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Abstract: Motivated by a recent disagreement about the claim that fluctuations in the free energy
operator bound the charging power of a quantum battery, we present a critical analysis of the original
derivation. The analysis shows that the above claim does not hold for both closed- and open-system
dynamics. Our results indicate that the free energy operator is not a consistent quantifying operator
for the work content of a charging quantum battery.
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1. Introduction

Batteries are indispensable to the modern technological world. An immense amount
of effort has been poured into researching the optimal batteries that have ultralarge capacity,
ultracompact size, ultrafast charging, and ultraslow aging [1,2]. Recently, the prospect of
harvesting energy from the environment and performing work using quantum machines
at the nanoscale has prompted a rise in the study of quantum batteries [3–18] (see ref. [19]
for a review). In general, a quantum battery [3] is a quantum system that can store work
extracted from another quantum system (the energy source system) and release the energy
to power other quantum machines on demand. In light of recent advances in quantum
computing [20,21], quantum batteries may be able to explore quantum phenomena to
improve charging [10], energy storage [11], and discharging [12] capabilities.

Like classical batteries, an important figure of merit that characterizes the performance
of quantum batteries is charging power, that is, the rate at which energy can be stored.
The charging power is essentially determined by the models and charging processes of
quantum batteries. Currently, the study of the charging power of quantum batteries are
largely focused on achieving a quantum advantage of phase coherences and nonlocal
correlations to enhance the charging and discharging processes. Various quantum battery
models and charging processes [4–15] that utilize collective operations on many copies
of identical quantum batteries to speed up the charging time have been studied in both
theoretical and experimentally realizable situations. Of particular interest are a practical
model with N two-level systems coupled to a single photon mode in a cavity (the cavity–
charger protocol) [6,13,14], and a theoretical model with N spin-1/2 battery cells charged
collectively by M noninteracting spin-1/2 chargers through a general Heisenberg XY
interaction (the spin–charger protocol) [15]. For the conventional cavity–charger protocol
with single-photon coupling, a collective enhancement in the charging power that scales
like
√

N [6] and a collective suppression of the energy locked by correlations relative
to the extractable energy that scales as 1/N [13] have been reported for N � 1. The
unconventional cavity–charger protocol with dominant two-photon coupling shows a
more significant collective enhancement in the charging power that scales like N [14], a
clear advantage over the single-photon coupling case. Moreover, the newly proposed spin–
charger protocol has several advantages over the conventional cavity–charger protocol,
including a high capacity of energy storage, a superior power law in collective charging,
and a full charging for equal number of charger spins and battery cells [15].
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From a thermodynamic perspective, an equally important but less explored problem
is to determine the bound on the charging power of quantum batteries regardless of the
detail of models and charging processes. This bound would be an analog of the Carnot
efficiency that sets the maximum efficiency of a thermal engine operating between two heat
baths at different temperatures. It is hoped that the bound may shed light on the design of
quantum batteries with ultrahigh charging power.

Initial research along this line has only started recently. In ref. [16], a geometric
approach is used to derive a bound on the charging power of a closed quantum battery
under a unitary charging process. The bound is related to the product of the energy
fluctuation of the battery and the square root of the classical Fisher information in the
energy space of the battery. Later, in another study [17], the connection between the
charging power of an open quantum battery and the fluctuation of a “free energy operator”
is studied. It is found that the bound on charging power is proportional to the fluctuation
of the free energy operator for both closed- and open-system dynamics. The authors thus
conclude that fluctuations in the free energy operator bound the charging power of a
quantum battery. In a follow-up study [18], an “activity operator” akin to the free energy
operator is introduced and a tighter bound proportional to the fluctuation of the activity
operator is derived for open quantum batteries.

Unfortunately, it has been shown [22] that the conclusion of ref. [17] does not hold
for open-system dynamics. The authors of ref. [17] acknowledge the mistakes [23] but, by
deriving a modified bound on the charging power, they reassert “it holds that ‘fluctuations
in the free energy operator bound the charging power of a quantum battery,’ as claimed” .
Since closed- and open-system analyses are physically equivalent approaches to studying
the dynamics of an open quantum battery, the question as to whether the validity of
the conclusion of ref. [17] holds for both closed- and open-system dynamics remains
unanswered.

In this article, we clarify the situation by critically examining the derivation in
refs. [17,23]. In doing so, we find a few mistakes and obtain the correct bounds on the
charging power for both closed- and open-system dynamics. Our results show that the
bounds are not directly proportional to the fluctuation of the free energy operator; instead
there is an additive contribution related to the correlation between the free energy operator
and the operator(s) generating the nonunitary evolution of the battery. Therefore, the valid-
ity of the claim that fluctuations in the free energy operator bound the charging power of a
quantum battery is called into question.

The rest of this article is organized as follows. In Section 2, we introduce the free energy
operator and charging power of a quantum battery defined in ref. [17]. The corrected closed-
and open-system analyses are presented in Sections 3 and 4, respectively. In Section 5, we
conclude by discussing the implications of the correct bounds.

2. Free Energy Operator

The central quantity in the analysis of refs. [17,23] is the free energy operator F .
Specifically, for a batteryW with Hamiltonian HW and in the state ρW it is defined with
respect to a reference heat bath at inverse temperature β as

F := HW + β−1 log ρW . (1)

Note that F is a Hermitian operator but does not correspond to a physical observable [17]
because it depends on the state ρW of the battery. Physical observables are Hermitian
operators but the converse is not true. A physical observable (e.g., Hamiltonian) obtains
its physical meaning through measurement outcomes in terms of its eigenvalues and
corresponding eigenstates. The density matrix (or state operator) of a quantum system is a
Hermitian operator but not a physical observable. It is defined through state preparation
instead of measurement, and different state preparations may give rise to the same density
matrix. The rationale behind the definition of F given in Equation (1) is evident; the expec-
tation value 〈F〉W = Tr(ρWF ) of F in the battery state ρW gives the nonequilibrium free
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energy F(ρW ) = U(ρW )− β−1S(ρW ) of the battery in the state ρW with respect to a ref-
erence inverse temperature β. Here, U(ρW ) = Tr(ρWHW ) and S(ρW ) = −Tr(ρW log ρW )
are the average energy and von Neumann entropy of the battery in the state ρW , respec-
tively. By construction, the expectation value of F quantifies the maximum extractable work
of the battery in the presence of heat transfer. That is, the maximum amount of work that
can be extracted on average from a quantum battery in the state ρW and in thermal contact
with a heat bath at inverse temperature β is given by [24,25]

Wmax = β−1S(ρW‖τβ) = F(ρW )− F(τβ). (2)

Here, S(ρ‖σ) = Tr(ρ log ρ)− Tr(ρ log σ) is the quantum relative entropy of the states ρ
to σ, τβ = e−βHW/ Tr(e−βHW ) is the thermal state of the battery at inverse temperature β,
and F(τβ) = −β−1 log Tr(e−βHW ) is the equilibrium free energy of the battery at inverse
temperature β. It is noted that a similar but distinct quantity related to Wmax is the
maximum amount of work that can be extracted on average from a closed driven quantum
system under cyclic unitary processes acting on the system, also known as the ergotropy of
the system [26]. An extraction process is cyclic if the external time-dependent driving field
vanishes at the beginning and at the end of the process. Since unitary processes preserve
entropy, ergotropy corresponds to the maximum extractable work from a system in the
absence of heat transfer.

The authors of refs. [17,23] posit that the charging power P(t) of a quantum battery is
defined as

P(t) :=
dWmax

dt
=

d〈F〉W
dt

. (3)

We stress that, since there is no consensus on the notion of work in the quantum regime, the
definition of charging power given in Equation (3) is not without problems. In particular, it
follows from Equation (2) that Wmax is a state function in that its value does not depend
on the process that takes the battery to the state ρW . Thus the change in Wmax is a state
function, which implies that the charging power P(t) defined in Equation (3) is also a state
function. This, however, is in contradiction with the fundamental concept that work and
power are in general process-dependent quantities. We will first focus on examining the
derivation in refs. [17,23] and come back to related conceptual issues in the discussion at
the end of this article.

To avoid repetition, in what follows we will skip most of the part of the derivation
in refs. [17,23] that does not contain mistakes, and include only the part that needs to be
corrected.

3. Closed-System Analysis

In the closed-system analysis, the battery is considered to be a subsystem of a closed
quantum system. The closed system SBAW consists of the energy source S , bath B, ancilla
A, and batteryW , and follows unitary time evolution. The starting point of our analysis is
the charging power P(t) of the battery given by (see Equation (8) of ref. [17])

P(t) = −i Tr([ρ,F ⊗ 1SBA]V), (4)

where ρ is the full state of the closed system SBAW and V is the interaction Hamiltonian
between the battery and the source system S , bath B, and ancilla A. Following ref. [17], we
define δF = F − 〈F〉W and δV = V − 〈V〉, where 〈V〉 = Tr(ρV). After some algebra, we
obtain

|P(t)|2 = |Tr(ρ[δF , δV])|2, (5)

where for notational simplicity we will use the shorthand notation δF = δF ⊗ 1SBA in the
remaining of this section. Note that Equation (5) is an equality instead of an inequality in
Equation (9) of ref. [17]. It is convenient to rewrite Equation (5) as

|P(t)|2 = |Tr(
√

ρ δFδV
√

ρ−√ρ δVδF√ρ)|2, (6)



Entropy 2021, 23, 1455 4 of 8

where we have used the fact that ρ is a positive operator. We note that since
√

ρ δFδV
√

ρ
and
√

ρ δVδF√ρ are Hermitian conjugates of each other, it follows that Tr(
√

ρ δFδV
√

ρ)
and Tr(

√
ρ δVδF√ρ) are complex conjugates of each other. As a matter of fact, this is the

utmost important point that is missed in the analysis of ref. [17]. With this point in mind,
we can rewrite Equation (6) as

|P(t)|2 = |Tr(
√

ρ δFδV
√

ρ)|2 + |Tr(
√

ρ δVδF√ρ)|2 − 2 Re([Tr(ρ δFδV)]2), (7)

where Re denotes the real part.
To find the bound on |P(t)|2, following ref. [17], we use the fact that for a positive

operator A and Hermitian operators B and C, the Cauchy-Schwarz inequality implies
|Tr(
√

ABC
√

A)|2 ≤ |Tr(AB2)| |Tr(AC2)|. Equation (7) then leads to

|P(t)|2 ≤ 2
(
[Tr[ρ(δF )2]Tr[ρ(δV)2]− Re([Tr(ρ δFδV)]2)

)
= 2

(
σ2
Fσ2

V − Re[Cov(F , V)2]
)
. (8)

Here, σ2
F is the variance of F in the battery state ρW , σ2

V is the variance of V in the full
state ρ, and Cov(F , V) is the covariance between F and V in the full state ρ. Specifically,
we have

σ2
F = 〈F 2〉W − 〈F〉2W , σ2

V = 〈V2〉 − 〈V〉2,

Cov(F , V) = 〈(F ⊗ 1SBA)V〉 − 〈F〉W 〈V〉.
(9)

Moreover, the inequality σ2
Fσ2

V ≥ |Cov(F , V)|2 implies σ2
Fσ2

V − Re[Cov(F , V)2] ≥ 0 as
it should be. Equation (8) is a slightly corrected expression for Equations (9) and (12)
of ref. [17]. As a result, the charging power of the battery is bounded not only by the
fluctuation of the free energy operator but also by the covariance between the free energy
operator and the interaction Hamiltonian, which generates the nonunitary evolution of the
battery. Therefore, the conclusion of ref. [17] that fluctuations in the free energy operator
bound the charging power of a quantum battery does not hold for closed-system dynamics.

Finally, we consider the case in which the battery state is an instantaneous eigenstate
of the free energy operator. Suppose ρW = |j〉〈j| and F|j〉 = f j|j〉 with f j being the real
eigenvalue; we obtain σ2

F = Cov(F , V) = 0, which implies P(t) = 0. However, even
though the total system is initially in a product state with the battery in an eigenstate of F ,
the interaction V will make the battery entangled with the other subsystems, giving rise to
a mixed battery state. It is conceivable that there exist entangled full states ρ and mixed
battery states ρW = TrSBA(ρ) with nonzero σF and Cov(F , V) but P(t) = 0. We therefore
stress that under the assumption of a general charging process with σV 6= 0, the battery
state ρW = |j〉〈j| is only a sufficient condition for the battery to have a vanishing charging
power, as opposed to a sufficient and necessary condition in the original invalid analysis of
ref. [17].

4. Open-System Analysis

In the open-system analysis the battery is treated as an open quantum system per se.
The original analysis [17] is not valid [22] and an improved one is presented in ref. [23].
Following ref. [23], we express the state of the battery ρW in its instantaneous eigenbasis
{|α〉} as ρW = ∑α pα|α〉〈α|, where pα ≥ 0 are the eigenvalues. The charging power P(t) of
the battery is given by (see the first two equalities in Equation (2) of ref. [23])

P(t) = Tr
(dρW

dt
F
)
= ∑

α,β
δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉, (10)
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where δFαβ = 〈α|δF|β〉. It is convenient to rewrite Equation (10) as

P(t) = ∑
α,β

pα+pβ>0

√
pα + pβ√
pα + pβ

δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉+ ∑
α,β

pα+pβ=0

δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉, (11)

where we have separated the terms in the summation into those with pα + pβ > 0 and
pα + pβ = 0. We stress that since ρW is in general not of full rank, there exist eigenstates
|α〉 of ρW with pα = 0. Hence the additional factor of

√
pα + pβ/

√
pα + pβ = 1 in the

first summation is valid if and only if pα + pβ > 0. As a matter of fact, this is the utmost
important point that is missed in the derivation of ref. [23].

To find the bound on |P(t)|, we first use the triangle inequality to obtain

|P(t)| ≤
∣∣∣∣∣∑′

α,β

√
pα + pβ√
pα + pβ

δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉∣∣∣∣∣+
∣∣∣∣∣∑′′

α,β
δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉∣∣∣∣∣, (12)

where we have introduced the shorthand notation ∑′α,β = ∑α,β:pα+pβ>0 and ∑′′α,β =

∑α,β:pα+pβ=0. Applying the Cauchy–Schwarz inequality to the first term of the bound (12),
we then obtain

|P(t)| ≤
√

1
2 ∑′

α,β
(pα + pβ) |δFαβ|2

√√√√2 ∑′

α,β

|〈β| dρW
dt |α〉|2

pα + pβ
+

∣∣∣∣∣∑′′

α,β
δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉∣∣∣∣∣
=

√
1
2 ∑

α,β
(pα + pβ) |δFαβ|2

√√√√2 ∑′

α,β

|〈β| dρW
dt |α〉|2

pα + pβ
+

∣∣∣∣∣∑′′

α,β
δFαβ

〈
β
∣∣∣dρW

dt

∣∣∣α〉∣∣∣∣∣, (13)

where in the last equality we have used the identity ∑α,β(pα + pβ)|δFαβ|2 = ∑′α,β(pα +

pβ)|δFαβ|2. The first factor in the first term of the bound (13) is the fluctuation σF of F in
the battery state ρW . The second factor is a finite quantity, as opposed to the one obtained in
ref. [23] that can become divergent. It is the square root of the quantum Fisher information
IQ(t) of the state ρW with t being the parameter [27]. Specifically, we have

IQ(t) = 2 ∑′

α,β

|〈β| dρW
dt |α〉|

2

pα + pβ
. (14)

It is important to note that in the statement that follows Equation (88) of ref. [27], it is
stressed that if the sum extends over all α and β, including those with vanishing pα and pβ,
then the quantum Fisher information becomes ill-defined and one has to find an alternative
way to define it [28,29]. Equation (13) is a slightly corrected expression for Equations (2)
and (4) of ref. [23]. In the weak-coupling and Markovian limit, the explicit expressions for
IQ(t) and the second term of the bound (13) can be found using the Lindblad equation for
ρW given by Equation (14) of ref. [17]. For the purpose of our discussion, it however suffices
to observe that the second term of the bound is related to the correlations between F and
the Lindblad operators Lj in the kernel of the battery state ρW . As a result, the charging
power of the battery is bounded not only by the fluctuation of the free energy operator but
also by the correlation between the free energy operator and the Lindblad operators, which
generate the nonunitary evolution of the battery. Therefore, the conclusion of ref. [23] that
fluctuations in the free energy operator bound the charging power of a quantum battery
does not hold for open-system dynamics.

To illustrate the last point, we consider the case in which the battery state is an
instantaneous eigenstate of the free energy operator. Write δF = ∑m wm|m〉〈m| with wm
the real eigenvalues and |m〉 the corresponding instantaneous eigenstates, and suppose
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ρW = |n〉〈n| with |n〉 an instantaneous eigenstate of F . For ρW = |n〉〈n| the condition
〈δF〉W = 0 implies wn = 0; thus we obtain σF = 0 and

|P(t)| ≤∑
j

γj ∑
m

m 6=n

|wm| |〈m|Lj|n〉|2, (15)

where γj > 0 are relaxation rates. The bound (15) evidently agrees with Equation (8) of
ref. [22], which can be written in our notation as

P(t0) = ∑
j

γj ∑
m

m 6=n

wm |〈m|Lj|n〉|2 6= 0. (16)

Contrary to the result of ref. [23], for open-system dynamics the contribution to the nonzero
charging power of a battery in an eigenstate of F comes from the correlations between
F and Lj in the kernel of ρW = |n〉〈n| instead of the divergence of an ill-defined quantum
Fisher information of the state.

5. Discussion

We have shown that the claim that fluctuations in the free energy operator bound
the charging power of a quantum battery does not hold for both closed- and open-system
dynamics. In particular, a battery in an eigenstate of F is only a sufficient condition for
the battery to have a vanishing charging power in the closed-system analysis, but the
same battery state has a nonzero charging power in the open-system analysis. Since the
interaction Hamiltonian in the closed-system analysis can always be engineered to give rise
to the Lindblad equation in the open-system analysis, this inconsistency between closed-
and open-system dynamics calls for a deeper examination of the free energy operator F
introduced in ref. [17] to quantify the work content of a charging quantum battery.

As stressed in Section 2, the definition of the charging power P(t) in Equation (3) is
not problem-free. First, recall that Wmax is a state function corresponding to the maximum
extractable work of the battery when it is in thermal contact with a heat bath at inverse
temperature β. However, the battery cannot be in contact with a heat bath; otherwise
part of the energy transfer will be heat rather than work. As a matter of fact, the authors
of refs. [17,23] never address the issue of why the bounds (8) and (13) on the charging
power of a battery would depend on the arbitrary parameter β that is introduced by hand
solely for the purpose of constructing the operator F . Second, we note that the operator
F has logarithmic singularities and is not bounded in the kernel of ρW [30]. While one
may choose to restrict F (and hence HW ) to the support of ρW , it is likely to give rise to
inconsistent battery dynamics because HW and the Lindblad equation are defined on the
full Hilbert space of the battery. Hence, despite that by construction the expectation values of
F yield the formal expression for Wmax in Equation (2), the operator F and its fluctuations
may not have physical meaning per se. Finally, the second law of thermodynamics dictates
that the maximum extractable work Wmax is achieved if and only if the extraction process
is thermodynamically reversible (quasistatic and nondissipative) [24,25]. Thus to have a
nonzero charging power the charging efficiency cannot be maximum [31], that is, P(t) in
general cannot be dWmax/dt, which vanishes identically in the quasistatic limit. Moreover,
there is a separation of time scales in the battery charging problem: the infinitely long
quasistatic time scale associated with Wmax and the much shorter relaxation time scale
associated with P(t). Defining P(t) = dWmax/dt sends the relaxation time scale to infinity
and erroneously equates the two separated time scales. A consistent treatment of the
problem is to consider P(t) = dW/dt, where W is the work stored in the battery on the
relaxation time scale. In general, we have W < Wmax because of a tradeoff between the
charging efficiency and the charging power for finite-time processes [32].

In conclusion, our results indicate that the free energy operator introduced in ref. [17]
does not consistently quantify the work content of a charging quantum battery at the
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relaxation time scale of the battery. The question as to whether there is a consistent
quantifying operator is certainly an important problem that warrants further investigation.
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