that there were 7085, 6271 and 4688 non-synonymous SNPs among the 3436,

3058 and 2882 genes in the specific gene sets of Yazd dromedary, Trod dromedary and Afri-

can dromedary, respectively. The list of genes predicted to be affected by non-synonymous

variants in different individuals was subjected to gene ontology (GO) enrichment analysis.

Introduction

Based on the palaeontological evidence, the Camelidae family appeared for the first time in

North America in 45.9 Mya [1]. There are at present two domesticated camels globally, the

dromedary (one-humped) and Bactrian (two-humped) camels, which belong to the genus

Camelus. The division between dromedary and Bactrian camels occurred about 4.4 Mya dur-

ing the migration of camel ancestors from North America to Eurasia [2].

There are more than 27.7 million camels globally [3]. They are used for food and racing in

many Northern African and Asian countries. About 90% of extant camels are dromedaries

[4], which are best known for their unique ability to survive in harsh desert environments.
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Dromedary camels in most regions of Asia and Africa are used as pack animals and as a source

of food for nomads and low income rural populations. Their unique ability to withstand harsh

environmental conditions coupled with their medical benefits [5–8], make camels an ideal

case for further studies.

Because camels are generally raised in developing countries, studies on them are limited

when compared with popular domesticated animals (cattle, sheep, pigs, horses). Draft genome

sequences recently have been made available for dromedary [2,9] and Bactrian [10] camels,

but they have not been assembled into chromosomes at this time.

To the best of our knowledge, no study has been published on whole genome resequencing

of native Iranian camels. Over 84% of Iran is arid or semi-arid [11]. Some areas have been

influenced by increasing population pressure on land and water resources and are at risk of

desertification [12]. Climatic conditions, along with traditional religious and cultural values of

Iranians represent a high potential for camel breeding. Unfortunately, camel breeding in Iran,

as in most parts of the world, is not done scientifically. Nonetheless, it appears that whole

genome resequencing of the native Iranian camel genome could increase understanding of the

evolution of the camel [2] and provide a valuable opportunity for breeding programs.

The concept of genomic selection proposed by Meuwissen et al. (2001) [13], as well as the

advent and improvement of next-generation sequencing technology, has revolutionized the use

of genetic information for livestock breeding programs. Implementation of genomic selection

for dairy cattle [14], sheep [15] and pig [16] breeding has produced promising results in terms

increasing the rate of genetic improvement. The determination of large-scale genetic variation,

especially SNP markers, using whole genome sequencing could lead to development of

approaches such as genome-wide association studies and genomic selection in camel breeding.

Despite recent studies on camels at the genomic level, a large number of genetic variants in

different camel breeds remain to be discovered and properly annotated. The present study

reports on the first whole genome resequencing of individual camels from two distinct geo-

graphical regions, Trod station located in Semnan province and Yazd station located in Yazd

province in Iran. In fact, sampled camels from Trod and Yazd stations considered as genetic

representatives of camels that live in northern half (e.g. Golestan, Semnan and Qom) and

southern half Provinces (e.g. Kerman, Fars and Hormozgan) of Iran, respectively. In order to

identify the SNPs and indels (insertions and deletions), the paired-end reads of each sequenced

individual were mapped to the dromedary camel reference genome (GenBank Accession:

GCA_000767585.1). In the next step, in-silico functional annotation was carried out for the

identified dromedary genomic variants. In addition, to investigate relationships between Ira-

nian and African dromedaries, SNP discovery analysis was carried out using previously-

reported whole genome sequences of the African dromedary (BioProject Accession:

PRJNA269274) as a non-Iranian genetic resource.

Materials and methods

Sampling and DNA extraction

In the present work, we sequenced the genomes of a female camel obtained from Trod station

in Semnan Province (TrD) and a female camel obtained from Yazd station in Yazd Province

(YaD). Blood samples were collected from the jugular vein using 4 ml vacutainer tubes and

stored at -20C˚ until use. To reduce stress of animals, positive rewards such as petting was

implemented in the conditioning to regular handling prior to restraint for blood collection. All

animal care and experiments were approved by the animal science committee of the University

of Mohaghegh Ardabili, Iran. Also, all experiments were performed in accordance with a rou-

tine guideline which is acceptable by this committee.
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DNA extraction was performed using a RBC mini kit for mammalian blood following man-

ufacturer protocols (Real Biotech; South Korea). The extracted DNA was quantified using

NanoDrop and the 260/280 ratios identified were 1.90 and 1.8 for YaD and TrD, respectively.

The quality of the DNA samples was assessed using gel electrophoresis in 1% agarose gel. A

library with an average insert size of ~360 bp was generated and two lanes of 100 bp paired-

end sequencing was carried out using the Illumina HiSeq 2000 system (Illumina, San Diego,

CA).

Mapping short reads and variant calling

Quality control of the raw sequencing reads was performed using FastQC (http://www.

bioinformatics.bbsrc.ac.uk/projects/fastqc/). Quality filtering of the short reads was carried

out using the maximum information (MaxInfo) approach of Trimmomatic [17] version 0.36,

with a target length of 40 and strictness value of 0.5. Reads with a length of less than 40 bp

were discarded. The MaxInfo algorithm performs an adaptive trim that creates a balance

between the benefits of maintaining longer reads against the value of maintaining bases with

errors. Clean reads were mapped to the dromedary camel genome assembly (GenBank Acces-

sion: GCA_000767585.1; version: PRJNA234474_Ca_dromedarius_V1.0) as a reference using

Burrows Wheeler aligner (version 0.7.15; BWA-MEM algorithm) [18]. Picard tools (http://

broadinstitute.github.io/picard) were then used to remove the duplicated reads. Duplicated

reads were considered to be identical reads that arise during PCR and are mapped to same

genomic position during mapping to the reference [19].

Local realignment around indels was carried out using the Genome Analysis Toolkit

(GATK) [20] in two steps to enhance mapping quality. In the first step, RealignerTargetCrea-

tor module determines the intervals to target for local realignment and realigning over those

intervals was carried out using the IndelRealigner command. Base quality scoring recalibration

(BQSR) was applied to obtain more accurate base qualities using GATK. It is worth to mention

that, due to lack of sufficient genomics data for camels (such as known variants), we used

resulted VCF file after local realignment step as known VCF in BQSR step. Putative variant

calls were made using GATK (and the HaplotypeCaller algorithm) and samtools [21] mpileup.

All variants were identified as differences from the reference genome. To obtain reliable vari-

ants, the overlap variants between the outputs (VCF files) of the two mentioned variant callers

were extracted using BEDTools. Variants with phred-scaled scores below 20 and variants with

genotypic qualities (GQ) of less than 20, SNPs within 5 bp of an indel, indels within 10 bp of

each other, variants with a depth of coverage below 33% or more than twice mean genome

coverage of the alignment were removed to generate a final variants list for downstream analy-

sis. The program VCFtools [22] (version 0.1.13) was used to calculate the transition-to-trans-

version (Ti/Tv) ratio as a parameter to assess the specificity of new SNP calls.

Variant annotation

SnpEff [23] was used to assign the impacts of the variants and their functional grouping.

Because there is no database for dromedary camels among the pre-built databases for SnpEff,

we built a dromedary database using the dromedary reference genome and its GFF (version 3)

file using the database building guidelines (http://snpeff.sourceforge.net/SnpEff_manual.

html#databases) in SnpEff.

Functional enrichment analysis

The list of genes predicted to be affected by non-synonymous variants in different individuals

was subjected to gene ontology (GO) enrichment analysis using the database for Annotation,
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Visualization and Integrated Discovery (DAVID) [24] version 6.8. For each gene set, the genes

were sorted based on number of their non-synonymous SNPs and the 1000 first genes with

highest number of mutations were selected for further analysis. The calculated p-values were

corrected using the Benjamini correction for multiple testing and enriched terms were consid-

ered statistically significant at p-adjusted < 0.1. It is worth to mention that, we investigated

loss-of-function (LOF) variants in shared variants (among three samples) set and their enrich-

ment analysis.

Comparison of Iranian and African dromedaries

The samples were compared with the geographically-distinct dromedary using raw sequence

data for the domestic dromedary of North African origin (trimmed and error-corrected

paired-end reads; accession no. SRX1013838). The ancestry of the African dromedary (AfD)

can be traced to the Canary Islands [9]. Because downloaded paired-end reads were corrected

and trimmed previously by Fitak et al (2016) [9], the trimming step was not carried out for this

dataset. Reference mapping, processing after alignment, variant calling and another analyses

for the downloaded sample were performed according to the workflow described above.

Results and discussion

Sequencing and mapping to reference

The present study reports on the first whole genome resequencing of two female native camels

(YaD and TrD samples) as samples of dromedaries originating from Asia and characterized

their genetic variations, including SNPs and indels. Whole genome resequencing of the YaD

and TrD samples produced 920,366,954 and 843,455,144 paired-end reads with a read length

of 100 bp, respectively. A total of 899,714,102 and 826,229,484 reads remained after filtering

the YaD and TrD samples, respectively (Table 1). It is well documented that variant calling

mainly depends on data coverage. It has been reported that, for high-coverage data, variant

discovery led to a lower number of false positives than for a low-coverage data set [25]. Here,

high-coverage data was generated to improve the results.

Approximately 97.8% and 97.4% of clean reads for YaD and TrD, respectively, were

mapped to the reference dromedary camel genome and indicate that the resequencing data

covered most of the genome. Successfully-mapped reads yielded 41.9-fold and 38.6-fold cover-

age for YaD and TrD, respectively (Table 1). Fold coverage was calculated by dividing the suc-

cessfully-mapped bases by the length of the assembled reference genome used for mapping

(2,004,047,047 bp). Similar to this method, the genome of AfD previously had been sequenced

using the Illumina HiSeq 2000 platform [9]. The percentage of successfully-mapped reads to

reference (98.9%) and the fold coverage of AfD represented higher values than for Iranian

camels (Table 1). In comparison with whole genome resequencing studies in cattle [26–28],

horse [29] and chickens [30] performed to variant identification, the current study obtained a

higher depth of coverage, which made a significant improvement in the accuracy and sensitiv-

ity of variant calling [31].

Table 1. Summary of sequenced reads for Iranian dromedaries and downloaded sample (AfD).

Total Reads Mapped

Genome Before trim After trim Reads Bases Fold coverage

YaD 920,366,954 899,714,102 879,503,046 83,966,061,113 41.9

TrD 843,455,144 826,229,484 804,795,688 77,257,841,038 38.6

AfD - 1,124,832,578 1,112,171,199 107,907,751,223 53.8

https://doi.org/10.1371/journal.pone.0204028.t001
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SNP identification

It is known that the accuracy of variant discovery and the detection rate is dependent on the

different variant discovery algorithms. Two widely-used variant discovery tools were used on

the samples to minimize false positive results and optimize the pipeline. The higher accuracy

and sensitivity of these tools has been reported in previous studies [32]. The number of identi-

fied SNPs for the YaD, TrD and AfD camels, based on the intersection of two SNP calling and

filtering algorithms, were 2.4, 2.3, 2.1 million variants, respectively. It is well-documented that

the number of variants detected depends mainly on the sequencing depth and that an increase

in sequence depth significantly improves both the accuracy and sensitivity of variant discovery

[32].

Of the 6,833,383 SNPs identified in the three camels, 993,474 SNPs were shared across all

individuals, with 491,851 and 501,623 being heterozygous and homozygous, respectively.

Approximately 56.6% of SNPs from the YaD variant set and 58.6% of SNPs from the TrD vari-

ant set were in common (1,361,919 SNPs). The considerable number of unique SNPs identi-

fied for the Iranian dromedaries indicates the importance of resequencing to identify novel

variants for investigating genetic diversity in the different camel populations. The results

shown in Fig 1 illustrate the high number of shared SNPs between Iranian dromedaries and

Fig 1. Overlapping and sample specific identified SNPs in Iranian dromedaries (YaD and TrD) and downloaded

sample (AfD).

https://doi.org/10.1371/journal.pone.0204028.g001
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AfD, such that 54.9% (1,321,650) and 56.3% (1,308,199) of identified SNPs in YaD and TrD

were common with the SNP set of AfD. The density of SNPs was determined to be approxi-

mately one per 833, 863 and 952 bp for YaD, TrD and AfD, respectively. The mutational fre-

quency was assessed at the single nucleotide level in the three samples. The results revealed

that the dominant mutation type was G to A (and C to T after non-strand specific DNA-Seq

data was applied) among all camels. This includes 854408 (35.54%), 823846 (35.46%) and

746682 (35.45%) for YaD, TrD and AfD, respectively (S1 Table).

SNP quality was further assessed by calculating the Ti/Tv ratio for each SNP set, because

this measurement is used as an indicator of potential sequencing error [33]. Ti/Tv ratio in our

final sets of SNPs was 2.34, 2.34 and 2.33 for YaD, TrD and AfD, respectively. The results of

Ti/Tv ratio in the current study was in accordance with previous findings for the dromedary

camel (2.31) [9], but slightly higher than for that of Korean native cattle (2.24 for Hanwoo and

Jeju Heugu breeds) [28]. Higher Ti/Tv ratio (as quality evaluator of detected variants) in our

study may represent good quality of detected SNPs.

Among the camels under study, YaD had highest number of heterozygous SNPs

(1,659,085), whereas AfD with 1,375,721 heterozygous SNPs ranked third (Table 2). Because

the number of total SNPs differed among the three camels, it appears that calculation of the

percentage of heterozygous SNPs from among the total SNPs, allows clear comparison of the

heterozygosity rate in the individuals. Of the total identified SNPs in the Iranian camel, 69%

(YaD) and 68.4% (TrD) corresponded to heterozygous SNPs and were higher than for AfD

with 65.3% heterozygosity. Higher heterozygosity in Iranian camels can most likely be

explained by the rearing system and lack of organized breeding schemes for camels in Iran.

Each spring, Iranian herders in central regions, after shearing, treating and selection of young

camels for sale, leave their camel herds loose in the desert for the rest of year. Population mix-

ture and free mating between camels under such a rearing system increases gene flow and het-

erozygosity. Of course, to prove this, more re-sequenced samples are required. Another reason

for higher heterozygosity in Iranian dromedaries can be due to mating with Bactrian camels

that live in Iran. We found that Bactrian camels have introgression into Iranian dromedaries

based on 20 microsatellite data studied by Hedayat et al (2018) [34].

Functional annotation of detected SNPs

Here, functional annotation of the identified variants was carried out using SnpEff and they

were classified into seven locational (e.g., intergenic, intron and intragenic) and eight func-

tional categories (e.g., stop_gained, start_lost and non_synonymous_coding). Approximately

87.8% of detected SNPs in all three samples were located in intergenic and intron regions

(Table 3). These SNPs have modifier impact and the prediction of their effect on phenotype is

difficult. Moreover, of all discovered SNPs, 160,238 were located in coding regions. We found

Table 2. Summary of identified variants for Iranian dromedaries and downloaded sample (AfD).

YaD TrD AfD

Number of SNPs 2,404,401 2,322,837 2,106,145

TS/TV 2.34 2.34 2.33

Heterozygote SNPs 1,659,085 1,588,757 1,375,721

SNP Het/Hom 2.23 2.16 1.88

Insertion 186,185 181,306 179,801

Deletion 165,244 160,173 154,473

INDEL/SNP 0.15 0.15 0.16

https://doi.org/10.1371/journal.pone.0204028.t002
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that only 0.11% (2,773 SNPs for YaD, 2,608 SNPs for TrD and 2,414 SNPs for AfD) of SNPs

had a high impact on the products of genes and probably cause structural changes in the

respective proteins.

Non-synonymous SNPs, also called missense variants, led to changes in protein effective-

ness due to changes in amino acid codons. Out of all non-synonymous SNPs discovered in

the three camels, there were 15,168 SNPs in common between them. Furthermore, it was

found that 7085, 6271 and 4688 non-synonymous SNPs among 3436, 3058 and 2882 genes

were specific for YaD, TrD and AfD, respectively, which provides valuable resources to be

used in genetic analysis of the phenotypic differences among them. GO analysis was per-

formed for the genes, including specific non-synonymous SNPs in each individual to investi-

gate whether these genes are associated with any biological terms. Functional enrichment

analysis was carried out for genes containing non-synonymous SNPs shared among three

camels. The first 1000 genes based on the number of non-synonymous SNPs from each gene

list were extracted and functional enrichment analysis was carried out on them (S2–S5

Tables). The range of non-synonymous SNPs for selected genes to Go analysis for shared

SNPs set, YaD-specific set, TrD-specific set and AfD-specific set were, 2–29, 2–32, 2–25 and

1–20, respectively.

The results showed that there was no significant over-represented GO t-erm for biological

processes in the YaD-specific gene list. However, significant results were found for cellular

components and molecular function. Significantly enriched GO terms for TrD-specific, AfD-

specific and shared genes were also observed. One of the most interesting enriched term in the

shared genes set was “cellular response to osmotic stress” (GO:0071470), which could be vital

for animals and plants that live in a desert environment. Some biological processes, such as

DNA and protein damage, prevention of DNA replication and transcription, inhibition of pro-

tein production and mitochondrial depolarization can occur due to osmotic stress [35]. The

high salt concentration in a camel diet and water shortage in deserts mean that camels are

highly exposed to osmotic shock. Presumably, our finding indicates that some genes such as

those found in the GO analysis have raised camel tolerance to high salt levels [10] and hyperos-

motic stress.

Table 3. Functional annotation of discovered SNPs.

Impact SNPs YaD TrD AfD Shared SNPs

HIGH STOP_GAINED 1343 1271 1217 486

STOP_LOST 979 922 838 472

START_LOST 124 111 98 51

SPILICE_SITE_ACCEPTOR 127 116 103 54

SPILICE_SITE_DONOR 200 188 158 93

MODERATE NON_SYNONYMOUS_CODING 36748 35208 31506 15168

LOW SYNONYMOUS_STOP 181 151 154 77

SYNONYMOUS_START 1 - - -

NON_SYNONYMOUS_START 10 11 9 5

SYNONYMOUS_CODING 17310 16354 14780 7001

MODIFIER INTERGENIC 1164972 1140766 1036643 486742

INTRAGENIC 8 8 4 1

INTRON 943845 899719 815981 386512

UPSTREAM 132089 125375 112771 53393

DOWNSTREAM 106464 102637 91883 43419

TOTAL 2404401 2322837 2106145 993474

https://doi.org/10.1371/journal.pone.0204028.t003
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It was found that microtubule-related terms were common to shared genes, and TrD-spe-

cific and AfD-specific sets. The GO term “microtubule-based process” is any cellular process

that depends upon or alters the microtubule cytoskeleton, that part of the cytoskeleton com-

prising microtubules and their associated proteins. A microtubule-based movement is a

process that results in the movement of organelles, other microtubules or other cellular com-

ponents. An “actin filament-based process” is as any cellular process that depends upon or

alters the actin cytoskeleton, that part of the cytoskeleton comprising actin filaments and their

associated proteins [36]. Enrichment of these terms may be related to the role of the cytoskele-

ton in renal development [37].

The kidney is a very important organ in the body of camels because of its high urine-concen-

trating and water reabsorption capacity, which help the camel survive in the arid conditions of

hot deserts. Microtubules are involved in ultrafiltration of plasma by the glomerulus, in water

and solute reabsorption and in the secretion of anions and cations into tubular fluid [38]. These

functions enable the kidney to adjust the volume and composition of urea and are critical for

the camel. High NaCl and ultraviolet radiation are significant features of deserts that increase

DNA damage [35]. Investigation of molecular function among the enriched gene sets revealed

that enriched terms such as “nucleoside binding” (GO:0001882), “ATP binding” (GO:0005524)

and “kinase activity” (GO:0016301) could be involved in DNA repair and replication.

Of the 324 positively-selected genes (PSG) identified by Wu et al. (2014) [2] in the drome-

dary camel, we found 96, 43, 47 and 40 PSGs in the shared, YaD-specific, TrD-specific and

AfD-specific gene sets, respectively (S6 Table). A large portion of PSGs in genes (containing

non-synonymous mutation) shared among camels over long geographical distances (Iran and

Africa) can be attributed to fixation of these mutations in dromedaries, although the proof of

this claim requires further resequencing of different breeds of dromedary camels globally.

Dense dust in deserts puts camels at high risk of respiratory diseases, but it appears that

evolution has provided camels with the ability to deal with this threat. Wu et al. (2014) [2]

reported several genes, including FOXP3, CX3CR1, CYSLTR2 and SEMA4A, that are related

to respiratory diseases as PSGs in dromedary and Bactrian camels. Interestingly, annotation of

identified SNPs in variant sets shared among the three camels revealed that 2, 2 and 1 non-syn-

onymous SNPs occurred in FOXP3, CYSLTR2 and CX3CR1, respectively. In light of these

results, the importance of genes associated with respiratory system of camels is clear.

It has been reported that the fixed SNPs probably represent alleles present at the time of

domestication [39]. In the current study, fixed SNPs are the positions where there were homo-

zygous SNPs in Iranian camels, but AfD had none of these SNPs in those positions. Of the

101,433 identified SNPs with the mentioned criteria, 1,987 missense SNPs were detected as

fixed SNPs and were located in 837 genes. Because these variants were found only in the Ira-

nian camel, this may indicate that the variants in these regions became fixed by human selec-

tion after domestication and can be considered alleles in diversification or improvement

genes. To further investigate the differences between the breeds, functional enrichment analy-

sis was performed on the genes that contained fixed SNPs. This analysis revealed that genes

related to cell adhesion and biological adhesion were over-represented in the set of fixed SNPs

for Iranian camels. Interestingly, some fixed SNPs were located in LDLR, MLYCD, APOE and

PPARGC1A genes involved in lipid and energy metabolism. Reservation and utilization of

hump fat is a routine process throughout camel life; thus, optimal metabolism of lipids is a key

factor for enduring food and water shortages.

Investigation of LOF variants revealed that there are 439 LOF variant in shared variants set.

Of the identified SNPs, 197 and 242 SNPs were heterozygous and homozygous, respectively.

Because the camel genome project is in its early stages and genomic information in this field is

not complete, the downloaded GFF file has not yet been completed and the name of a number
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of genes is unknown. After removing of unknown genes, enrichment analysis was performed

for the remaining 352 genes. We observed no significantly enriched biological process GO

term for mentioned genes.

GO enrichment of specific Iranian camel genes

It was found that 1,874 genes containing non-synonymous SNPs were specific for Iranian sam-

ples when compared with AfD. GO enrichment analysis of these genes produced 45 enriched

terms at an un-adjusted p-value� 0.01 (S7 Table). Investigation of the results revealed that 15

(33.3%) enriched terms (such as “nephron development”, “kidney morphogenesis” and “renal

tubule development”) are related to morphogenesis and development of the urinary system,

especially the kidneys. It was also observed that eight (17.8%) terms (such as “regulation of T-

cell activation”, “regulation of type I interferon production” and “regulation of lymphocyte acti-

vation”) are directly related to immune response. The combination of immune-related terms

with “regulation of response to stimulus” (GO:0048583), “response to mechanical stimulus”

(GO:0009612), “regulation of response to stress” (GO:0080134), “regulation of hemostasis”

(GO:1900046) and “wound healing” (GO:0042060) may be reflects the successful adaptation of

Iranian dromedaries to living under the stressful conditions of the central deserts of Iran.

Indel identification

Indels are structural variants that have significant effect on gene structure, expression and

function [40]. Next-generation sequencing has generated a unique opportunity to indel identi-

fication on the large scale. In our resequencing project, the total number of identified indels

across the genomes of the three camels was 1,027,182, of which 53.3% (547,292) were inser-

tions. A total of 133,274 indels were common to all three camels while the indels with no over-

lap with any other sample represented 112,824 in YaD, 104,391 in TrD and 96,915 in AfD (S1

Fig). Among the three camels, YaD had largest number of indels (351,429), as was in accor-

dance with a large number of SNPs in this camel. These results indicated that YaD, in compari-

son with other samples, was more divergent than the reference camel genome. The length of

the detected indels ranged from +30 (insertion) to -45 (deletion) base pair. The results revealed

that 1–3 bp indels were 66.5%, 65.9% and 64.7% of all discovered indels in YaD, TrD and AfD,

respectively (S2 Fig).

Functional annotation of detected indels

A summary of functional annotation for Iranian dromedaries and the downloaded sample

(AfD) is shown in Table 4. The majority of annotated indels in the three camels are located in

Table 4. Functional annotation of discovered indels.

indel YaD TrD AfD

INTERGENIC 171706 168050 165086

INTRON 140774 135017 132709

UPSTREAM 19030 18577 17898

DOWNSTREAM 15445 15280 14636

EXON 4371 4446 3836

SPILICE_SITE_ACCEPTOR 55 53 58

SPILICE_SITE_DONOR 45 53 50

GENE_FUSION 2 2 -

GENE_FUSION_REVERSE 1 1 1

https://doi.org/10.1371/journal.pone.0204028.t004
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the intergenic and intron region (913,342; 88.9% of all indels). It was found that the 3257

(0.93%), 3327 (0.97%) and 2821 (0.84%) indels for YaD, TrD and AfD, respectively, cause a

frameshift event (Fig 2). Frameshift mutations are classified in the important disruptive muta-

tion group and change the reading frame of protein coding sequences [41]. The percentage

of frameshift mutations in the camel genome was higher than in the cattle genome (0.08%)

Fig 2. Classification of identified indels by their impact on genome for YaD (A), TrD (B) and AfD (C).

https://doi.org/10.1371/journal.pone.0204028.g002
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[27–28], but lower than in the horse genome (1.3%) [29]. Of the three discovered indel sets,

9934 (0.97%), 3036 (0.30%) and 1014212 (98.73%) indels were grouped in variants having a

high effect, moderate effect and modifier effect, respectively (Fig 2). Gene fusion (four indels)

and gene fusion reverse (three indels) classes had the lowest numbers of indels among variants

with a high effect. All seven indels that caused gene fusion and gene fusion reverse were dele-

tions. The lengths of the gene fusion indels in YaD were 13 and 32 bp, while there were 25 and

32 bp indels in this class for TrD.

Conclusion

In the current study, whole genome resequencing of two Iranian dromedary camels was car-

ried out. The raw reads from the Illumina Hiseq system were mapped to the reference genome

and variants were identified using two powerful variant callers (SAMtools and GATK). Over-

all, 4,727,238 SNPs and 692,908 indels were identified for the two Iranian camels. The variants

were annotated and classified into functional and locational categories. The whole genome

resequencing project provides a valuable resource for future studies. Increasing genome-wide

information in camels could improve understanding about camel breeding (e.g; genomic

selection).

We tried to use our whole genome sequencing data along with publicly available genomic

data of camels for genetic variants analysis of two Iranian dromedary camels and one African

origin camel, which leads to identify Go categories related to survival in harsh condition of

deserts. However, the main issue for confirmation of this study was the number of samples.

The big challenge in research on camels, especially at the genomic level, is the shortage of reli-

able sources to receive scientific information. It appears that researchers must focus on enrich-

ing the genome-level information in this field. We took one step (one of the first steps) on re-

sequencing analysis of camels and the obtained results along with another parallel projects

could help to enrich the information resources associated with camels.
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